Integral transform involving Bessel’s function

N. U. Khan and Tarannum Kashmin

Department of Applied Mathematics, Aligarh Muslim University, Aligarh-202002, India

Received: 29 December 2015, Accepted: 8 December 2016
Published online: 5 May 2017.

Abstract: The main object of this paper is to obtain an integral transform involving Bessel’s function into Appell’s function, which generalizes a well known class of hypergeometric function of some Kampe’ de Fe’riet, Srivastava function \(F^{(3)} \), Appell’s function \(F_2 \), \(F_4 \) and Horn function \(H_3 \). A number of known and new transformations are also discussed as the special cases of our main result.

Keywords: Bessel function, Appell’s function, Horn function and Laplace transform.

1 Introduction

Many integral formulas involving product of Bessel functions have been presented and play an important role in several physical problems. In fact, Bessel functions are associated with a wide range of problems in divers areas of mathematical physics. These connections of Bessel functions with various other research areas have led many researchers to the field of special functions.

Erde’lyi [3] defined the Bessel functions in terms of confluent hypergeometric functions by the relation.

\[
J_\nu(z) = \frac{(z/2)^\nu}{\Gamma(\nu+1)} e^{-iz} {}_1F_1 \left(\nu + \frac{1}{2}; 2\nu + 1; 2iz \right). \tag{1}
\]

and Horn function \(H_3 \) [4] defined as

\[
H_3[\alpha, \beta; \gamma; x, y] = \sum_{n=0}^{\infty} \frac{(\alpha)_{2m+n}(\beta)_{n^m}x^m y^n}{(\gamma)_{m+n}m!n!}.
\]

\[
|x| < r; |y| < s, \quad r + \left(\frac{y-1}{2} \right)^2 = \frac{1}{4}. \tag{2}
\]

Srivastava and Karlsson [5] gave a reduction formula of Appell’s double series \(F_2 \) into \(F_4 \) in the following form

\[
F_2(\alpha, \beta; 2\beta, 2\beta'; x, -x) = 4F_3 \left(\begin{array}{c} \frac{\alpha}{2}, \frac{\beta}{2} + \frac{1}{2}, \frac{\beta + \beta'}{2}, \frac{\beta + \beta'}{2} + 1; \\ \frac{\beta}{2} + \frac{1}{2}, \beta' + \frac{1}{2}, \beta + \beta' \end{array}; \frac{x^2}{(1-x)^2} \right). \tag{3}
\]

Another transformations of \(F_2 \) is given by Bailey [1] involving \(F_2 \) and \(F_4 \) (see also [6])

\[
F_2[a, b, b'; 2b, 2b'; 2x, 2y] = (1-x-y)^{-a} F_4 \left[a + \frac{1}{2}; b + \frac{1}{2}; b'; \frac{x^2}{1-x-y)^2}, \frac{y^2}{(1-x-y)^2} \right]. \tag{4}
\]
where \(F_4 \) is Appell’s function [6] defined as

\[
F_4[\alpha, \beta; \gamma, \delta; x, y] = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n}(b)_{m+n}}{(\gamma)_m(\gamma)_n} \frac{x^m y^n}{m! n!}.
\]

Also, a general triple hypergeometric series \(F^{(3)}[x, y; z] \) of Srivastava’s [6] defined as

\[
F^{(3)} \left[\begin{array}{c} (a) : (b); (b'); (c); (c'); (c''); x, y, z \\ (d) : (g); (g'); (h); (h'); (h''); \end{array} \right] = \sum_{m,n,p=0}^{\infty} \frac{[(a)]_{m+n+p}[(b)]_{m+n}[(b')_{m+n+p}[(b'')_{p+m}[(c)_{m+n}[(c')_{m+n}[(c'')_{p+m}[(h)_{m+n}[(h')_{m+n}[(h'')_{p+m}][(d)]_{m+n+p}][(g)]_{m+n}][(g')_{m+n}][(h)]_{m+n}][(h')_{m+n}][(h'')_{p+m}]}{m! n! p!} \cdot x^m y^n z^p
\]

where \((a)\) is the sequence of A parameters \(a_1, a_2, \ldots, a_4\) and

\[
[(a)]_n = \prod_{j=1}^{A} (a_j)_n = \frac{\Gamma(a_j+n)}{\Gamma(a_j)}.
\]

2 Main integral transform

In this section, we established an integral transform involving two Bessel functions, which are expressed in terms of Appell function \(F_2 \) as

\[
\int_0^{\infty} \lambda^{1/2-a} \mu^{1/2-b} J_\nu(\lambda t) J_\nu(\mu t) \frac{1}{\Gamma(\nu+1)^2} \frac{1}{\Gamma(\nu+1)} \sum_{k=0}^{\infty} \frac{(-1)^k (b)_k u^{2k}}{(c_k d_k k)!} \] \[= \frac{2^{-v_1-v_2} \Gamma(v_1+1) \Gamma(v_2+1)(p+i\beta_1+\beta_2)^4 \Gamma(v_1+1)\Gamma(v_2+1)(p+i\beta_1+\beta_2)^4 \sum_{k=0}^{\infty} \frac{(-1)^k (b)_k u^{2k}}{(c_k d_k k)!}}{2^{-v_1-v_2} \Gamma(v_1+1) \Gamma(v_2+1)(p+i\beta_1+\beta_2)^4 \Gamma(v_1+1)\Gamma(v_2+1)(p+i\beta_1+\beta_2)^4}
\]

where \(A = \lambda + v_1 + v_2 + \frac{1}{2}, \text{Re}(p \pm i(\beta_1 + \beta_2)) > 0, \text{Re}(A) > 0, \) and \(F_2 \) is Appell’s function [6] defined by

\[
F_2[a, b; c'; x, y] = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n}(b)_m(b')_n}{(c)_m(c')_n m! n!} x^m y^n.
\]

Equation (8) can be obtained by expanding \(_1F_2 \) in series and integrating term by term with the help of the integral transform [1].

In view of a known transformation of Bailey [1],

\[
F_2[a, b; c'; 2b, 2b'; 2x, 2y] = (1-x-y)^{-a} \sum_{n=0}^{\infty} \frac{(a)_{a+n}(b)_n(b')_n}{(c)_n(c')_n m! n!} x^n y^n,
\]

expanding \(F_3 \) in series and making use of the Legendre’s duplication formula [6],

\[
(a)_{2n} = 2^{2n} \left(\frac{a}{2} \right)_n \left(\frac{a+1}{2} \right)_n, n = 0, 1, 2...
\]
then equation (8) reduce to
\[
\int_0^\infty e^{-2t} F_2\left(\begin{array}{c}
\frac{b}{c}, d; -u^2 t^2
\end{array} \right) J_{\nu_1}(\beta_j t) J_{\nu_2}(\beta t) dt = \frac{2^{-\nu_1 - \nu_2} \beta_1^{\nu_1} \beta_2^{\nu_2} F(A)}{F(\nu + 1) F(\nu_2 + 1) p^2}
\]
\[
F^{(3)} \left[\frac{A}{2} + \frac{1}{2}; -; -; -; b; -; -; c, d; \nu_1 + 1, \nu_2 + 1; \right. \\
\left. \frac{-4u^2}{p^2}, \frac{-\beta_1^2}{p^2}, \frac{-\beta_2^2}{p^2} \right].
\] (10)
where \(A = \lambda + \nu_1 + \nu_2 + \frac{1}{2}, \text{Re}(A) > 0, \text{Re}(p + i(\alpha + \beta)) > 0. \)

3 Special cases

In this section, we obtained some special cases of the main transformation (8) are given below,

(i) On setting \(\nu_1 = \gamma, \nu_2 = \delta, \beta_1 = w, \beta_2 = x \) and \(p = 2 - i(w + x) \) in (8) and comparing it with equation (10), we get
\[
\sum_{k=0}^\infty \frac{(b)_k (-1)^k u^{2k}(A)_{2k}}{(c)_k (d)_k k! (2k)!} F_2 \left[A + 2k, \gamma + \frac{1}{2}, \delta + \frac{1}{2}; 2\gamma + 1, 2\delta + 1; w, x \right] \\
= (2 - i(w + x))^{-A} \left[\frac{-4u^2}{(2 - i(w + x))^2}, \frac{-w^2}{(2 - i(w + x))^2} \right].
\] (11)

(ii) On setting \(i = 1 \) and \(x = -w \) in (11), we get
\[
\sum_{k=0}^\infty \frac{(b)_k (-1)^k u^{2k}(A)_{2k}}{2^A k! (c)_k (d)_k k!} F_2 \left[A + 2k, \gamma + \frac{1}{2}, \delta + \frac{1}{2}; 2\gamma + 1, 2\delta + 1; w, -w \right] \\
= 2^{-A} F^{(3)} \left[\frac{-4u^2}{4}, \frac{-w^2}{4} \right].
\] (12)

In view of a known transformation of Srivastava and Karlsson [5]
\[
F_2 [\alpha, \beta, \beta'; 2\beta, 2\beta'; x, -x] = 4 F_3 \left(\frac{\delta}{2}, \frac{\delta}{2} + \frac{1}{2}, \frac{1}{2} (\beta + \beta'), \frac{1}{2} (\beta + \beta' + 1); x^2 \right),
\] (13)
equation (12) can be put in the form
\[
\sum_{k=0}^\infty \frac{(b)_k (-1)^k u^{2k}(A)_{2k}}{2^A k! (c)_k (d)_k k!} 4 F_3 \left(\frac{\delta}{2}, \frac{\delta}{2} + \frac{1}{2}, \frac{1}{2} (\gamma + \delta + 1), \frac{1}{2} (\gamma + \delta + 2); \right.
\left. x \right) \\
= 2^{-A} F^{(3)} \left[\frac{\delta}{2}, \frac{\delta}{2} + \frac{1}{2}; -; -; b; -; -; c, d; \gamma + 1, \delta + 1; \right. \\
\left. \frac{-4u^2}{4}, \frac{-w^2}{4} \right].
\] (14)

(iii) On setting \(x = 0 \) and \(b = c \) in (3.1), we get
\[
\sum_{k=0}^\infty \frac{(-1)^k u^{2k}(A)_{2k}}{2^A k! (c)_k (d)_k k!} 2 F_1 \left(\frac{A + 2k, \gamma + \frac{1}{2}}{2\gamma + 1}; w \right) = (2 - iw)^{-A} F^{(2; 1)}[\frac{\delta}{2}, \frac{\delta}{2} + \frac{1}{2}; -; -; \frac{-4u^2}{i(2 - iw)^2}, \frac{-w^2}{i(2 - iw)^2}] .
\] (15)
Again, by using a known transformation of Srivastava and Karlsson [5]

\[F_{2,0;0}^{0,1;1} = F_4, \]

equation (15) reduces to

\[\sum_{k=0}^{\infty} \frac{(-1)^k u^{2k}(A)_{2k}}{2^{k+2k}(d)_{k} k!} \frac{\left(A + 2k, \gamma + \frac{1}{2}; \frac{1}{2} \lambda \right)}{\left(\gamma + 1 \right)} = (2 - i\omega)^{-A} F_4 \left[\frac{A + 1}{2}, \frac{1}{2} d, \gamma + 1; \frac{-4u^2}{\left(2 - i\omega\right)^2}; \frac{-w^2}{\left(2 - i\omega\right)^2} \right]. \]

(16)

(iv) On setting \(u = iu, w = i\omega \) in (16) and using a known result of Srivastava and Karlsson [5],

\[F_4 \left[\frac{\alpha}{2}, \frac{\alpha}{2} + \frac{1}{2} ; \gamma, \gamma' ; x^2, y^2 \right] = \frac{1}{T \alpha} \int_0^\infty e^{-t\alpha^2 - 1} 0 F_1 \left[\frac{-1}{\gamma}; \frac{1}{4} x^2 t^2 \right] 0 F_1 \left[\frac{-1}{\gamma'}; \frac{1}{4} y^2 t^2 \right] dt, \]

(17)

where \(Re(x) + Re(y) < 1, Re(\alpha) > 0 \); equation (16) reduces to

\[\sum_{k=0}^{\infty} \frac{(-1)^k u^{2k}(A)_{2k}}{2^{k+2k}(d)_{k} k!} \frac{\left(A + 2k, \gamma + \frac{1}{2}; \frac{1}{2} \lambda \right)}{\left(\gamma + 1 \right)} = (2 + w)^{-A} \frac{1}{T \alpha} \int_0^\infty e^{-tA - 1} 0 F_1 \left[\frac{-1}{\gamma}; \frac{w t^2}{(2 + w)^2} \right] 0 F_1 \left[\frac{-1}{\gamma + 1}; \frac{1}{4} \frac{w^2 t^2}{(2 + w)^2} \right] dt \]

(18)

where \(A = \lambda + \nu_1 + \nu_2 + \frac{1}{2}, Re(\alpha) > 0 \).

(v) On setting \(u^2 = -u, w^2 = -w \) and \(\nu + 1 = \frac{a}{2} + \frac{1}{2} \) in (16) and using a known result [5],

\[F_4 \left[\alpha, \beta; \gamma, \gamma' ; x, y \right] = (1 - x - y)^{-\alpha} 0 F_5 \left[\alpha, \gamma - \beta; \gamma; \frac{x y}{(x + y - 1)^2}; \frac{x}{(x + y - 1)} \right]. \]

(19)

equation (16) reduces to

\[\sum_{k=0}^{\infty} \frac{(-1)^k u^{2k}(A)_{2k}}{2^{k+2k}(d)_{k} k!} \frac{\left(A + 2k, \frac{\alpha}{2}; \frac{\beta}{2} \right)}{\left(\gamma \right)} = (4(1 - u + \sqrt{w})^{-2} H_3 \left[\frac{A}{2}, \frac{1}{2}; \frac{1}{2} d; \frac{4w}{4u - 1 - \sqrt{w}}; \frac{4u}{4u - 1 - \sqrt{w}} \right]. \]

(20)

(vi) On setting \(u = \nu_2 = 0 \) in equation (8), we get

\[\int_0^\infty e^{-t\beta_1^2} J_0(\beta_1 t) J_0(\beta_2 t) dt = \frac{2 \nu_1 \beta_1^2 \Gamma(\lambda + \nu_1 + \frac{1}{2})}{\Gamma(\nu_1 + 1)(p + \beta_1 + \beta_2)^{\lambda + \nu_1 + \frac{1}{2}}} \left(\frac{\lambda + \nu_1 + \frac{1}{2}, \nu_1 + \frac{1}{2}}{2\nu_1 + 1} \right) \frac{2 \beta_2}{\left(p + \beta_1 + \beta_2 \right)^{\lambda + \nu_1 + \frac{1}{2}}} \]

(21)

In the above equation (21), expressing \(J_0(\beta_2) \) in terms of series and using the integral transform [2], we obtain

\[\int_0^\infty e^{-t\beta_1^2} J_0(\beta_1 t) J_0(\beta_2 t) dt = \frac{2 \nu_1 \beta_1^2 \Gamma(\lambda + \nu_1 + 2\nu_1 + \frac{1}{2})}{\Gamma(\nu_1 + 1)(p + \beta_1 + \beta_2)^{\lambda + \nu_1 + 2\nu_1 + \frac{1}{2}}} \sum_{r=0}^{\infty} \frac{(-1)^r (\beta_2)^{2\nu_1 + \frac{1}{2}}}{2^{2\nu_1 + r}(r!)} \frac{2 \beta_2}{(p + \beta_1 + \beta_2)^{2\nu_1 + r}} \left(\frac{\nu_1 + 1}{2\nu_1 + 1} \right) \]

(22)

where \(a = \lambda + \nu_1 + \frac{1}{2}, Re(a) > -Re(\beta_1). \)
4 Series expansion

In this section, we present the series expansion of the main integral transform (8), which reduces to a general triple hypergeometric series $F^{(3)}$ introduced by Srivastava [6].

The generalized hypergeometric series of power t defined by [6],

$$
\sum_{k=0}^{\infty} \frac{t^k}{k!} p + 2F_q \left[\begin{array}{c} \frac{(-k)}{2}, \frac{(1-k)}{2}, (a_p); \\ (b_q); \end{array} u \right] = e^t \int pF_q \left[\begin{array}{c} (a_p); \\ (b_q); \end{array} \frac{t^2}{4} \right],
$$

(23)

For $p = 1, q = 2$, equation (23) reduces

$$
\sum_{k=0}^{\infty} \frac{t^k}{k!} \int F_2 \left[\begin{array}{c} \frac{(-k)}{2}, \frac{(1-k)}{2}, (a_1); \\ (b_1), (b_2); \end{array} u \right] = e^t \int F_2 \left[\begin{array}{c} (a_1); \\ (b_1), (b_2); \end{array} \frac{t^2}{4} \right].
$$

(24)

Multiplying both the sides of (24) by $t^{-1/2}e^{-p}J_{\nu}(\beta_1 t)J_{\nu}(\beta_2 t)$ and integrating term by term with the help of the result [3], we obtain

$$
\sum_{k=0}^{\infty} \frac{(A)_k}{p^k k!} F^{(3)} \left[\begin{array}{c} -; \frac{1}{2}(A + k), \frac{1}{2}(A + k) + \frac{1}{2}; \vdots; \vdots; \vdots; \vdots; \\ -; a_1; \\ -; -; -; -; -; -; -; \end{array} \frac{\beta_1^2}{\nu^2}, \frac{\beta_2^2}{\nu^2}, u \right] = \left(\frac{p}{p-1} \right)^A F^{(3)} \left[\begin{array}{c} \frac{1}{2}(A + 1); \vdots; \vdots; \vdots; \vdots; \\ -; -; -; -; -; -; -; \end{array} \frac{\beta_1^2}{(p-1)^2}, \frac{\beta_2^2}{(p-1)^2}, \frac{u}{4(p-1)^2} \right].
$$

(25)

If we set $u = 0$ in (25), we get

$$
\sum_{k=0}^{\infty} \frac{(A)_k}{p^k k!} F^{(2)} \left[\begin{array}{c} -; \frac{1}{2}(A + k), \frac{1}{2}(A + k) + \frac{1}{2}; \vdots; \vdots; \vdots; \vdots; \\ -; a_1; \\ -; v_1 + 1, v_2 + 1; \\ +; b_1, b_2; \end{array} \frac{\beta_1^2}{\nu^2}, \frac{\beta_2^2}{\nu^2} \right] = \left(\frac{p}{p-1} \right)^A F^{(2)} \left[\begin{array}{c} \frac{1}{2}(A + 1); \vdots; \vdots; \vdots; \vdots; \\ -; v_1 + 1, v_2 + 1; \\ -; b_1, b_2; \end{array} \frac{\beta_1^2}{(p-1)^2}, \frac{\beta_2^2}{(p-1)^2} \right].
$$

(26)

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References