On some generalised I-convergent sequence spaces of double interval numbers

Vakeel A. Khan, Ayhan Esi1, Yasmeen and Hira Fatima

Department of Mathematics, Aligarh Muslim University, India
1Department of Mathematics, University of Adiyaman, Turkey

Received: 5 October 2015, Revised: 9 October 2015, Accepted: 30 November 2015
Published online: 18 April 2016.

Abstract: In this article we introduce and study some spaces of I-convergent sequences of double interval numbers with the help of a double sequence $F = (f_{i,j})$ of modulii and double bounded sequence $p = (p_{i,j})$ of positive real numbers. We study some topological and algebraic properties, prove the decomposition theorem and study some inclusion relations on these spaces.

Keywords: Double interval numbers, ideal, filter, double I-convergent sequence spaces, solid and monotone space, Banach space, modulus function.

1 Introduction

Recently, Chiao[4] introduced the sequences of interval numbers and defined usual convergence of sequences of interval numbers. Sengönül and Eryimaz[28] introduced and studied bounded and convergent sequence spaces of interval numbers and showed that these spaces are complete.

A set(closed interval) of real numbers x such that $a \leq x \leq b$ is called an interval number.[4] A real interval can also be considered as a set. Thus, we can investigate some properties of interval numbers for instance, arithmetic properties or analysis properties. Let us denote the set of all real valued closed intervals by \mathbb{I}. Any element of \mathbb{I} is called a closed interval and it is denoted by $\bar{A} = [x_l, x_r]$. \mathbb{I} is a quasilinear space under the algebraic operations and partial order relation for \mathbb{I} found in [28,31]. and any subspace of \mathbb{I} is called quasilinear subspace.

The set of all interval numbers \mathbb{I} is a complete metric space defined by

$$d(\bar{A}_1, \bar{A}_2) = \max |x_{1_l} - x_{2_l}|, |x_{1_r} - x_{2_r}|.$$ \hspace{1cm} (1)

where x_l and x_r are the first and last point of \bar{A} respectively.

Vakeel A. Khan and Mohd. Shafiq defined the transformation f from \mathbb{N} to \mathbb{I} by $k \rightarrow f(k) = \bar{A}_k = (A_k)$. The function f is called sequence of interval numbers, where \bar{A}_k is the k^{th} term of the sequence (A_k). Let us denote the set of sequences of interval numbers with real terms by

$$\omega(\bar{A}) = \{ \bar{A}_k : A_k \in \mathbb{I} \}.$$ \hspace{1cm} (2)

* Corresponding author e-mail: vakhanmaths@gmail.com
© 2016 BISKA Bilisim Technology
The following definitions were given by Sengönül and Eryimaz[28]. A sequence \(s^0 = (\tilde{A}_k) = ([x_{k1}, x_{k2}]) \) of interval numbers is said to be convergent to an interval number \(\tilde{A}_0 = [x_{01}, x_{02}] \) if for each \(\varepsilon > 0 \), there exists a positive integer \(n_0 \) such that \(d(\tilde{A}_k, \tilde{A}_0) < \varepsilon \), for all \(k \geq n_0 \) and we denote it as \(\lim \limits_{k \to \infty} \tilde{A}_k = \tilde{A}_0 \).

Thus, \(\lim \limits_{k \to \infty} \tilde{A}_k = \tilde{A}_0 \Leftrightarrow \lim \limits_{k \to \infty} x_{k1} = x_0 \) and \(\lim \limits_{k \to \infty} x_{k2} = x_0 \), and it is said to be Cauchy sequence of interval numbers if for each \(\varepsilon > 0 \), there exists a positive integer \(k_0 \) such that \(d(\tilde{A}_k, \tilde{A}_m) < \varepsilon \), whenever \(k, m \geq k_0 \). Ayhan Esi and B. Hazarika[1] defined a transformation \(f \) from \(\mathbb{N} \times \mathbb{N} \) to \(\mathbb{IR} \) by \(i, j \to f(i, j) = s^0, s^0 = (\tilde{A}_{i,j}) \). Then \(s^0 = (\tilde{A}_{i,j}) \) is called double sequence of interval numbers. The \(\tilde{A}_{i,j} \) is called the \((i, j)^{th} \) term of double sequence of interval numbers \(s^0 = (\tilde{A}_{i,j}) \).

Let us denote the set of double sequence of interval numbers by

\[z \Omega(s^0) = \{ s^0 = (\tilde{A}_{i,j}) : \tilde{A}_{i,j} \in \mathbb{IR} \} . \tag{3} \]

Definition 1. An interval valued double sequence \(s^0 = (\tilde{A}_{i,j}) \) is said to be convergent in the Pringsheim’s sense or \(P \)-convergent to an interval number \(\tilde{A}_0 \), if for every \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that \(d(\tilde{A}_{i,j}, \tilde{A}_0) < \varepsilon \), for \(i, j > N \) and we denote it by \(P - \lim \tilde{A}_{i,j} = \tilde{A}_0 \). The interval number \(\tilde{A}_0 \) is called the Pringsheim limit of \(s^0 = (\tilde{A}_{i,j}) \).

More exactly, we say that a double sequence of interval numbers \(s^0 = (\tilde{A}_{i,j}) \) converges to a finite interval number \(\tilde{A}_0 \) if \(\tilde{A}_{i,j} \) tends to \(\tilde{A}_0 \) as both \(i \) and \(j \) tend to infinity independently of each another. \(s^0 = (\tilde{A}_{i,j}) \) is said to be null if \(\tilde{A}_0 = 0 \).

Definition 2. An interval valued double sequence \(s^0 = (\tilde{A}_{i,j}) \) is bounded if there exists a positive number \(M \) such that \(d(\tilde{A}_{i,j}, \tilde{A}_0) \leq M \) for all \(i, j \in \mathbb{N} \).

Definition 3. An interval valued double sequence \(s^0 = (\tilde{A}_{i,j}) \) is said be Cauchy sequence if for each \(\varepsilon > 0 \) there exists \(N \in \mathbb{N} \) such that \(d(\tilde{A}_{i,j}, \tilde{A}_{m,n}) < \varepsilon \) whenever \(i \geq m \geq N \) and \(j \geq n \geq N \).

Let \(p = (p_{i,j}) \) be a double sequence positive real numbers. If \(0 < p_{i,j} \leq \sup \limits_{i,j} p_{i,j} = H < \infty \) and \(D = \max(1, 2H - 1) \), then for \(a_{i,j}, b_{i,j} \in \mathbb{IR} \) and for all \(i, j \in \mathbb{N} \) we have \(|a_{i,j} + b_{i,j}|^{p_{i,j}} \leq D(|a_{i,j}|^{p_{i,j}} + |b_{i,j}|^{p_{i,j}}) \).

Let us denote the space of all double convergent, double null and double bounded sequences of double interval numbers by \(z\ell\Omega(s^0) \), \(z\ell_0(s^0) \) and \(z\ell_{\infty}(s^0) \) respectively.

The spaces \(z\ell\Omega(s^0) \), \(z\ell_0(s^0) \) and \(z\ell_{\infty}(s^0) \) are complete metric spaces with the metric

\[d(\tilde{A}_{i,j}, \tilde{B}_{i,j}) = \sup \limits_{i,j} \max \{ |x_{i,j,1} - y_{i,j,1}|, |x_{i,j,2} - y_{i,j,2}| \} \] \qquad \tag{4} \]

If we take \(\tilde{B}_{i,j} = 0 \) in (4), then the metric \(d \) reduces to

\[d(\tilde{A}_{i,j}, 0) = \sup \limits_{i,j} \max \{ |x_{i,j,1}|, |x_{i,j,2}| \} \] \qquad \tag{5} \]

In this paper we assume that a norm \(||\tilde{A}_{i,j}|| \) of the double sequence of interval numbers \((\tilde{A}_{i,j}) \) is the distance from \((\tilde{A}_{i,j}) \) to \(0 \) and satisfies the following properties: For all \(\tilde{A}_{i,j}, \tilde{B}_{i,j} \in z\ell\Omega(s^0) \) and for all \(\alpha \in \mathbb{R} \),

\begin{align*}
(N1) \quad ||\tilde{A}_{i,j}||_{z\ell\Omega(s^0)} > 0, & \quad \forall \quad \tilde{A}_{i,j} \in z\ell\Omega(s^0) - \{0\}, \\
(N2) \quad ||\tilde{A}_{i,j}||_{z\ell\Omega(s^0)} = 0 \Leftrightarrow \tilde{A}_{i,j} = 0, \\
(N3) \quad ||\tilde{A}_{i,j} + \tilde{B}_{i,j}||_{z\ell\Omega(s^0)} \leq ||\tilde{A}_{i,j}||_{z\ell\Omega(s^0)} + ||\tilde{B}_{i,j}||_{z\ell\Omega(s^0)}
\end{align*}
The notion of I-convergence was initially introduced by Kostyrko, et. al.[15] as generalization of statistical convergence(See [6],[27]) which is based on the structure of the ideal I of subsets of natural numbers \mathbb{N}. Kostyrko, et. al. gave some of basic properties of I-convergence and dealt with extremal I-limit points. Although an ideal is defined as a heredity and additive family of subsets of a non-empty arbitrary set X, here in our study it suffices to take I as a family of subsets of \mathbb{N}, positive integers, i.e.$I \subset \mathbb{N}^2$, such that $A \cup B \subset I$ for each $A,B \subset I$, and each subset of an element of I is an element of I.

A non-empty family of sets $\mathcal{F} \subset \mathbb{N}^2$ is a filter on \mathbb{N} if and only if $\phi \notin \mathcal{F}, A \cap B \subset \mathcal{F}$, for each $A,B \subset \mathcal{F}$, and any superset of an element of \mathcal{F} is an element of \mathcal{F}. An ideal I is called non-trivial if $I \neq \phi$ and $\mathbb{N} \notin I$. Clearly I is non-trivial ideal if and only if $\mathcal{F} = \mathcal{F}(I) = \{\mathbb{N} - A : A \subset I\}$ is a filter in \mathbb{N}, called the filter associated with the ideal I. A non-trivial ideal I is called admissible if and only if $\{\{n\} : n \in \mathbb{N}\} \subset I$. A non-trivial ideal I is maximal if there can not exist any non-trivial ideal $J \neq I$ containing I as a subset. Recall that a sequence $x = (x_k)$ of points in \mathbb{R} is said to be I-convergent to a real number ℓ if $\{k \in \mathbb{N} : |x_k - \ell| \geq \varepsilon\} \subset I$ for every $\varepsilon > 0$([15]). In this case we write $I - \lim x_k = \ell$. The notion of I-convergence double sequence was initially introduced by Tripathy and Tripathy(See[31]).

Let I be an ideal of $\mathbb{N} \times \mathbb{N}$. Then a double sequence of interval numbers $\mathcal{A} = (\bar{A}_{i,j}) \subset 2\omega(\mathcal{A})$, \mathcal{D} is said to be I-convergent to an interval number \bar{A}_0 if for every $\varepsilon > 0$,

\[
\{(i,j) \in \mathbb{N} \times \mathbb{N} : \|\bar{A}_{i,j} - \bar{A}_0\| \geq \varepsilon\} \subset I.
\]

In this case we write $I - \lim \bar{A}_{i,j} = \bar{A}_0$. If $\bar{A}_0 = \bar{0}$. Then the sequence $\bar{A} = (\bar{A}_{i,j}) \subset 2\omega(\mathcal{A})$ is said to be I-null. In this case we write $I - \lim \bar{A}_{i,j} = \bar{0}$.

(ii) is said to be I-Cauchy, if for every $\varepsilon > 0$, there exist numbers $m = m(\varepsilon), n = n(\varepsilon)$ such that

\[
\{(i,j) \in \mathbb{N} \times \mathbb{N} : \|\bar{A}_{i,j} - \bar{A}_{m,n}\| \geq \varepsilon\} \subset I,
\]

(iii) is said to be I-bounded, if there exists some $M > 0$ such that

\[
\{(i,j) \in \mathbb{N} \times \mathbb{N} : \|\bar{A}_{i,j}\| \geq M\} \subset I.
\]

Definition 4. A sequence space $2\lambda(\mathcal{A})$ of double sequence of interval numbers,

(i) is said be solid(normal), if $(\alpha_{i,j}\bar{A}_{i,j}) \subset 2\lambda(\mathcal{A})$, whenever $(\bar{A}_{i,j}) \subset 2\lambda(\mathcal{A})$ and for any double sequence $(\alpha_{i,j})$ of scalars with $|\alpha_{i,j}| \leq 1$, for all $(i,j) \in \mathbb{N} \times \mathbb{N}$,

(ii) is said be symmetric, if $(\bar{A}_{\pi(i,j)}) \subset 2\lambda(\mathcal{A})$, whenever $(\bar{A}_{i,j}) \subset 2\lambda(\mathcal{A})$ where π is permutation on $\mathbb{N} \times \mathbb{N}$,

(iii) is said be sequence algebra, if $(\bar{A}_{i,j} + \bar{B}_{i,j}) = (\bar{A}_{i,j}, \bar{B}_{i,j}) \subset 2\lambda(\mathcal{A})$, whenever $(\bar{A}_{i,j}), (\bar{B}_{i,j}) \subset 2\lambda(\mathcal{A})$,

(iv) is said be convergence free, if $(\bar{B}_{i,j}) \subset 2\lambda(\mathcal{A})$ whenever $(\bar{A}_{i,j}) \subset 2\lambda(\mathcal{A})$ and $\bar{A}_{i,j} = \bar{0}$ implies $\bar{B}_{i,j} = \bar{0}$, for all i,j.

Definition 5. Let $K = \{(i_1, j_1) < (i_2, j_2) < (i_3, j_3) < \cdots \} \subset \mathbb{N} \times \mathbb{N}$. The K-step space of $2\lambda(\mathcal{A})$, is a sequence space

\[
2\mu_p^K(\mathcal{A}) = \{ (\bar{A}_{i,n,j}) \in 2\omega(\mathcal{A}) : (\bar{A}_{i,j}) \subset 2\lambda(\mathcal{A}) \}.
\]
Definition 6. A canonical preimage of a double sequence of interval numbers \((\bar{A}_{i,j}) \in 2\mu_k^\lambda(\mathcal{J})\) is double sequence \((\bar{B}_{i,j}) \in 2\omega(\mathcal{J})\) defined by

\[
\bar{B}_{i,j} = \begin{cases}
\bar{A}_{i,j}, & \text{if } (i,j) \in K, \\
0, & \text{otherwise}.
\end{cases}
\]

A canonical preimage of a step space \(2\mu_k^\lambda(\mathcal{J})\) is a set of canonical preimages of all elements in \(2\mu_k^\lambda(\mathcal{J})\). That is \(\mathcal{B}\) is the canonical preimage of \(2\mu_k^\lambda(\mathcal{J})\) if and only if \(\mathcal{B}\) is the canonical preimage of some \(\mathcal{J} \in 2\mu_k^\lambda(\mathcal{J})\).

Definition 7. A sequence space \(2\lambda(\mathcal{J})\) is said to be monotone if it contains the canonical preimage of its step space.

Definition 8. A function \(f : [0, \infty) \to [0, \infty)\) is called a modulus function if

- (i) \(f(t) = 0\) if and only if \(t = 0\),
- (ii) \(f(t + u) \leq f(t) + f(u)\) for all \(t, u \geq 0\),
- (iii) \(f\) is increasing,
- (iv) \(f\) is continuous from the right at zero.

A modulus function \(f\) is said to satisfy \(\triangle_2\)-condition for all values of \(u\) if there exists a constant \(K > 0\) such that \(f(Lu) \leq KLf(u)\) for all values of \(L > 1\). The idea of modulus function was introduced by Nakano in 1953, see[20], Nakano, 1953).

For any modulus function \(f\), we have the inequalities \(|f(x) - f(y)| \leq f(x - y)\) and \(f(nx) \leq nf(x)\), for all \(x, y \in [0, \infty)\).

Ruckle[21-23] used the idea of modulus function \(f\) to construct the sequence space

\[
X(f) = \{x = (x_k) : \sum_{k=1}^\infty f(|x_k|) < \infty\} = \{x = x_k : (f(|x_k|)) \in X\}.
\]
(7)

After then, E. Kolk[12,13] gave an extension of \(X(f)\) by considering a sequence of moduli \(\mathcal{F} = (f_k)\) and defined the sequence space

\[
X(f) = \{x = (x_k) : (f_k(|x_k|)) \in X\}.
\]
(8)

Now we give an extension of \(X(f)\) by considering a double sequence of modulii \(\mathcal{F} = (f_{i,j})\) and define the sequence space

\[
2X(f) = \{x = (x_{i,j}) : (f_{i,j}(|x_{i,j}|)) \in X\}.
\]
(9)

Mursaleen and Naman[18] introduced the notion of \(\lambda\)-convergent and \(\lambda\)-bounded sequences.

Vakeel A. Khan and Mohd. shafiq extended this concept to the sequence of interval numbers as follows: Let \(\lambda = (\lambda_k)_{k=1}^\infty\) be a strictly increasing sequence of positive real numbers tending to infinity. That is

\[
0 < \lambda_0 < \lambda_1 < \lambda_2 < \cdots, \lambda_k \to \infty \quad \text{as} \quad k \to \infty.
\]
(10)

The sequence \(\mathcal{J} = (\bar{A}_k) \in \ell_\infty(\mathcal{J})\) is \(\lambda\)-convergent to an interval number \(\bar{A}_0\), called the \(\lambda\)-limit of \(\mathcal{J}\), if \(\Lambda_m(\mathcal{J}) \to \bar{A}_0\) as \(m \to \infty\), where

\[
\Lambda_m(\mathcal{J}) = \frac{1}{\lambda_m} \sum_{k=1}^m (\lambda_k - \lambda_{k-1})\bar{A}_k, \quad k \in \mathbb{N}.
\]

Any term with a negative subscript is equal to naught. For example \(\lambda_{-1} = 0\).
In particular, \(\mathcal{A} = (\hat{A}_k) \in \ell_\infty(\mathcal{A})\) is said to be \(\lambda\)-null, if \(\wedge_m(\mathcal{A}) \to 0\) as \(m \to \infty\).

The sequence \(\mathcal{A} = (\hat{A}_k) \in \ell_\infty(\mathcal{A})\) is \(\lambda\)-bounded if \(\sup_m \| \wedge_m(\mathcal{A}) \| < \infty\). It can be seen that if \(\lim_m \hat{A}_m = \hat{A}\) in the ordinary sense of convergence of interval numbers, then

\[
\lim_m \left(\frac{1}{\lambda_m} \left(\sum_{k=1}^{m} (\lambda_k - \lambda_{k-1}) \| \hat{A}_k - \hat{A} \| \right) \right) = 0.
\] (11)

This implies that

\[
\lim_m \| \wedge_m(\mathcal{A}) - \hat{A} \| = \lim_m \frac{1}{\lambda_m} \sum_{k=1}^{m} (\lambda_k - \lambda_{k-1}) (\hat{A}_k - \hat{A}) \| = 0,
\] (12)

which yields that

\[
\lim_m \wedge_m(\mathcal{A}) = \hat{A} \text{ and hence } \mathcal{A} = (\hat{A}_k) \in \ell_\infty(\mathcal{A}) \text{ is } \lambda\text{-convergent to } \hat{A}.
\]

On generalizing the above notation we introduce the concept of \(\lambda\)- convergence and \(\lambda\)-boundedness for double sequence of interval numbers.

Let \(\lambda = (\lambda_{i,j})\) be a strictly increasing double sequence of positive real numbers tending to infinity. That is,

\[
0 < \lambda_{i,j_0} < \lambda_{i,j_1} < \cdots < \lambda_{i,k,j} < \cdots \quad \lambda_{i,k,j} \to \infty \text{ as } i,k,j \to \infty.
\]

The double sequence \(\mathcal{A} = (\hat{A}_{i,j}) \in 2\ell_\infty(\mathcal{A})\) is said to be \(\lambda\)-convergent to an interval number \(\bar{A}_0\), called the \(\lambda\)-limit of \(\mathcal{A}\), if \(\wedge_{i,j}(\mathcal{A}) \to \bar{A}_0\), as \(i,j \to \infty\), where

\[
\wedge_{i,j}(\mathcal{A}) = \frac{1}{\lambda_{m,n}} \sum_{i=1}^{m} \sum_{j=1}^{n} (\lambda_{i,j} - \lambda_{i-1,j-1}) \bar{A}_{i,j}, \quad (i,j) \in \mathbb{N} \times \mathbb{N}.
\]

Here and in the sequel, we shall use \(\lambda_{-1,-1} = 0\).

In particular, \(\mathcal{A} = (\hat{A}_{i,j}) \in 2\ell_\infty(\mathcal{A})\) is said to be \(\lambda\)-null, if \(\wedge_{i,j}(\mathcal{A}) \to 0\), as \(i,j \to \infty\).

The double sequence \(\mathcal{A} = (\hat{A}_{i,j}) \in 2\ell_\infty(\mathcal{A})\) is \(\lambda\)-bounded, if \(\sup_{i,j} \| \wedge_{i,j}(\mathcal{A}) \| < \infty\). It can be seen that if \(\lim_{i,j} \hat{A}_{i,j} = \bar{A}\) in the Pringsheim’s sense of convergence of double interval numbers, then

\[
\lim_{i,j} \left(\frac{1}{\lambda_{m,n}} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} (\lambda_{i,j} - \lambda_{i-1,j-1}) \| \hat{A}_{i,j} - \bar{A} \| \right) \right) = 0
\] (13)

This implies that

\[
\lim_{i,j} \| \wedge_{i,j}(\mathcal{A}) - \bar{A} \| = \lim_{i,j} \frac{1}{\lambda_{m,n}} \sum_{i=1}^{m} \sum_{j=1}^{n} (\lambda_{i,j} - \lambda_{i-1,j-1}) (\hat{A}_{i,j} - \bar{A}) \| = 0
\] (14)

which yields that \(\lim_{i,j} \wedge_{i,j}(\mathcal{A}) = \bar{A}\) and hence \(\mathcal{A} = (\hat{A}_{i,j}) \in 2\ell_\infty(\mathcal{A})\) is \(\lambda\)-convergent to \(\bar{A}\).

Let us denote the classes of double \(I\)-convergent, double \(I\)-null, double bounded \(I\)-convergent and double bounded \(I\)-null sequences of double interval numbers by \(2\mathcal{C}(\mathcal{A})\), \(2\mathcal{C}_0(\mathcal{A})\), \(2\mathcal{A}_I(\mathcal{A})\) and \(2\mathcal{A}_0(\mathcal{A})\), respectively.

Now we give some important lemmas.
Lemma 1. Every solid space is monotone.

Lemma 2. Let \(K \in \mathcal{F}(I) \) and \(M \subseteq \mathbb{N} \). If \(M \notin I \), then \(M \cap K \notin I \) where \(\mathcal{F}(I) \subseteq 2^\mathbb{N} \) filter on \(\mathbb{N} \).

Lemma 3. If \(I \subseteq 2^\mathbb{N} \) and \(M \subseteq \mathbb{N} \). If \(M \notin I \), then \(M \cap N \notin I \).

Definition 9. [30] Let \(\mathcal{X} \) be the space of interval numbers. A function \(g : \mathcal{X} \rightarrow \mathbb{R} \) is called a paranorm on \(\mathcal{X} \), if for all \(A, B \in \mathcal{X}, (P_1) g(A) = 0, \) \((P_2) g(A) \geq 0, \) \((P_3) g(-A) = g(A), \) \((P_4) g(A + B) \leq g(A) + g(B), \) \((P_5) \) if \(\lambda_n \) is a sequence of scalars with \(\lambda_n \rightarrow \lambda \) \((n \to \infty) \) and \((A_n), A_0 \in \mathcal{X} \) with \(g(A_n) \rightarrow g(A_0)(n \to \infty) \) then \(g(\lambda_n A_n - \lambda A_0) \rightarrow 0 \) \((n \to \infty). \)

In this article, we introduce and study the following classes of double sequences:

Let \(I \) be an ideal of \(\mathbb{N} \times \mathbb{N} \) and \((p_{i,j}) \) be a double bounded sequence positive real numbers.

\[
2\mathcal{C}^I(\mathcal{A}, \land, \mathcal{F}, p) = \{ \mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) : \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \land, j(\mathcal{A}) - \bar{A} \|) \geq \varepsilon \} \in I, \text{ for some } \bar{A} \},
\]
\[
2\mathcal{C}_0^I(\mathcal{A}, \land, \mathcal{F}, p) = \{ \mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) : \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \land, j(\mathcal{A}) \|) \geq \varepsilon \} \in I \}
\]
\[
2\mathcal{L}^I(\mathcal{A}, \land, \mathcal{F}, p) = \{ \mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) : \exists K > 0 \text{ s.t. } \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \land, j(\mathcal{A}) \|) \geq K \} \in I \}
\]
\[
2\mathcal{L}_0(\mathcal{A}, \land, \mathcal{F}, p) = \{ \mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) : \sup_{i,j} f_{i,j}(\| \land, j(\mathcal{A}) \|) < \varepsilon \}
\]

We also denote
\[
2\mathcal{M}^I(\mathcal{A}, \land, \mathcal{F}, p) = 2\ell^\infty(\mathcal{A}, \land, \mathcal{F}, p) \cap 2\mathcal{C}^I(\mathcal{A}, \land, \mathcal{F}, p),
\]
and
\[
2\mathcal{M}_0^I(\mathcal{A}, \land, \mathcal{F}, p) = 2\ell^\infty(\mathcal{A}, \land, \mathcal{F}, p) \cap 2\mathcal{C}_0^I(\mathcal{A}, \land, \mathcal{F}, p),
\]
where \(\mathcal{F} = (f_{i,j}) \) is a double sequence of moduli and \(\mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) \subset 2\ell(\mathcal{A}) \) is a double bounded sequence of interval numbers. If we take \(p = (p_{i,j}) = 1 \) for all \((i, j) \in \mathbb{N} \times \mathbb{N} \), we have

\[
2\mathcal{C}^I(\mathcal{A}, \land, \mathcal{F}) = \{ \mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) : \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \land, j(\mathcal{A}) - \bar{A} \|) \geq \varepsilon \} \in I, \text{ for some } \bar{A} \},
\]
\[
2\mathcal{C}_0^I(\mathcal{A}, \land, \mathcal{F}) = \{ \mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) : \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \land, j(\mathcal{A}) \|) \geq \varepsilon \} \in I \}
\]
\[
2\mathcal{L}^I(\mathcal{A}, \land, \mathcal{F}) = \{ \mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) : \exists K > 0 \text{ s.t. } \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \land, j(\mathcal{A}) \|) \geq K \} \in I \}
\]
\[
2\mathcal{L}_0(\mathcal{A}, \land, \mathcal{F}) = \{ \mathcal{A} = (\bar{A}, j) \in 2\ell^\infty(\mathcal{A}) : \sup_{i,j} f_{i,j}(\| \land, j(\mathcal{A}) \|) < \varepsilon \}
\]

2 Main results

Theorem 1. Let \(\mathcal{F} = (f_{i,j}) \) be a double sequence of modulus functions and \(p = (p_{i,j}) \) be the double bounded sequence of positive real numbers. Then the classes of sequences \(2\mathcal{M}^I(\mathcal{A}, \land, \mathcal{F}, p) \) and \(2\mathcal{M}_0^I(\mathcal{A}, \land, \mathcal{F}, p) \) are paranormed spaces, paranormed by

\[
g(\mathcal{A}) = g((\bar{A}, j)) = \sup_{i,j} f_{i,j}(\| \land, j(\mathcal{A}, j) \|) \cdot \frac{1}{p_{i,j}},
\]

where \(M = \max\{1, \sup_{i,j} p_{i,j}\}. \)

Proof. Let \(\mathcal{A} = (\bar{A}, j), \mathcal{B} = (\bar{B}, j) \in 2\mathcal{M}^I(\mathcal{A}, \land, \mathcal{F}, p). \)

(P1) It is clear that \(g(\mathcal{A}) = 0, \) if \(\bar{A} = \bar{0}. \)
(P2) It is also obvious that $g(\mathcal{A}) \geq 0$.

(P3) $g(\mathcal{A}) = g(-\mathcal{A})$ is obvious.

(P4) Since $\frac{p_i}{p_i} \leq 1$ and $M > 1$, using Minkowski’s inequality, we have

$$g(\mathcal{A} + \mathcal{B}) = g(\tilde{A}_{i,j} + \tilde{B}_{i,j}) = \sup_{i,j} f_{i,j}(\| \tilde{A}_{i,j} + \tilde{B}_{i,j} \|^{\frac{p_i}{p_i}})$$

$$= \sup_{i,j} f_{i,j}(\| \tilde{A}_{i,j} + \tilde{B}_{i,j} \|^{\frac{p_i}{p_i}})$$

$$\leq \sup_{i,j} f_{i,j}(\| \tilde{A}_{i,j} \|^{\frac{p_i}{p_i}}) + \sup_{i,j} f_{i,j}(\| \tilde{B}_{i,j} \|^{\frac{p_i}{p_i}})$$

$$= g(\mathcal{A}) + g(\mathcal{B}).$$

Thus $g(\mathcal{A} + \mathcal{B}) \leq g(\mathcal{A}) + g(\mathcal{B})$, for all $\mathcal{A}, \mathcal{B} \in \mathcal{M}^1(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$.

(P5) Let $(\tilde{A}_{i,j})$ be a double sequence of scalars with $(\tilde{A}_{i,j}) \rightarrow \lambda$ (i, j → ∞) and $(\tilde{A}_{i,j}), \tilde{A}_0 \in \mathcal{M}^1(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$ with $g(\tilde{A}_{i,j}) \rightarrow g(\tilde{A}_0), (i, j \rightarrow \infty)$. Note that $g(\lambda\mathcal{A}) \leq \max\{1, |\lambda| \} g(\mathcal{A})$. Then, since the inequality $g(\tilde{A}_{i,j}) \leq g(\tilde{A}_{i,j} - \tilde{A}_0) + g(\tilde{A}_0)$ holds by subadditivity of g, the sequence $(g(\tilde{A}_{i,j}))$ is bounded.

Therefore

$$|g(\lambda_{i,j}\tilde{A}_{i,j}) - g(\lambda\tilde{A}_0)| = |g(\lambda_{i,j}\tilde{A}_{i,j}) - g(\lambda\tilde{A}_{i,j}) + g(\lambda\tilde{A}_{i,j}) - g(\lambda\tilde{A}_0)|$$

$$\leq |\lambda_{i,j} - \lambda| \frac{p_i}{p_i} |g(\lambda_{i,j}\tilde{A}_{i,j})| + |\lambda| \frac{p_i}{p_i} |g(\lambda_{i,j} - \lambda\tilde{A}_0)| \rightarrow 0, \text{ as } (i, j \rightarrow \infty).$$

That is to say that scalar multiplication is continuous.

(P6) Since each $f_{i,j}, (i, j) \in \mathbb{N} \times \mathbb{N}$ is an increasing function, it is clear that $g(\mathcal{A}) \leq g(\mathcal{B})$, if $\mathcal{A} \subseteq \mathcal{B}$.

Hence $\mathcal{M}^1(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$ is a paranormed space. For $\mathcal{M}^1_0(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$ the result is similar.

Theorem 2. The set $\mathcal{M}^1(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$ is a closed subspace of $\ell_1(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$.

Proof. Let $\mathcal{A}^{(n)} = (\tilde{A}_{i,j})^{(n)}$ be a Cauchy sequence in $\mathcal{M}^1(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$ such that $\tilde{A}_{i,j}^{(n)} \rightarrow \tilde{A}_0$. We show that $\tilde{A} \in \mathcal{M}^1(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$. Since $\mathcal{A}^{(n)} = (\tilde{A}_{i,j})^{(n)} \in \mathcal{M}^1(\mathcal{A}, \mathcal{B}, \mathcal{F}, p)$. Then, there exists \tilde{A}_n such that

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \tilde{A}_{i,j}^{(n)} - \tilde{A}_n \|^{\frac{p_i}{p_i}}) \geq \varepsilon \} \in I.$$
Then \(B_{\alpha}^\prime \), \(B_{\beta}^\prime \), \(B_{\gamma}^\prime \) \(\in I\). Let \(B^\prime = B_{\alpha}^\prime \cup B_{\beta}^\prime \cup B_{\gamma}^\prime \), where \(B = \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_n\|)^{p_{ij}} < \epsilon\}\). Then \(B^\prime \in I\). We choose \((i_0, j_0) \in B^\prime\). Then for each \(n \geq i_0, q \geq j_0\), we have

\[
\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_n\|)^{p_{ij}} < \epsilon\} \\
\supseteq \bigl\{((i, j) \in \mathbb{N} \times \mathbb{N} f_{i,j}(\|\bar{A}_q - \bar{A}_n\|)^{p_{ij}} < \left(\frac{\epsilon}{3}\right)^M\bigr\} \\
\cap \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_n\|)^{p_{ij}} < \left(\frac{\epsilon}{3}\right)^M\} \\
\cap \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_n\|)^{p_{ij}} < \left(\frac{\epsilon}{3}\right)^M\}.
\]

Then, \((\bar{A}_n)\) is a Cauchy sequence of interval numbers, so there exists some interval number \(\bar{A}_0\) such that \(\bar{A}_n \rightarrow \bar{A}_0\) as \(n \rightarrow \infty\).

(2) Let \(0 < \delta < 1\) be given. Then, we show that, if \(U = \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_0\|)^{p_{ij}} < \delta\}\), then \(U^\prime \in I\). Since \(\mathbb{A}^{(n)}(A_{ij}) \rightarrow A\), there exists \(q_0 \in \mathbb{N}\) such that

\[
P = \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_0\|)^{p_{ij}} < \left(\frac{\delta}{3D}\right)^M\}
\]

implies \(P^\prime \in I\), where \(D = \max\{1, 2^{n-1}\}, H = \sup_{i,j} p_{ij} \geq 0\). The number \(q_0\) can be chosen that together with (23), we have

\[
Q = \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_0\|)^{p_{ij}} < \left(\frac{\delta}{3D}\right)^M\} \text{ such that } Q^\prime \in I.
\]

Since \(\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_0\|)^{p_{ij}} < \left(\frac{\delta}{3D}\right)^M\}\) \(\supseteq \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\bar{A}_q - \bar{A}_0\|)^{p_{ij}} < \left(\frac{\delta}{3D}\right)^M\}\), we have the following result.

Theorem 3. The spaces \(Z_{\alpha}^4, Z_{\beta}^4, Z_{\gamma}^4\) and \(Z_{\alpha}^0, Z_{\beta}^0, Z_{\gamma}^0\) are nowhere dense subsets of \(Z_{\alpha}^\omega, Z_{\beta}^\omega, Z_{\gamma}^\omega\).

Theorem 4. The spaces \(Z_{\alpha}^0, Z_{\beta}^0, Z_{\gamma}^0\) and \(Z_{\alpha}^0, Z_{\beta}^0, Z_{\gamma}^0\) are both solid and monotone.

Proof. We shall prove the result for \(Z_{\alpha}^0, Z_{\beta}^0, Z_{\gamma}^0\). For \(Z_{\alpha}^0, Z_{\beta}^0, Z_{\gamma}^0\), the result follows similarly. For, let \(A^\prime = (A_{ij}) \in Z_{\alpha}^0, Z_{\beta}^0, Z_{\gamma}^0\) and \(\alpha_{ij}\) be sequence of scalars with \(|\alpha_{ij}| \leq 1\), for all \((i, j) \in \mathbb{N} \times \mathbb{N}\). Since \(|\alpha_{ij}| \leq \max\{1, |\alpha_{ij}|^G\} \leq 1\), for all \((i, j) \in \mathbb{N} \times \mathbb{N}\), we have

\[
\|\alpha_{ij}|^{p_{ij}}\| \leq \max\{1, |\alpha_{ij}|^G\} \leq 1\).
\]

© 2016 BISKA Bitam Technology
\(f_i,j(\| \alpha_i,j \land_i,j (\tilde{A}_{i,j}) \|)_{P_i,j} \leq f_i,j(\| \land_i,j (\tilde{A}_{i,j}) \|)_{P_i,j}, \text{ for all } (i,j) \in \mathbb{N} \times \mathbb{N}, \)

which further implies that

\[
\{(i,j) \in \mathbb{N} \times \mathbb{N} : f_i,j(\| \land_i,j (\tilde{A}_{i,j}) \|)_{P_i,j} \geq \varepsilon \} \supseteq \{(i,j) \in \mathbb{N} \times \mathbb{N} : f_i,j(\| \alpha_i,j \land_i,j (\tilde{A}_{i,j}) \|)_{P_i,j} \geq \varepsilon \}.
\]

Thus, \(\alpha_i,j(\tilde{A}_{i,j}) \in 2C^I(\mathcal{A}, \land, \mathcal{F}, p) \). Therefore, the space \(2C^I(\mathcal{A}, \land, \mathcal{F}, p) \) is solid and hence by Lemma 1.1 it is monotone.

Theorem 5. Let \(G = \sup_{i,j} p_{i,j} < \infty \) and \(I \) be an admissible ideal. Then the following are equivalent.

(a) \(\mathcal{A} = (\tilde{A}_{i,j}) \in 2C^I(\mathcal{A}, \land, \mathcal{F}, p) \);
(b) there exists \(\mathcal{B} = (B_{i,j}) \in 2C(\mathcal{A}, \land, \mathcal{F}, p) \) such that \(\tilde{A}_{i,j} = B_{i,j} \) for a.a. \((i,j) \) \(r.I \);
(c) there exists \(\mathcal{B} = (B_{i,j}) \in 2C(\mathcal{A}, \land, \mathcal{F}, p) \) and \(\mathcal{C} = (\tilde{C}_{i,j}) \in 2C^0(\mathcal{A}, \land, \mathcal{F}, p) \) such that

\[
\tilde{A}_{i,j} = B_{i,j} + \tilde{C}_{i,j} \text{ for all } (i,j) \in \mathbb{N} \times \mathbb{N}
\]

and

\[
\{(i,j) \in \mathbb{N} \times \mathbb{N} : f_i,j(\| \land_i,j (\tilde{A}_{i,j}) - \tilde{A} \|)_{P_i,j} \geq \varepsilon \} \in I;
\]

(d) there exists a subset \(K = \{ (i_1,j_1) < (i_2,j_2) < \cdots \} \) of \(\mathbb{N} \times \mathbb{N} \) such that \(K \in \mathcal{F}(I) \) and \(\lim_{n \to \infty} f_{i,j}(\| \land_i,j (\tilde{A})_{i,n,j,n} \|)_{P_{i,n,j,n}} = 0 \).

Proof. (a) implies (b). Let \(\mathcal{A} = (\tilde{A}_{i,j}) \in 2C^I(\mathcal{A}, \land, \mathcal{F}, p) \). Then, there exists interval number \(\tilde{A} \) such that the set

\[
\{(i,j) \in \mathbb{N} \times \mathbb{N} : f_i,j(\| \land_i,j (\tilde{A}_{i,j}) - \tilde{A} \|)_{P_i,j} \geq \varepsilon \} \in I.
\]

Let \((m_t,n_t)\) be an increasing double sequence with

\[
(m_t,n_t) \in \mathbb{N} \times \mathbb{N} \text{ such that } \{(i,j) \leq (m_t,n_t) : f_i,j(\| \land_i,j (\tilde{A}_{i,j}) - \tilde{A} \|)_{P_i,j} \geq t^{-1} \} \in I.
\]

Define a sequence \(\mathcal{B} = (B_{i,j}) \) as \(B_{i,j} = \tilde{A}_{i,j} \) for all \((i,j) \leq (m_t,n_t) \). For \((m_t,n_t) < (i,j) \leq (m_{t+1},n_{t+1}) \), \(t \in \mathbb{N} \),

\[
B_{i,j} = \begin{cases}
\tilde{A}_{i,j}, & \text{if } f_i,j(\| \land_i,j (\tilde{A}_{i,j}) - \tilde{A} \|)_{P_i,j} < t^{-1}, \\
\tilde{A}, & \text{otherwise}
\end{cases}
\]

Then, \(\mathcal{B} = (B_{i,j}) \in 2C(\mathcal{A}, \land, \mathcal{F}, p) \) and from the inclusion

\[
\{(i,j) \leq (m_t,n_t) : \tilde{A}_{i,j} \neq B_{i,j} \} \subseteq \{(i,j) \leq (m_t,n_t) : f_i,j(\| \land_i,j (\tilde{A}_{i,j}) - \tilde{A} \|)_{P_i,j} \geq \varepsilon \} \in I.
\]

We get \(\tilde{A}_{i,j} = B_{i,j} \) for a.a. \((i,j) \) \(r.I \).

(b) implies (c). For \(\mathcal{A} = (\tilde{A}_{i,j}) \in 2C^I(\mathcal{A}, \land, \mathcal{F}, p) \), there exists \(\mathcal{B} = (B_{i,j}) \in 2C(\mathcal{A}, \land, \mathcal{F}, p) \) such that \(\tilde{A}_{i,j} = B_{i,j} \), for a.a.(i,j) \(r.I \). Let \(K = \{ (i,j) \in \mathbb{N} \times \mathbb{N} : \tilde{A}_{i,j} \neq B_{i,j} \} \) then \(K \in \mathcal{F}(I) \) Define \(\mathcal{C} = (\tilde{C}_{i,j}) \) as follows:

\[
\tilde{C}_{i,j} = \begin{cases}
\tilde{A}_{i,j} - B_{i,j}, & \text{if } (i,j) \in K, \\
0, & \text{if } (i,j) \notin K
\end{cases}
\]

Then, \(\mathcal{C} = (\tilde{C}_{i,j}) \in 2C^0(\mathcal{A}, \land, \mathcal{F}, p) \) and \(\mathcal{B} = (B_{i,j}) \in 2C(\mathcal{A}, \land, \mathcal{F}, p) \).

(c) implies (d). Suppose (c) holds. Let \(\varepsilon > 0 \) be given. Let

\[
P_1 = \{(i,j) \in \mathbb{N} \times \mathbb{N} : f_i,j(\| \land_i,j (\tilde{C}_{i,j}) \|)_{P_i,j} \geq \varepsilon \} \in I
\]
and
\[K = \mathcal{P}_I = \{(i_1, j_1) < (i_2, j_2) < (i_3, j_3) < \cdots \} \in \mathcal{F}(I). \]

Then, we have \(\lim_{n \to \infty} f_{i,j}(\| \land_{ij}(\bar{A}_{\epsilon, jn}) - \bar{A} \|)^{P_{in, jn}} = 0. \)

(d) implies (a). Let \(K = \{(i_1, j_1) < (i_2, j_2) < (i_3, j_3) < \cdots \} \in \mathcal{F}(I) \) and
\[\lim_{n \to \infty} f_{i,j}(\| \land_{ij}(\bar{A}_{\epsilon, jn}) - \bar{A} \|)^{P_{in, jn}} = 0. \]

Then for any \(\epsilon > 0 \), and Lemma 1.2, we have
\[\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \land_{ij}(\bar{A}_{i,j}) - \bar{A} \|)^{P_{ij}} \geq \epsilon \} \subseteq K^c \cup \{(i, j) \in K : f_{i,j}(\| \land_{ij}(\bar{A}_{i,j}) - \bar{A} \|)^{P_{ij}} \geq \epsilon \}. \]

Thus, \(\bar{\omega} = (\bar{A}_{i,j}) \in 2C^I(\mathcal{O}, \land, \mathcal{F}, p). \)

Theorem 6. Let \(\mathcal{F} = (f_{i,j}) \) and \(\mathcal{G} = (g_{i,j}) \) be two sequences of modulus functions and for each \((i, j) \in \mathbb{N} \times \mathbb{N}, (f_{i,j}) \) and \((g_{i,j}) \) satisfying \(\Delta_2 \)-condition and \(p = (p_{i,j}) \in 2\mathbb{F}_0 \) be a bounded sequence of positive real numbers. Then

(a) \(2\mathcal{X}(\bar{\omega}, \land, \mathcal{F}, p) \subseteq 2\mathcal{X}(\mathcal{G}, \land, \mathcal{F} \circ \mathcal{G}, p) \),

(b) \(2\mathcal{X}(\bar{\omega}, \land, \mathcal{F}, p) \cap 2\mathcal{X}(\mathcal{G}, \land, \mathcal{F} \circ \mathcal{G}, p) \subseteq 2\mathcal{X}(\mathcal{G}, \land, \mathcal{F} + \mathcal{G}, p) \) for \(2\mathcal{X} = 2C^I, 2C^I_0, 2\mathcal{M}_I^1 \) and \(2\mathcal{M}_{\epsilon_0}^I \).

Proof. (a) Let \(\bar{\omega} = (\bar{A}_{i,j}) \in 2C^I_0(\mathcal{O}, \land, \mathcal{G}, p) \) be any arbitrary element. Then, the set
\[\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\| \land_{ij}(\bar{A}_{i,j}) \|)^{P_{ij}} \geq \epsilon \} \in I. \]

Let \(\epsilon > 0 \) and choose \(\delta > 0 \) such that \(f_{i,j}(t) < \epsilon, 0 \leq t < \delta \). Let us denote
\[\bar{B}_{i,j} = g_{i,j}(\| \land_{ij}(\bar{A}_{i,j}) \|)^{P_{ij}} \]

and consider
\[\lim_{i,j} f_{i,j}(\bar{B}_{i,j}) = \lim_{\bar{B}_{i,j} \leq \delta (i,j) \in \mathbb{N} \times \mathbb{N}} f_{i,j}(\bar{B}_{i,j}) + \lim_{\bar{B}_{i,j} > \delta (i,j) \in \mathbb{N} \times \mathbb{N}} f_{i,j}(\bar{B}_{i,j}). \]

Now, since \(f_{i,j} \) for each \((i, j) \in \mathbb{N} \times \mathbb{N} \) is modulus function, we have
\[\lim_{\bar{B}_{i,j} \leq \delta (i,j) \in \mathbb{N} \times \mathbb{N}} f_{i,j}(\bar{B}_{i,j}) \leq f_{i,j}(2) \lim_{\bar{B}_{i,j} \leq \delta (i,j) \in \mathbb{N} \times \mathbb{N}} (\bar{B}_{i,j}). \]

For \(\bar{B}_{i,j} > \delta \), we have \(\bar{B}_{i,j} < \frac{\bar{B}_{i,j}}{\delta} < 1 + \frac{\bar{B}_{i,j}}{\delta} \). Now, since each \(f_{i,j} \) is non-decreasing and modulus, it follows that
\[f_{i,j}(\bar{B}_{i,j}) < f_{i,j}(1 + \frac{\bar{B}_{i,j}}{\delta}) < \frac{1}{2} f_{i,j}(2) + \frac{1}{2} f_{i,j}(\frac{2\bar{B}_{i,j}}{\delta}). \]

Again, since each \(f_{i,j}, (i, j) \in \mathbb{N} \times \mathbb{N} \) satisfies \(\Delta_2 \)-condition, we have
\[f_{i,j}(\bar{B}_{i,j}) < \frac{1}{2} f_{i,j}(2) + \frac{1}{2} f_{i,j}(\frac{2\bar{B}_{i,j}}{\delta}). \]

Thus, \(f_{i,j}(\bar{B}_{i,j}) < \frac{K(\bar{B}_{i,j})}{\delta} f_{i,j}(2). \) Hence
\[\lim_{\bar{B}_{i,j} > \delta (i,j) \in \mathbb{N} \times \mathbb{N}} f_{i,j}(\bar{B}_{i,j}) \leq \max\{1, (K \delta^{-1} f_{i,j}(2))^H\} \lim_{\bar{B}_{i,j} \geq \delta (i,j) \in \mathbb{N} \times \mathbb{N}} (\bar{B}_{i,j}), \quad H = \max\{1, \sup_{i,j} p_{i,j}\}. \]
Therefore, from (26), (27) and (28), we have $\mathcal{A} = (\bar{A}_{i,j}) \in 2C^0_0(\mathcal{A}, \land, \mathcal{F} \circ \mathcal{G}, p)$. Thus,

$$2C^0_0(\mathcal{A}, \land, \mathcal{F} \circ \mathcal{G}, p) \subseteq 2C^0_0(\mathcal{A}, \land, \mathcal{F}, p).$$

Hence,

$$2\chi(\mathcal{A}, \land, \mathcal{F} \circ \mathcal{G}, p) \subseteq 2\chi(\mathcal{A}, \land, \mathcal{F}, p), \text{ for } 2\chi = 2C^0_0.$$

For $2\chi = 2C^l_0$, $2\mathcal{M}^l_0$ and $2\mathcal{M}^l_{c_0}$ the inclusions can be established similarly.

(b) Let $\mathcal{A} = (\bar{A}_{i,j}) \in 2C^l_0(\mathcal{A}, \land, \mathcal{F}, p) \cap 2C^0_0(\mathcal{A}, \land, \mathcal{G}, p)$. Let $\varepsilon > 0$ be given. Then, the sets

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\land_{i,j}(\bar{A}_{i,j})\|^{p_{i,j}}) \geq \varepsilon\} \in I \quad (29)$$

and

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : g_{i,j}(\|\land_{i,j}(\bar{A}_{i,j})\|^{p_{i,j}}) \geq \varepsilon\} \in I \quad (30)$$

Therefore, from (29) and (30), we have

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : \mathcal{F} + \mathcal{G}(\|\land_{i,j}(\bar{A}_{i,j})\|^{p_{i,j}}) \geq \varepsilon\} \in I.$$

Thus, $\mathcal{A} = (\bar{A}_{i,j}) \in 2C^0_0(\mathcal{A}, \land, \mathcal{F} + \mathcal{G}, p)$. Hence,

$$2C^0_0(\mathcal{A}, \land, \mathcal{F} + \mathcal{G}, p) \cap 2C^l_0(\mathcal{A}, \land, \mathcal{G}, p) \subseteq 2C^l_0(\mathcal{A}, \land, \mathcal{F}, p).$$

For $2\chi = 2C^l_0$, $2\mathcal{M}^l_0$ and $2\mathcal{M}^l_{c_0}$ the inclusions are similar. For $g_{i,j}(x) = x$ and $f_{i,j}(x) = f(x), \forall x \in [0, \infty)$, we have the following corollary.

Corollary 1. $2\chi(\mathcal{A}, \land, \mathcal{F}, p) \subseteq 2\chi(\mathcal{A}, \land, \mathcal{F} + \mathcal{G}, p), \text{ for } 2\chi = 2C^l_0, 2\mathcal{M}^l_0 \text{ and } 2\mathcal{M}^l_{c_0}.$

Theorem 7. Let $\mathcal{F} = (f_{i,j})$ be a double sequence of modulus function. Then the inclusions

$$2C^0_0(\mathcal{A}, \land, \mathcal{F}, p) \subset 2C^l(\mathcal{A}, \land, \mathcal{F}, p) \subset 2\ell_{\infty}(\mathcal{A}, \land, \mathcal{F}, p)$$

hold.

Proof. Let $\mathcal{A} = (\bar{A}_{i,j}) \in 2C^l(\mathcal{A}, \land, \mathcal{F}, p)$ be an arbitrary element. Then there exists some double interval number \bar{A} such that the set

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{i,j}(\|\land_{i,j}(\bar{A}_{i,j}) - \bar{A}\|^{p_{i,j}}) \geq \varepsilon\} \in I. \text{ Since each } f_{i,j}$$

is modulus, we have

$$f_{i,j}(\|\land_{i,j}(\bar{A}_{i,j})\|^{p_{i,j}}) = f_{i,j}(\|\land_{i,j}(\bar{A}_{i,j}) - \bar{A}\|^{p_{i,j}}) \leq f_{i,j}(\|\land_{i,j}(\bar{A}_{i,j}) - \bar{A}\|^{p_{i,j}} + f_{i,j}(\|\bar{A}\|)^{p_{i,j}}).$$

Taking the supremum over (i, j) on both sides, we get

$$\mathcal{A} = (\bar{A}_{i,j}) \in 2\ell_{\infty}(\mathcal{A}, \land, \mathcal{F}, p).$$
The inclusion
\[
Z_{C^0}(A, \wedge, F, p) \subset Z_{C^1}(A, \wedge, F, p)
\]
is obvious. Hence
\[
Z_{C^0}(A, \wedge, F, p) \subset Z_{C^1}(A, \wedge, F, p) \subset Z_{C^2}(A, \wedge, F, p).
\]

Theorem 8. The spaces \(Z_{C^0}(A, \wedge, F, p)\) and \(Z_{C^1}(A, \wedge, F, p)\) are sequence algebra.

Proof. Let \(A = (A_{ij}), A = (B_{ij}) \in Z_{C^0}(A, \wedge, F, p)\), then the sets
\[
\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}([\wedge_{ij} (A_{ij})])^{p_{ij}} \geq \varepsilon \} \in I
\]
and
\[
\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}([\wedge_{ij} (B_{ij})])^{p_{ij}} \geq \varepsilon \} \in I
\]
Therefore, from (31) and (32), we have
\[
\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}([\wedge_{ij} (A_{ij}B_{ij})])^{p_{ij}} \geq \varepsilon \} \in I.
\]
Thus, \(A, A \in Z_{C^0}(A, \wedge, F, p)\). Hence \(Z_{C^0}(A, \wedge, F, p)\) is a sequence algebra. Similarly, we can prove that \(Z_{C^1}(A, \wedge, F, p)\) is a sequence algebra.

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

