Extremal functions for starlike functions and convex functions

Ismet Yildiz\(^1\), Oya Mert\(^2\), Neslihan Uyanik\(^3\) and Neslihan Zorlu\(^1\)

\(^1\)Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey
\(^2\)Department of Mechanical Eng., School of Engineering and Natural Sciences, Istanbul Kemerburgaz University, Istanbul, Turkey
\(^3\)Department of Mathematics, Faculty of Education and Arts, Ataturk University, Erzurum, Turkey

Received: 31 May 2017, Accepted: 4 August 2017
Published online: 14 August 2017.

Abstract: In this paper, we obtain new extremal functions for starlike functions and convex functions on the range

\[0 \leq \alpha \leq \frac{1}{2^{1/3}}\]

defined on the unit disk using analytic and univalent functions.

Keywords: Starlike function, convex function, analytic function, extremal function.

1 Introduction

Definition 1. Let \(U = \{z \in \mathbb{C} : |z| < 1\}\). A function analytic \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in A\) is said to be starlike of order \(\alpha\) if it satisfies

\[\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \quad (z \in U)\]

for some real \(\alpha (0 \leq \alpha < 1)\). The class of starlike functions \(f(z) \in A\) of order \(\alpha\) is denoted by \(S^*(\alpha)\).

Also, a function \(f(z) \in A\) is said to be convex of order \(\alpha\) if it satisfies

\[\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, \quad (z \in U)\]

for some real \(\alpha (0 \leq \alpha < 1)\). The class of convex functions \(f(z) \in A\) of order \(\alpha\) is denoted by \(K(\alpha)\). Where \(f(0) = 0\) and \(f'(0) = 1\). [1],[4],[5].

Remark.

\[f(z) \in K(\alpha) \Leftrightarrow zf'(z) \in S^*(\alpha)\]

\[f(z) \in S^*(\alpha) \Leftrightarrow \int_0^z \frac{f(t)}{t} dt \in K(\alpha)\]

Definition 2. Let \(p(z)\) be analytic in \(U\) with \(p(0) = 1\). If \(p(z)\) satisfies

\[\text{Re} p(z) > 0, \quad (z \in U)\]
then \(p(z) \) is said to be the Carathéodory function. We denote by \(P \) all Carathéodory functions.

Example 1. Let us define a function \(p(z) \) by

\[
p(z) = \frac{1+z}{1-z} \quad (z \in U)
\]

Then \(p(z) \) analytic in \(U \) with \(p(0) = 1 \). Furthermore, for \(z = re^{i\theta} \) \((0 \leq r < 1, 0 \leq \theta \leq 2\pi)\), we know that

\[
\text{Re}p(z) = \text{Re} \left(\frac{1 + re^{i\theta}}{1 - re^{i\theta}} \right) \geq \frac{1 - r}{1 + r} > 0.
\]

Thus

\[
p(z) = \frac{1+z}{1-z} \in P.
\]

Lemma 1. [2] If \(p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \in P \) then

\[
|p_n| \leq 2 \quad (n = 1, 2, 3, \ldots).
\]

Equality is attended for

\[
p(z) = \frac{1+z}{1-z} = 1 + \sum_{n=2}^{\infty} 2^{n-1} z^n.
\]

Proof. We use the following fact that if \(p(z) \) is analytic in \(U \) and \(\text{Re}(z) > 0 \) \((z \in U)\), then \(p(z) \) can be written by

\[
p(z) = \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) + i\gamma,
\]

where \(\mu(t) \) is the probability measure such that

\[
d\mu(t) \geq 0 \quad \text{and} \quad \int_0^{2\pi} d\mu(t) = 1.
\]

With above fact, if \(p(0) = 1 \), then \(\gamma = 0 \). Therefore, we can write the function

\[
p(z) = \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)
\]

we see that

\[
\frac{e^{it} + z}{e^{it} - z} = 1 + e^{it} z = 1 + \sum_{n=1}^{\infty} e^{-int} z^n.
\]

This show that

\[
p(z) = \int_0^{2\pi} \left(1 + 2 \sum_{n=1}^{\infty} e^{-int} z^n \right) d\mu(t)
\]

\[
= 1 + 2 \sum_{n=1}^{\infty} \left(\int_0^{2\pi} e^{-int} d\mu(t) \right) z^n
\]

\[
= 1 + \sum_{n=1}^{\infty} p_n z^n
\]

where

\[
p_n = 2 \int_0^{2\pi} e^{-int} d\mu(t).
\]
It follows that
\[|p_n| = \left| 2 \int_0^{2\pi} e^{-im}d\mu(t) \right| \leq 2 \int_0^{2\pi} d\mu(t) = 2 \]
Furthermore, if \(|p_n| = 2\) then \(t = 0\). Thus we have
\[p_n = \int_0^{2\pi} \frac{1+z}{1-z}d\mu(t) = \frac{1+z}{1-z} = 1 + \sum_{n=1}^{\infty} 2z^n. \]

Theorem 1. A function \(f(z) = \frac{z}{1-z} = z + \sum_{n=2}^{\infty} z^n\) is an extremal function for the class \(K\). A function \(f(z) = \frac{z}{(1-z)^2} = z + \sum_{n=2}^{\infty} n z^n\) is an extremal function for the class \(S^\ast\).

Proof. Let \(f(z) \in S^\ast\). Then a function \(p(z)\) given by \(p(z) = \frac{zf'(z)}{f(z)}\) is a Carathéodory function, so that \(p(z) \in P\). Applying Lemma 1, we have that
\[p(z) = \frac{zf'(z)}{f(z)} = \frac{1+z}{1-z} \]
is the an extremal function for the class \(P\). This gives us that
\[\frac{f'(z)}{f(z)} = \frac{z}{1-z} = \frac{1}{z} + \frac{2}{1-z} \]
which show that
\[\log f(z) = \log z - 2 \log(1-z) = \log \frac{z}{(1-z)^2}. \]
Thus we obtain that
\[f(z) = \frac{z}{(1-z)^2}. \]
Next, we note that \(f \in K\) if and only if \(zf'(z) \in S^\ast\). Thus, we consider
\[zf'(z) = \frac{z}{(1-z)^2} \]
for an extremal function \(f(z)\) for the class \(K\). It is easy to get
\[f(z) = \frac{z}{1-z} \]

Theorem 2. [3] Let \(f\) be analytic in \(U\), with \(f(0) = 0\) and \(f'(0) = 1\). Then \(f \in C\) if and only if \(zf'(z) \in S^\ast\).

Corollary 1. \(k(z)\) is Koebe Function, for which
\[\frac{zk'(z)}{k(z)} = \frac{1+z}{1-z} \]
clearly offers equality.

Proof. The leading example of a function of class \(S\) is the Koebe function indeed;
\[k(z) = z + \sum_{n=2}^{\infty} m z^n = z + 2z^2 + 3z^3 + 4z^4 + ... \]
\[k'(z) = 1 + 4z + 9z^2 + 16z^3 + ... \]
\[zk'(z) = z + 4z^2 + 9z^3 + 16z^4 + ... \]
\[\frac{z f' (z)}{f(z)} = 1 + 2z + 2z^2 + 2z^3 + \ldots = \frac{1 + z}{1 - z} \]

2 Main theorem

Theorem 3. Let \(0 \leq \alpha \leq \frac{1}{2r + 1} \) and \(z \in U \). Then, an extremal function for \(S^*(\alpha) \) is

\[f(z) = \frac{z}{(1 - z)^{2(1 - \alpha 2r)}} \]

an extremal function for \(K(\alpha) \) is

\[f(z) = \frac{1 - (1 - z)\alpha 2r + 1}{\alpha 2r + 1 - 1}, \alpha \neq \frac{1}{2r + 1} \log \left(\frac{1}{1 - z} \right), \alpha = \frac{1}{2r + 1}. \]

Proof. Let us consider

\[F(z) = \frac{zf'(z) - \alpha 2r}{f(z)} \quad f(z) \in S^*(\alpha) \]

Then \(F(z) = 1 + \sum_{1}^{m} b_m e^m \) is analytic in \(U \) and \(ReF(z) > 0, (z \in U) \). Using Lemma 1, if \(F(z) \) is an extremal function for Lemma 1, then

\[F(z) = \frac{zf'(z) - \alpha 2r}{f(z)} = \frac{1 + z}{1 - z} \]

which is equivalent to

\[\frac{zf'(z)}{f(z)} - \alpha 2r = (1 - \alpha 2r) \left[\frac{1 + z}{1 - z} \right] \]

\[\frac{f'(z)}{f(z)} \frac{\alpha 2r}{z} = \frac{(1 - \alpha 2r)(1 + z)}{z(1 - z)} \]

thus we have

\[\frac{f'(z)}{f(z)} = \frac{\alpha 2r}{z} + (1 - \alpha 2r) \left[\frac{1}{z} + \frac{2}{1 - z} \right] \]

integrating both sides, we have that

\[\int_{0}^{1} \frac{f'(t)}{f(t)} dt = \alpha 2r \int_{0}^{1} \frac{1}{t} dt + (1 - \alpha 2r) \int_{0}^{1} \frac{1}{t} + \frac{2}{1 - t} dt \]

this show that

\[\log f(t) |_{0}^{1} = \alpha 2r [\log t] |_{0}^{1} + (1 - \alpha 2r) [\log t] |_{0}^{1} - 2(1 - \alpha 2r) [\log (1 - t)] |_{0}^{1} \]

that is, that

\[\log f(z) = \log \frac{z}{(1 - z)^{2(1 - \alpha 2r)}} \]

\[f(z) = \frac{z}{(1 - z)^{2(1 - \alpha 2r)}} \]

For \(f(z) \in K(\alpha) \), we use \(z f'(z) \in S^*(\alpha) \). This means that

\[z f'(z) = \frac{z}{(1 - z)^{2(1 - \alpha 2r)}} \]
since,

\[f'(z) = \frac{1}{(1-z)^{2(1-\alpha^2)}}. \]

If \(\alpha = \frac{1}{2} \), then

\[f(z) = \int_0^1 \frac{1}{1-t} dt = -\log(1-t)|_0^1 = \log \frac{1}{1-z} \]

If \(\alpha \neq \frac{1}{2} \), then

\[f(z) = \int_0^z \frac{1}{(1-t)^{2(1-\alpha^2)}} dt = \int_0^z (1-t)^{2(\alpha^2 r - 1)} dt = \left[\frac{(1-t)^{2\alpha^2}}{2\alpha^2 r} \right]_0^z = \frac{1 - (1-z)^{\alpha^2 r + 1 - 1}}{\alpha^2 r + 1 - 1}. \]

This completes the proof.

3 Conclusion

In this study we obtained extremal functions for starlike and convex functions according to \(\alpha = \frac{1}{2} \) values changing to between \(0 \leq \alpha < 1 \) for \(r = 0, 1, 2, \ldots \).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References