Complete lift of a tensor field of type (1,2) to semi-cotangent bundle

Furkan Yildirim

Narman Vocational Training School, Ataturk University, Erzurum, Turkey

Received: 16 October 2017, Accepted: 9 November 2017
Published online: 25 December 2017.

Abstract: The main purpose of this paper is to define the complete lift of a projectable tensor field of type (1,2) to semi-cotangent bundle \(t^*M \). Using projectable geometric objects on \(M \), we examine lifting problem of projectable tensor field of type (1,2) to the semi-cotangent bundle. We also present the good square in the semi-cotangent bundle \(t^*M \).

Keywords: Complete lift, pull-back bundle, semi-cotangent bundle, vector field.

1 Introduction

Let \(M_n \) be a differentiable manifold of class \(C^\infty \) and finite dimension \(n \), and let \((M_n, \pi_1, B_m) \) be a differentiable bundle over \(B_m \). We use the notation \((x') = (x^\alpha, x'^\alpha)\), where the indices \(i, j, \ldots \) run from 1 to \(n \), the indices \(a, b, \ldots \) from 1 to \(n - m \) and the indices \(\alpha, \beta, \ldots \) from \(n - m + 1 \) to \(n \). \(x^\alpha \) are coordinates in \(B_m \), \(x^i \) are fibre coordinates of the bundle \(\pi_1 : M_n \rightarrow B_m \).

Let now \((T^* (B_m), \tilde{\pi}, B_m)\) be a cotangent bundle \([1]\) over base space \(B_m \), and let \(M_n \) be differentiable bundle determined by a natural projection (submersion) \(\pi_1 : M_n \rightarrow B_m \). The semi-cotangent bundle (pull-back \([2], [3], [4], [5], [6]\)) of the cotangent bundle \((T^* (B_n), \tilde{\pi}, B_m)\) is the bundle \((t^* (B_m), \pi_2, M_n)\) over differentiable bundle \(M_n \) with a total space

\[
t^* (B_m) = \{ (x^\alpha, x'^\alpha, \bar{x}) \in M_n \times T^*_x (B_m) : \pi_1 (x^\alpha, x'^\alpha) = \tilde{\pi} (x^\alpha, x'^\alpha) = (x'^\alpha) \} \subset M_n \times T^*_x (B_m)
\]

and with the projection map \(\pi_2 : t^* (B_m) \rightarrow M_n \) defined by \(\pi_2 (x^\alpha, x'^\alpha, \bar{x}) = (x^\alpha, x'^\alpha) \), where \(T^*_x (B_m) (x = \pi_1 (\bar{x}), \bar{x} = (x^\alpha, x'^\alpha) \in M_n) \) is the cotangent space at a point \(x \) of \(B_m \), where \(\bar{x} = p_{\bar{\alpha}} \) \(\bar{x} \), \(\bar{x} \), \ldots, \(n + 1, \ldots, 2n \) are fibre coordinates of the cotangent bundle \(T^*(B_m) \).

Where the pull-back (Pontryagin \([7]\)) bundle \(t^* (B_m) \) of the differentiable bundle \(M_n \) also has the natural bundle structure over \(B_m \), its bundle projection \(\pi : t^* (B_m) \rightarrow B_m \) being defined by \(\pi : (x^\alpha, x'^\alpha, \bar{x}) \rightarrow (x'^\alpha) \), and hence \(\pi = \pi_1 \circ \pi_2 \). Thus \((t^* (B_m), \pi_1 \circ \pi_2) \) is the composite bundle \([8], p.9\) or step-like bundle \([9]\). Consequently, we notice the semi-cotangent bundle \((t^* (B_m), \pi_2)\) is a pull-back bundle of the cotangent bundle over \(B_m \) by \(\pi_1 \) \([6]\).

If \((x') = (x^\alpha, x'^\alpha)\) is another local adapted coordinates in differentiable bundle \(M_n \), then we have

\[
\begin{aligned}
\alpha x'^\alpha &= x'^\alpha (x^\beta), \\
\beta x'^\alpha &= x'^\alpha (x^\beta).
\end{aligned}
\]
The Jacobian of (1) has components
\[
\left(A'_{ij} \right) = \left(\frac{\partial x'^i}{\partial x^j} \right) = \left(\begin{array}{cc} A'_{ib} & A'_{ib} \\ 0 & A'_{ib} \end{array} \right),
\]
where \(A'_{ib} = \frac{\partial x'^i}{\partial x^b} \), \(A'_{ib} = \frac{\partial x'^i}{\partial x^b} \), and \(A'_{ib} = \frac{\partial x'^i}{\partial x^b} \) [6].

To a transformation (1) of local coordinates of \(M_n \), there corresponds on \(t^*(B_m) \) the change of coordinate
\[
\begin{align*}
\begin{cases}
x'^i = x'^i (x^b, x^\beta), \\
x'^i = x'^i (x^b), \\
\partial x'^i = \frac{\partial x^i}{\partial x^b} x^\beta.
\end{cases}
\end{align*}
\]

The Jacobian of coordinate system transformation (2) is:
\[
\tilde{A} = \left(A'_{ij} \right) = \left(\begin{array}{ccc} A'_{ib} & A'_{ib} & 0 \\ 0 & A'_{ib} & 0 \\ 0 & 0 & A'_{ib} \end{array} \right),
\]
where \(I = (a, \alpha, \overline{\alpha}), J = (b, \beta, \overline{\beta}), I, J, \ldots, 1, \ldots, 2n; \ A'_{ib} = \frac{\partial x'^i}{\partial x^b} \frac{\partial x^b}{\partial x^\alpha} \) [6].

Now, consider a diagram as
\[
\begin{array}{ccc}
A & \xrightarrow{\gamma} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{\pi} & D \\
\end{array}
\]

A good square of vector bundles is a diagram as above verifying
(i) \(\alpha \) and \(\beta \) are fibre bundles, but not necessarily vector bundles;
(ii) \(\gamma \) and \(\pi \) are vector bundles;
(iii) the square is commutative, i.e., \(\pi \circ \alpha = \beta \circ \gamma \);
(iv) the local expression
\[
\begin{align*}
& \begin{align*}
A & \xrightarrow{\gamma} B \\
\downarrow & \downarrow \\
C & \xrightarrow{\pi} D \\
\end{align*}
\end{align*}
\]
\[
\begin{align*}
& \begin{align*}
U^n \times R^1 \times G^i \times R^i & \rightarrow U^n \times G^i (x^i, a^\alpha, g^\lambda, \beta^\sigma) \\
\downarrow & \downarrow \\
U^n \times R^1 & \rightarrow U^n (x^i, a^\alpha) \\
\end{align*}
\end{align*}
\]

where \(G \) is a manifold and superindices denote the dimension of the manifolds [11].

By means of above definition, we have

Theorem 1. Let now \(\pi : t^*(B_m) \rightarrow B_m \) be a semi-cotangent bundle and \(\pi_1 : M_n \rightarrow B_m \) be a fibre bundle. Then, the following is a good square:
\[
\begin{align*}
&t^*(B_m) \xrightarrow{\tilde{\pi}_1} M_n \times T^*_(B_m) \xrightarrow{\tilde{\pi}_1} M_n (x^a, x^\alpha, x^\overline{\alpha}) \\
&\quad \downarrow \quad \downarrow \\
&t^*(B_m) \xrightarrow{\pi} B_m \times T^*_(B_m) \rightarrow B_m (x^a, x^\alpha, x^\overline{\alpha}) \\
&\quad \downarrow \quad \downarrow \\
&\end{align*}
\]

In this study, we continue to study the complete lifts of projectable tensor field of type (1,2) to semi-cotangent (pull-back) bundle (\(t^*(B_m) \), \(\pi_2 \)) initiated by F. Yildirim and A. Salimov [6].

We denote by \(\mathcal{S}_p^q(M_n) \) the set of all tensor fields of class \(C^\infty \) and of type \((p, q) \) on \(M_n \), i.e., contravariant degree \(p \) and
covariant degree \(q \). We now put \(\mathfrak{S}(M_n) = \sum_{p,q=0}^n \bar{\mathfrak{S}}_{pq}(M_n) \), which is the set of all tensor fields on \(M_n \). Similarly, we denote by \(\bar{\mathfrak{S}}_{pq}(B_m) \) and \(\mathfrak{S}(B_m) \) respectively the corresponding sets of tensor fields in the base space \(B_m \).

Let \(\omega \) be a 1–form with local components \(\omega_{\alpha} \) on \(B_m \), so that \(\omega \) is a 1–form with local expression \(\omega = \omega_{\alpha} dx^\alpha \). On putting [6]

\[
\nu^\alpha \omega = \begin{pmatrix} 0 \\ 0 \\ \omega_{\alpha} \end{pmatrix},
\]

we have a vector field \(\nu^\alpha \omega \) on \(t^*(B_m) \). In fact, from (3) we easily see that \((\nu^\alpha \omega)' = \bar{\omega}(\nu^\alpha) \). We call the vector field \(\nu^\alpha \omega \) the vertical lift of the 1–form \(\omega \) to \(t^*(B_m) \).

Let \(\bar{X} \in \mathfrak{S}_1(\bar{M}_n) \) be a projectable vector field [10] with projection \(X = X^a(x^\alpha) \partial_a \).\(\bar{X} = \bar{X}^a(x^\alpha, x^\beta) \partial_a + X^a(x^\alpha) \partial_a \). Now, consider \(\bar{X} \in \mathfrak{S}_1(\bar{M}_n) \), then \(\bar{c}c \bar{X} \) (complete lift) has components on the semi-cotangent bundle \(t^*(B_m) \) [6]

\[
\bar{c}c \bar{X} = \begin{pmatrix} \bar{X}^a \\ -p_e(\partial_a x^e) \end{pmatrix}
\]

with respect to the coordinates \((x^a, x^\alpha, x^\beta)\).

2 \(\gamma \)--operators

For any \(F \in \mathfrak{S}_1(\bar{B}_m) \), if we take account of (3), we can prove that \((\gamma F)' = \bar{A}(\gamma F) \), where \(\gamma F \) is a vector field defined by [6]:

\[
\gamma F = (\gamma F)' = \begin{pmatrix} 0 \\ 0 \\ p^b F^a_{\beta} \end{pmatrix}
\]

with respect to the coordinates \((x^a, x^\alpha, x^\beta)\) on \(t^*(B_m) \).

For any \(R \in \mathfrak{S}_1(\bar{B}_m) \), if we take account of (3), we can prove that \(\gamma R_{\alpha\beta} = A^{K}_{\alpha} A^I_{\beta} A^J_{\gamma} \gamma R_{IJ}^K \), where \(\gamma R \) has components \(R_{\alpha\beta}^K \) such that

\[
R_{\alpha\beta}^K = p^e R_{\alpha\beta}^e,
\]

all the others being zero, with respect to the induced coordinates on \(t^*(B_m) \). Where \(R_{\alpha\beta}^e \) are local components of \(R \) on \(B_m \) and also \(I = (a, \alpha, \bar{x}), J = (b, \beta, \bar{y}), K = (c, \gamma, \bar{z}) \).

Theorem 2. If \(\bar{X} \) and \(\bar{Y} \) be a projectable vector fields on \(M_n \) with projection \(X \in \mathfrak{S}_1(\bar{B}_m) \) and \(Y \in \mathfrak{S}_1(\bar{B}_m) \). We have

(i) \((\gamma R)(\nu^\alpha \bar{X}, \nu^\beta \bar{Y}) = \gamma(R(X, Y)) \),
(ii) \((\gamma R)(\nu^\alpha \omega, \nu^\beta \theta) = 0 \),
(iii) \((\gamma R)(\nu^\alpha \omega, \nu^\beta \theta) = 0 \),
(iv) \((\gamma R)(\nu^\alpha \omega, \gamma G) = 0 \),
(v) \((\gamma R)(\nu^\alpha Y, \gamma G) = 0 \),
(vi) \((\gamma R)(\nu^\alpha F, \gamma G) = 0 \)

for any \(\omega, \theta \in \mathfrak{S}_1(\bar{B}_m), F, G \in \mathfrak{S}_1(\bar{B}_m) \) and \(R \in \mathfrak{S}_1(\bar{B}_m) \).
Proof. (i) If \(R \in \mathcal{Z}_1(B_m) \), \(\tilde{X} \) and \(\tilde{Y} \) be a projectable vector fields on \(M_n \) with projection \(X, Y \in \mathcal{Z}_0(B_m) \) and

\[
\begin{pmatrix}
[(\gamma R)(cc,cc)X,ccY)]^c \\
[(\gamma R)(cc,cc)X,ccY)]^Y \\
[(\gamma R)(cc,cc)X,ccY)]^T
\end{pmatrix}
\]

are components of \([\gamma R](cc,cc)X,ccY)]^K\) with respect to the coordinates \((x^c,x^y,x^\overline{y})\) on \(t^*(B_m) \), then for \(K = \alpha \), we have

\[
[(\gamma R)(cc,cc)X,ccY)]^c = (R_{a\beta}^c)c\tilde{X}^a cc^\gamma = 0
\]

because of (5) and (7). For \(K = \gamma \), we have

\[
[(\gamma R)(cc,cc)X,ccY)]^Y = (R_{a\beta}^\gamma)cc\tilde{X}^a cc^\gamma = 0
\]

because of (5) and (7). For \(K = \overline{\gamma} \), we have

\[
[(\gamma R)(cc,cc)X,ccY)]^T = (R_{a\beta}^\overline{\gamma})cc\tilde{X}^a cc^\gamma = P_k R_{a\beta}^\overline{\gamma} cc^\gamma P_{\overline{\gamma}} = P_k (R(X,Y))^{\overline{\gamma}}
\]

because of (5) and (7). It is well known that \(\gamma(R(X,Y)) \) have components

\[
\gamma(R(X,Y)) = \begin{pmatrix} 0 \\ 0 \\ P_k (R(X,Y))^\overline{\gamma} \end{pmatrix}
\]

with respect to the coordinates \((x^c,x^y,x^\overline{y})\) on \(t^*(B_m) \). Thus, we have \((\gamma R)(cc,cc)X,ccY) = \gamma(R(X,Y)) \). Similarly, we can easily compute another equations of Theorem 2.

3 Complete lift of a tensor field of type (1,2) to semi-cotangent bundle

Let \(\tilde{S} \in \mathcal{Z}_1(M_n) \) be a projectable tensor field of type (1,2) with projection \(S = S^k_{ij}(x^c,x^\alpha \partial_k \otimes dx^i \otimes dx^j) \), i.e. \(\tilde{S} \) has components such that

\[
cc^S_{a\beta} = S^c_{a\beta}
\]

with respect to the coordinates on \(M_n \). Where \(i = (a, \alpha), j = (b, \beta), k = (c, \gamma) \).

If we take account of (3), we can prove that \(cc^\tilde{S}^k_{j'i'} = A_{k'}^k A_{j'}^j cc^S_{ij} \), where \(cc^\tilde{S} \) has components \(cc^S_{ij} \) such that

\[
\begin{align*}
cc^\tilde{S}^c_{a\beta} &= S^c_{a\beta} \\
cc^\tilde{S}^y_{a\beta} &= S^y_{a\beta} \\
cc^\tilde{S}^\overline{\gamma}_{a\beta} &= -p_k (\partial_a S^c_{\gamma k} + \partial_\beta S^c_{\gamma a} + \partial_y S^c_{\gamma a}) \\
cc^\tilde{S}^\gamma_{a\beta} &= S^\gamma_{a\beta} \\
cc^\tilde{S}^{\overline{\gamma}}_{a\beta} &= S^{\overline{\gamma}}_{a\beta}
\end{align*}
\]

all the others being zero, with respect to the induced coordinates on \(t^*(B_m) \). Where \(S_{ij}^K \) are local components of \(S \) on \(M_n \) and also \(I = (a, \alpha, \overline{\alpha}), J = (b, \beta, \overline{\beta}), K = (c, \gamma, \overline{\gamma}) \).
Proof. For convenience sake we only consider \(cc\tilde{S}_{\beta\gamma}^\gamma \). In fact,
\[
cc\tilde{S}_{\beta\gamma}^\gamma = A^\gamma_\alpha A^\alpha_\beta A^\beta_\gamma \cdot cc\tilde{S}_{\gamma\beta}^\gamma = A^\gamma_\alpha A^\alpha_\beta A^\beta_\gamma \cdot S_{\gamma\beta} = S_{\gamma\beta}'.
\]
Thus, we have \(cc\tilde{S}_{\beta\gamma}^\gamma = S_{\beta\gamma}' \). Similarly, from (3) and (8), we can easily find all other components of \(cc\tilde{S}_{ij}^k \) equal to zero, where \(I = (a,\alpha,\pi), J = (b,\beta,\bar{\beta}), K = (c,\gamma,\bar{\gamma}). \)

Theorem 3. Let \(\tilde{S} \in \mathcal{S}_1^1(M_n) \) be a projectable tensor field of type \((1,2)\). If \(\tilde{X},\tilde{Y} \in \mathcal{S}_0^1(M_n), \omega,\theta \in \mathcal{S}_0^1(B_m), F, G \in \mathcal{S}_1^1(B_m) \) then

(i) \(cc\tilde{S}^{(\nu\nu)}(\omega,\nu\theta) = 0 \),
(ii) \(cc\tilde{S}^{(\nu\nu)}(\omega,\nu\gamma) = 0 \),
(iii) \(cc\tilde{S}^{(\nu\nu)}(\omega,\nu\bar{\gamma}) = -\nu(\omega \circ S_Y) \),
(iv) \(cc\tilde{S}(\nu\nu,\nu\gamma) = 0 \),
(v) \(cc\tilde{S}(\nu\nu,\nu\bar{\gamma}) = -\nu(F \circ S_Y) \),
(vi) \(cc\tilde{S}(\nu\nu,\nu\bar{\gamma}) = cc(S(X,Y)) = \gamma(L_XS_Y - (L_YS)_X + S_{X,Y}) \),

where \(L_XS \) denotes the Lie derivative of \(S \) with respect to \(X \).

Proof. (i) If \(\omega,\theta \in \mathcal{S}_0^1(B_m) \) and \(\tilde{S} \) is projectable tensor field of type \((1,2)\) on \(M_n \) with projection \(S \in \mathcal{S}_1^1(B_m) \) and

\[
\begin{pmatrix}
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\theta) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\gamma) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\bar{\gamma})
\end{pmatrix}^c
\]

are components of \(cc\tilde{S}^{(\nu\nu)}(\omega,\nu\theta) \) with respect to the coordinates \((x^c, x^\gamma, x^\bar{\gamma})\) on \(t^*(B_m) \), then we have

\[
\begin{pmatrix}
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\theta) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\gamma) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\bar{\gamma})
\end{pmatrix}^K = cc\tilde{S}_{ij}^k(\omega^{ij} \theta^J) = cc\tilde{S}_{\beta\gamma}^\gamma(\omega^{\nu\nu} \theta^\pi) = cc\tilde{S}_{\gamma\beta}^\gamma(\omega_\alpha \omega_\beta).
\]

Firstly, if \(K = c \), we have

\[
\begin{pmatrix}
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\theta) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\gamma) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\bar{\gamma})
\end{pmatrix}^c = cc\tilde{S}_{\gamma\beta}^\gamma(\omega_\alpha \omega_\beta) = 0
\]

by virtue of (4) and (8). Secondly, if \(K = \gamma \), we have

\[
\begin{pmatrix}
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\theta) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\gamma) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\bar{\gamma})
\end{pmatrix}^\gamma = cc\tilde{S}_{\gamma\beta}^\gamma(\omega_\alpha \omega_\beta) = 0
\]

by virtue of (4) and (8). Thirdly, if \(J = \bar{\beta} \), then we have

\[
\begin{pmatrix}
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\theta) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\gamma) \\
cc\tilde{S}^{(\nu\nu)}(\omega,\nu\bar{\gamma})
\end{pmatrix}^\bar{\beta} = cc\tilde{S}_{\gamma\beta}^\gamma(\omega_\alpha \omega_\beta) = 0
\]

by virtue of (4) and (8). Thus (i) of Theorem 3 is proved.
(ii) If $G \in \mathcal{G}_1(B_m)$ and \tilde{S} is projectable tensor field of type $(1,2)$ on M_n with projection $S \in \mathcal{G}_1(B_m)$ and

$$
\begin{pmatrix}
\left(\tilde{c}\tilde{c}S^{(\nu)\omega, \gamma G}\right)^c \\
\left(\tilde{c}\tilde{c}S^{(\nu)\omega, \gamma G}\right)^\gamma \\
\left(\tilde{c}\tilde{c}S^{(\nu)\omega, \gamma G}\right)^\gamma
\end{pmatrix}
$$

are components of $\left(\tilde{c}\tilde{c}S^{(\nu)\omega, \gamma G}\right)^K$ with respect to the coordinates (x^c, x^γ, x^β) on $t^*(B_m)$, then we have

$$
\left(\tilde{c}\tilde{c}S^{(\nu)\omega, \gamma G}\right)^K = \tilde{c}\tilde{S}_{IJ}^{K^\nu\omega} G^I = \tilde{c}\tilde{S}_{\alpha\beta}^{K^\nu\omega} G^\beta = \tilde{c}\tilde{S}_{\alpha\beta}^{K^\nu\omega} G^e .
$$

Firstly, if $K = c$, we have

$$
\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma G}\right)^c = \tilde{c}\tilde{S}_{\alpha\beta}^{c^\nu\omega} G^e = 0
$$

by virtue of (4), (6) and (8). Secondly, if $K = \gamma$, we have

$$
\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma G}\right)^\gamma = \tilde{c}\tilde{S}_{\alpha\beta}^{\gamma^\nu\omega} G^e = 0
$$

by virtue of (4), (6) and (8). Thirdly, if $J = \tilde{\beta}$, then we have

$$
\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma G}\right)^\beta = \tilde{c}\tilde{S}_{\alpha\beta}^{\gamma^\nu\omega} G^e = 0
$$

by virtue of (4), (6) and (8). Thus (ii) of Theorem 3 is proved.

(iii) If $\tilde{Y} \in \mathcal{G}_1(M_n)$ and \tilde{S} is projectable tensor field of type $(1,2)$ on M_n with projection $S \in \mathcal{G}_1(B_m)$ and

$$
\begin{pmatrix}
\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma \tilde{Y}}\right)^c \\
\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma \tilde{Y}}\right)^\gamma \\
\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma \tilde{Y}}\right)^\gamma
\end{pmatrix}
$$

are components of $\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma \tilde{Y}}\right)^K$ with respect to the coordinates (x^c, x^γ, x^β) on $t^*(B_m)$, then we have

$$
\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma \tilde{Y}}\right)^K = \tilde{c}\tilde{S}_{IJ}^{K^\nu\omega} \tilde{Y}^I = \tilde{c}\tilde{S}_{\alpha\beta}^{K^\nu\omega} \tilde{Y}^\beta + \tilde{c}\tilde{S}_{\alpha\beta}^{K^\nu\omega} \tilde{Y}^e .
$$

Firstly, if $K = c$, we have

$$
\left(\tilde{c}\tilde{S}^{(\nu)\omega, \gamma \tilde{Y}}\right)^c = \tilde{c}\tilde{S}_{\alpha\beta}^{c^\nu\omega} \tilde{Y}^e = 0
$$
by virtue of (4), (5) and (8). Secondly, if $K = \gamma$, we have
\[
\left(c \tilde{S}^{(\gamma)}(\gamma, \gamma) \right)^{\gamma} = \frac{c \tilde{\alpha}_{\gamma}^{\gamma}}{0} (\gamma, \gamma) + \frac{c \tilde{\beta}_{\gamma}^{\gamma}}{0} (\gamma, \gamma) + \frac{c \tilde{\gamma}_{\gamma}^{\gamma}}{0} (\gamma, \gamma) = 0
\]
by virtue of (4), (5) and (8). Thirdly, if $K = \gamma$, then we have
\[
\left(c \tilde{S}^{(\gamma)}(\gamma, \gamma) \right)^{\gamma} = \frac{c \tilde{\alpha}_{\gamma}^{\gamma}}{0} (\gamma, \gamma) + \frac{c \tilde{\beta}_{\gamma}^{\gamma}}{0} (\gamma, \gamma) + \frac{c \tilde{\gamma}_{\gamma}^{\gamma}}{0} (\gamma, \gamma) = 0
\]
by virtue of (4), (5) and (8). On the other hand, we know that $\gamma^\gamma(\omega \circ S)$ have components
\[
\gamma^\gamma(\omega \circ S) = \begin{pmatrix} 0 \\ 0 \\ (\omega \circ S)_{\gamma} \end{pmatrix}
\]
with respect to the coordinates (x^c, x^γ, x^β) on $t^*(B_m)$. Thus, we have $c \tilde{S}^{(\gamma)}(\gamma, \gamma) = -\gamma^\gamma(\omega \circ S)$.

(iv) If $F, G \in \mathcal{S}_1(B_m)$ and \tilde{S} is projectable tensor field of type $(1, 2)$ on M_ω with projection $S \in \mathcal{S}_2(B_m)$ and
\[
\left(c \tilde{S}(\gamma F, \gamma G) \right)^c = \left(c \tilde{S}(\gamma F, \gamma G) \right)^\gamma = \left(c \tilde{S}(\gamma F, \gamma G) \right)^\beta
\]
are components of $\left(c \tilde{S}(\gamma F, \gamma G) \right)^K$ with respect to the coordinates (x^c, x^γ, x^β) on $t^*(B_m)$, then we have
\[
\left(c \tilde{S}(\gamma F, \gamma G) \right)^K = c \tilde{S}_{\gamma}^{K \gamma} F^{\gamma} G^{\gamma} = c \tilde{S}_{\gamma}^{K \gamma} (\gamma F)(\gamma G) = c \tilde{S}_{\gamma}^{K \gamma} (p_c F^c_a) (p_c G^c_b).
\]
Firstly, if $K = c$, we have
\[
\left(c \tilde{S}(\gamma F, \gamma G) \right)^c = c \tilde{S}_{\gamma}^{K \gamma} (p_c F^c_a) (p_c G^c_b) = 0
\]
by virtue of (6) and (8). Secondly, if $K = \gamma$, we have
\[
\left(c \tilde{S}(\gamma F, \gamma G) \right)^\gamma = c \tilde{S}_{\gamma}^{K \gamma} (p_c F^c_a) (p_c G^c_b) = 0
\]
by virtue of (6) and (8). Thirdly, if $J = \beta$, then we have
\[
\left(c \tilde{S}(\gamma F, \gamma G) \right)^\beta = c \tilde{S}_{\gamma}^{K \gamma} (p_c F^c_a) (p_c G^c_b) = 0
\]
by virtue of (6) and (8). Thus (iv) of Theorem 3 is proved.

(v) If \(\tilde{\gamma} \in \mathcal{S}_0^1(M_n) \) and \(\tilde{S} \) is projectable tensor field of type \((1,2)\) on \(M_n \) with projection \(S \in \mathcal{S}_1^1(B_m) \) and

\[
\left(\begin{array}{c}
\left(\begin{array}{c}
(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y})^c) \\
(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y})^\gamma) \\
(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y})^\tau)
\end{array} \right)
\end{array} \right)
\]

are components of \(\left(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y})^K \right)^c \) with respect to the coordinates \((x^c, x^\gamma, x^\tau)\) on \(t^*(B_m) \), then we have

\[
\left(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y})^K \right)^c = \varepsilon \tilde{S}^{cK}_{\varepsilon F}(\gamma F)^c \left(\varepsilon \tilde{Y} \right)^b + \varepsilon \tilde{S}^{\gamma K}_{\varepsilon F}(\gamma F)^\gamma \left(\varepsilon \tilde{Y} \right)^\beta + \varepsilon \tilde{S}^{\tau K}_{\varepsilon F}(\gamma F)^\tau \left(\varepsilon \tilde{Y} \right)^\bar{\beta}.
\]

Firstly, if \(K = \varepsilon \), we have

\[
\left(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y})^\varepsilon \right)^c = \varepsilon \tilde{S}^{\varepsilon \gamma}_{\varepsilon F}(\gamma F)^c \left(\varepsilon \tilde{Y} \right)^b = 0
\]

by virtue of (5), (6) and (8). Secondly, if \(K = \gamma \), we have

\[
\left(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y})^\gamma \right)^\gamma = \varepsilon \tilde{S}^{\varepsilon \gamma}_{\varepsilon F}(\gamma F)^\gamma \left(\varepsilon \tilde{Y} \right)^b + \varepsilon \tilde{S}^{\gamma \gamma}_{\varepsilon F}(\gamma F)^\gamma \left(\varepsilon \tilde{Y} \right)^\beta + \varepsilon \tilde{S}^{\tau \gamma}_{\varepsilon F}(\gamma F)^\gamma \left(\varepsilon \tilde{Y} \right)^\bar{\beta} = 0
\]

by virtue of (5), (6) and (8). Thirdly, if \(K = \tau \), then we have

\[
\left(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y})^\tau \right)^\gamma = \varepsilon \tilde{S}^{\varepsilon \gamma}_{\varepsilon F}(\gamma F)^\tau \left(\varepsilon \tilde{Y} \right)^b + \varepsilon \tilde{S}^{\gamma \gamma}_{\varepsilon F}(\gamma F)^\tau \left(\varepsilon \tilde{Y} \right)^\beta + \varepsilon \tilde{S}^{\tau \gamma}_{\varepsilon F}(\gamma F)^\tau \left(\varepsilon \tilde{Y} \right)^\bar{\beta}
\]

\[
= -\varepsilon \tilde{S}^{\varepsilon \gamma}_{\varepsilon F} F_{\alpha}^\varepsilon Y^\alpha - p_{\varepsilon}(F \circ S_{\gamma})^\varepsilon_{\gamma}
\]

by virtue of (5), (6) and (8). On the other hand, we know that \(\gamma(F \circ S_{\gamma}) \) have components

\[
\gamma(F \circ S_{\gamma}) = \begin{pmatrix}
0 \\
p_{\varepsilon}(F \circ S_{\gamma})^\varepsilon_{\gamma}
\end{pmatrix}
\]

with respect to the coordinates \((x^c, x^\gamma, x^\tau)\) on \(t^*(B_m) \). Thus, we have \(\varepsilon \tilde{S}(\gamma F, \varepsilon \tilde{Y}) = -\gamma(F \circ S_{\gamma}) \).

(vi) If \(\tilde{X}, \tilde{Y} \in \mathcal{S}_0^1(M_n) \) and \(\tilde{S} \) is projectable tensor field of type \((1,2)\) on \(M_n \) with projection \(S \in \mathcal{S}_1^1(B_m) \) and

\[
\left(\begin{array}{c}
\left(\begin{array}{c}
(\varepsilon \tilde{S}(\varepsilon \tilde{X}, \varepsilon \tilde{Y})^c) \\
(\varepsilon \tilde{S}(\varepsilon \tilde{X}, \varepsilon \tilde{Y})^\gamma) \\
(\varepsilon \tilde{S}(\varepsilon \tilde{X}, \varepsilon \tilde{Y})^\tau)
\end{array} \right)
\end{array} \right)
\]

are components of \((\alpha \tilde{S}(\alpha X, \alpha Y))^K \) with respect to the coordinates \((x^\alpha, x^\beta, x^\gamma)\) on \(t^*(B_m) \), then we have

\[
(\alpha \tilde{S}(\alpha X, \alpha Y))^K = \alpha \tilde{S}_J^K \left(\alpha X^J \right) \left(\alpha Y \right)^K + \alpha \tilde{S}_{\alpha \beta}^K \left(\alpha X^\alpha \right)^\beta + \alpha \tilde{S}_{\alpha \gamma}^K \left(\alpha X^\alpha \right)^\gamma.
\]

Firstly, if \(K = \alpha \), we have

\[
\left(\alpha \tilde{S}(\alpha X, \alpha Y) \right)^\alpha = \alpha \tilde{S}_{\alpha \beta} \left(\alpha X^\alpha \right)^\alpha \left(\alpha Y \right)^\alpha + \alpha \tilde{S}_{\alpha \gamma} \left(\alpha X^\alpha \right)^\gamma \left(\alpha Y \right)^\gamma.
\]

by virtue of (5) and (8). Secondly, if \(K = \gamma \), we have

\[
\left(\alpha \tilde{S}(\alpha X, \alpha Y) \right)^\gamma = \alpha \tilde{S}_{\alpha \beta} \left(\alpha X^\gamma \right)^\beta \left(\alpha Y \right)^\gamma + \alpha \tilde{S}_{\alpha \beta} \left(\alpha X^\gamma \right)^\beta \left(\alpha Y \right)^\gamma.
\]

by virtue of (5) and (8). Thirdly, if \(K = \beta \), then we have

\[
\left(\alpha \tilde{S}(\alpha X, \alpha Y) \right)^\beta = -p_e (\partial_{\alpha \beta} \alpha X^\beta Y^e) - p_e (\partial_{\alpha \gamma} \alpha X^\gamma) - p_e (\partial_{\alpha \beta} \alpha X^\beta Y^e) - p_e (\partial_{\alpha \gamma} \alpha X^\gamma) - p_e (\partial_{\alpha \beta} \alpha X^\beta Y^e) - p_e (\partial_{\alpha \gamma} \alpha X^\gamma) - p_e (\partial_{\alpha \beta} \alpha X^\beta Y^e) - p_e (\partial_{\alpha \gamma} \alpha X^\gamma).
\]

by virtue of (5) and (8). We know that \(\alpha \tilde{S}(\alpha X, \alpha Y)^\gamma, \alpha \tilde{S}(\alpha X, \alpha Y)^\alpha, \alpha \tilde{S}(\alpha X, \alpha Y)^\beta \) have respectively, components on \(t^*(B_m) \).
with respect to the coordinates \((x^c, x^γ, x^γ)\). Where the same equations are denoted by \(A_1, A_2, \ldots, A_9\). On the other hand, we know that

\[
\gamma((L_X S)_Y - (L_Y S)_X + S_{[X,Y]})
\]

have respectively, components

\[
\begin{pmatrix}
(S(X,Y))^c \\
(S(X,Y))^γ \\
-p_ε∂_γ(S(X,Y))^c
\end{pmatrix},
\]

\[
\begin{pmatrix}
0 \\
0 \\
p_α((L_X S)_Y - (L_Y S)_X + S_{[X,Y]})^γ
\end{pmatrix}
\]

with respect to the coordinates \((x^c, x^γ, x^γ)\) on \(t^*(B_m)\). Thus, we have

\[
\gamma((L_X S)_Y - (L_Y S)_X + S_{[X,Y]}) = \gamma((L_X S)_Y - (L_Y S)_X + S_{[X,Y]})^c
\]

by the necessary simplifications made in equalities.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

