Generalized intuitionistic fuzzy ideals of hemirings

Asim Hussain and Muhammad Shabir
Quaid-i-Azam University, Islamabad, Pakistan

Received: 31 July 2015, Revised: 1 August 2015, Accepted: 27 August 2015
Published online: 10 April 2016

Abstract: In this paper we generalize the concept of quasi-coincident of an intuitionistic fuzzy point with an intuitionistic fuzzy set and define $(\varepsilon, \in \vee q_k)$-intuitionistic fuzzy ideals of hemirings and characterize different classes of hemirings by the properties of these ideals.

Keywords: Intuitionistic fuzzy sub-hemiring, intuitionistic fuzzy ideal, fully idemotent hemiring, regular hemiring.

1 introduction

Dedekind introduced the modern definition of the ideal of a ring in 1894 and observed that the family $Id(R)$ of all the ideals of a ring R obeyed most of the rules that the ring $(R, +, \cdot)$ did, but $(Id(R), +, \cdot)$ was not a ring. In 1934, Vandiver [25] studied an algebraic system, which consists of a non-empty set S with two binary operations ”$+$” and ”$.$” such that S was semigroup under both the operations and $(S, +, \cdot)$ satisfies both the distributive laws but did no satisfy the cancellation law of addition. Vandiver named this system a ‘semiring’. Semirings are common generalization of rings and distributive lattices. A hemiring is a semiring in which ”$+$” is commutative and it has an absorbing element. Semirings (hemirings) appear in a natural manner in some applications to the theory of automata, formal languages, optimization theory and other branches of applied mathematics (see for example [9,10,11,12,18,19]).

Zadeh introduced the concept of fuzzy set in his definitive paper [26] of 1965. Many authors used this concept to generalize basic notions of algebra. In 1971, Rosen feld [22] laid the foundations of fuzzy algebra. He introduced the notions of fuzzy subgroup of a group. Ahsan et al. [3] initiated the study of fuzzy semirings. Murali [20] defined the concept of belongingness of a fuzzy point to a fuzzy subset under a natural equivalence on fuzzy subset and Pu and Liu introduced the concept of quasicoincident of a fuzzy point with a fuzzy set in [21]. Bhakat and Das [5] used these ideas and defined $(\varepsilon, \in \vee q)$-fuzzy subgroup of a group which is a generalization of Rosenfeld’s fuzzy subgroup. Many researchers used these ideas to define (α, β)-fuzzy substructures of algebraic structures (see [8,15,16,23]).

Generalizing the concept of the quasi-coincident of a fuzzy point with a fuzzy subset, Jun [13] defined $(\varepsilon, \in \vee q_k)$-fuzzy subalgebra in BCK/BCI-algebras. In [24] Shabir et al. characterized semigroups by the properties of $(\varepsilon, \in \vee q_k)$-fuzzy ideals, quasi-ideal and bi-ideals. Jun et al. in [15] defined $(\varepsilon, \in \vee q_k)$-fuzzy ideals of hemirings. Asghar et al. [17], defined $(\varepsilon, \in \vee q_k)$-fuzzy bi-ideals in ordered semigroups.

On the other hand Atanassov [4] introduced the notion of intuitionistic fuzzy set which is a generalization of fuzzy set. Intuitionistic fuzzy hemirings are studied by Dudek in [7]. Coker and Demirici [6] introduced the notion of fuzzy point. In [14], Jun introduced the notion of (φ, ψ)-intuitionistic fuzzy subgroup of a intuitionistic group where

* Corresponding author e-mail: sh.asim.hussain@gmail.com
\(\phi, \psi \in \{ \in, \cap, \infty \} \) and \(\phi \neq \in \cap \).

Generalizing the concept of quasi-coincident of an intuitionistic fuzzy point with an intuitionistic fuzzy set we define \((\in, \in \cap \mathbb{Q}) \)-intuitionistic fuzzy ideals of hemirings and characterize different classes of hemirings by the properties of these ideals.

2 Preliminaries

A semiring is a set \(R \) together with two binary operations addition "+" and multiplication "." such that \((R, +)\) and \((R, \cdot)\) are semigroups, where both algebraic structures are connected by the ring like distributive laws:

\[
(a + b) \cdot c = a \cdot c + b \cdot c \quad \text{and} \quad a \cdot (b + c) = a \cdot b + a \cdot c
\]

for all \(a, b \) and \(c \in R \). An element \(0 \in R \) is called a zero element of \(R \) if \(a + 0 = 0 + a = a \) and \(0 \cdot a = a \cdot 0 = 0 \) for all \(a \in R \). A hemiring is a semiring with zero element, in which "+" is commutative. A hemiring \((R, +, \cdot)\) is called commutative if multiplication is commutative, that is \(ab = ba \) for all \(a, b \in R \). An element \(1 \in R \) is called an identity element of \(R \) if \(a \cdot 1 = 1 \cdot a = a \) for all \(a \in R \). A non-empty subset \(I \) of a hemiring \(R \) is called a left (right) ideal of \(R \) if \(I \) is closed under addition and \(RI \subseteq I \) (\(IR \subseteq I \)). \(I \) is called a two-sided ideal or simply an ideal of \(R \) if \(I \) is both a left ideal and a right ideal of \(R \). A hemiring \(R \) is called regular if for each \(x \in R \) there exists \(a \in R \) such that \(x = axa \).

Theorem 1. [1] A hemiring \(R \) is regular if and only if \(A \cap B = AB \) for all right ideals \(A \) and left ideals \(B \) of \(R \). Generalizing the concept of regular hemirings, in [2] right weakly regular hemirings are defined as: A hemiring \(R \) is right weakly regular if for each \(x \in R \), we have \(x = xax \). If \(R \) is commutative then the concepts of regular and right weakly regular coincide. It is proved in [2].

Theorem 2. [2] The following conditions are equivalent for a hemiring \(R \) with 1.

1. \(R \) is right weakly regular.
2. \(A \cap B = AB \) for all right ideals \(A \) and two-sided ideals \(B \) of \(R \).
3. \(A^2 = A \) for every right ideal \(A \) of \(R \).
 - If \(R \) is commutative, then the above conditions are equivalent to
4. \(R \) is regular.

Let \(X \) be a non-empty fixed set. An intuitionistic fuzzy subset \(A \) of \(X \) is an object having the form

\[
A = \{ (x, \mu_A(x), \lambda_A(x) : x \in X) \}
\]

where the functions \(\mu_A : X \rightarrow [0, 1] \) and \(\lambda_A : X \rightarrow [0, 1] \) denote the degree of membership (namely \(\mu_A(x) \)) and the degree of nonmembership (namely \(\lambda_A(x) \)) of each element of \(x \in X \) to \(A \), respectively, and \(0 \leq \mu_A(x) + \lambda_A(x) \leq 1 \) for all \(x \in X \). For the sake of simplicity, we use the symbol \(A = (\mu_A, \lambda_A) \) for the intuitionistic fuzzy subset (briefly, IFS) \(A = \{ (x, \mu_A(x), \lambda_A(x) : x \in X) \} \). If \(A = (\mu_A, \lambda_A) \) and \(B = (\mu_B, \lambda_B) \) are intuitionistic fuzzy subsets of \(X \), then

1. \(A \subseteq B \iff \mu_A(x) \leq \mu_B(x) \) and \(\lambda_A(x) \geq \lambda_B(x) \) \(\forall x \in X \)
2. \(A = B \iff A \subseteq B \text{ and } B \subseteq A \).
3. \(A = (\lambda_A, \mu_A) \). More generally if \(\{ A_i : i \in I \} \) is a family of intuitionistic fuzzy subset of \(X \), then by the union and intersection of this family we mean an intuitionistic fuzzy subsets
4. \(\bigcup_{i \in I} A_i = \left(\bigvee_{i \in I} \mu_{A_i}, \bigwedge_{i \in I} \lambda_{A_i} \right) \).
Let a be a point in a non-empty set X. If $\alpha \in (0, 1]$ and $\beta \in [0, 1)$ are two real numbers such that $0 \leq \alpha + \beta \leq 1$ then $a(\alpha, \beta) = \langle x, a_\alpha, 1 - a_{1 - \beta} \rangle$ is called an intuitionistic fuzzy point(IFP) in X, where α and β is the degree of membership and nonmembership of $a(\alpha, \beta)$ respectively and $a \in X$ is the support of $a(\alpha, \beta)$.

Let $a(\alpha, \beta)$ be an IFP in X, and $A = (\mu_A, \lambda_A)$ be an IFS in X. Then $a(\alpha, \beta)$ is said to belong to A, written $a(\alpha, \beta) \in A$, if $\mu_A(a) \geq \alpha$ and $\lambda_A(a) \leq \beta$ and quasi-coincident with A, written $a(\alpha, \beta)qA$, if $\mu_A(a) + \alpha > 1$, and $\lambda_A + \beta < 1$. $a(\alpha, \beta) \in qA$, means that $a(\alpha, \beta) \in A$ or $a(\alpha, \beta)qA$ and $a(\alpha, \beta) \in \wedge qA$, means that $a(\alpha, \beta) \in A$ and $a(\alpha, \beta)qA$ and $a(\alpha, \beta) \in qA$, means that $a(\alpha, \beta) \in \vee qA$ doesn’t hold.

Let $a(\alpha, \beta)$ be an IFP in X, and $A = (\mu_A, \lambda_A)$ be an IFS in R, Then for all $x, y \in R$ and $t \in (0, 1], s \in [0, 1)$, we define the following:

(i) $x(t, s)qA$ if $\mu_A(x) + t + k > 1$ and $\lambda_A(x) + s + k < 1$.
(ii) $x(t, s) \in \vee qA$ if $x(t, s) \in A$ or $x(t, s)qA$.
(iii) $x(t, s) \in \wedge qA$ if $x(t, s) \in A$ and $x(t, s)qA$.
(iv) $x(t, s) \in \vee qA$ means that $x(t, s) \in \vee qA$ doesn’t hold, where $k \in [0, 1)$.

3 (α, β)-intuitionistic fuzzy ideals

Throughout the remaining paper $k \in [0, 1)$, α any one of \in, q_k, $\in \vee q_k$ and β any one of \in, q_k, $\in \vee q_k$ unless otherwise specified.

Definition 1. An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an (α, β)-intuitionistic fuzzy sub-hemiring of R, if $\forall x, y \in R$ and $t_1, t_2 \in (0, 1], s_1, s_2 \in [0, 1)$,

1. $x(t_1, s_1), y(t_2, s_2)A \Rightarrow (x + y)(\min(t_1, t_2), \max(s_1, s_2))A$,
2. $x(t_1, s_1), y(t_2, s_2)A \Rightarrow (xy)(\min(t_1, t_2), \max(s_1, s_2))A$.

Definition 2. An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an (α, β)-intuitionistic fuzzy left (right) ideal of R, if $\forall x, y \in R$ and $t_1, t_2 \in (0, 1], s_1, s_2 \in [0, 1)$,

1. $x(t_1, s_1), y(t_2, s_2)A \Rightarrow (x + y)(\min(t_1, t_2), \max(s_1, s_2))A$,
2. $y(t_1, s_1)A, x \in R \Rightarrow (xy)(t_1, s_1)A \Rightarrow (xy)(t_1, s_1)A$.

An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an (α, β)-intuitionistic fuzzy ideal of R, if it is both (α, β)-intuitionistic fuzzy left ideal and (α, β)-intuitionistic fuzzy right ideal of R.

Theorem 3. Let $A = (\mu_A, \lambda_A)$ be an (α, β)-intuitionistic fuzzy ideal of R. Then the set

$$R_{(0,1)} = \{x \in R : \mu_A(x) > 0 \text{ and } \lambda_A(x) < 1\} \neq \emptyset$$

is an ideal of R.

Proof. Let \(x, y \in R_{(0,1)} \). Then \(\mu_A(x) > 0 \) and \(\lambda_A(x) < 1 \), \(\mu_A(y) > 0 \) and \(\lambda_A(y) < 1 \). Assume that \(\mu_A(x + y) = 0 \) or \(\lambda_A(x + y) = 1 \). If \(\alpha \in \{ e, \in \ldots \} \), then, \(x(\mu_A(x), \lambda_A(x)) \alpha A \) and \(y(\mu_A(y), \lambda_A(y)) \alpha A \) but \((x + y)(\min\{\mu_A(x), \mu_A(y)\}, \max\{\lambda_A(x), \lambda_A(y)\}) \) \(\beta A \) for every \(\beta \in \{ e, q_k, \in \ldots \} \), a contradiction. Also \(x(1,0)q_kA \) and \(y(1,0)q_kA \) but \((x + y)(1,0) \) \(\beta A \) for every \(\beta \in \{ e, q_k, \in \ldots \} \), a contradiction. Hence \(\mu_A(x + y) = 0 \) and \(\lambda_A(x + y) < 1 \). Therefore, \(x + y \in R_{(0,1)} \).

Let \(x \in R_{(0,1)} \) and \(y \in R \). Then \(\mu_A(x) > 0 \) and \(\lambda_A(x) < 1 \). Suppose that \(\mu_A(xy) = 0 \) or \(\lambda_A(xy) = 1 \). If \(\alpha \in \{ e, \in \ldots \} \), then \(x(\mu_A(x), \lambda_A(x)) \alpha A \) but \((xy)(\mu_A(x), \lambda_A(x)) \) \(\beta A \) for every \(\beta \in \{ e, q_k, \in \ldots \} \), a contradiction. Also \(x(1,0)q_kA \) and \(y(1,0)q_kA \) but \((x + y)(1,0) \) \(\beta A \) for every \(\beta \in \{ e, q_k, \in \ldots \} \), a contradiction. Thus \(\mu_A(xy) > 0 \) and \(\lambda_A(xy) < 1 \). Therefore, \(xy \in R_{(0,1)} \). Similarly \(xy \in R_{(0,1)} \). This completes the proof.

Theorem 4. Let \(A = (\mu_A, \lambda_A) \) be an \((\alpha, \beta)\)-intuitionistic fuzzy sub-hemiring of \(R \). Then the set

\[
R_{(0,1)} = \{ x \in R : \mu_A(x) > 0 \text{ and } \lambda_A(x) < 1 \}
\]

is a sub-hemiring of \(R \).

Proof. Let \(x, y \in R_{(0,1)} \). Then \(\mu_A(x) > 0 \) and \(\lambda_A(x) < 1 \), \(\mu_A(y) > 0 \) and \(\lambda_A(y) < 1 \). Assume that \(\mu_A(x + y) = 0 \) or \(\lambda_A(x + y) = 1 \). If \(\alpha \in \{ e, \in \ldots \} \), then \(x(\mu_A(x), \lambda_A(x)) \alpha A \) and \(y(\mu_A(y), \lambda_A(y)) \alpha A \) but \((x + y)(\min\{\mu_A(x), \mu_A(y)\}, \max\{\lambda_A(x), \lambda_A(y)\}) \) \(\beta A \) for every \(\beta \in \{ e, q_k, \in \ldots \} \), a contradiction. Also \(x(1,0)q_kA \) and \(y(1,0)q_kA \) but \((x + y)(1,0) \) \(\beta A \) for every \(\beta \in \{ e, q_k, \in \ldots \} \), a contradiction. Thus \(\mu_A(x + y) > 0 \) and \(\lambda_A(x + y) < 1 \). Therefore, \(x + y \in R_{(0,1)} \).

4 \((\in, \in \ldots)\)-intuitionistic fuzzy ideals

Definition 3. An IFS \(A = (\mu_A, \lambda_A) \) of a hemiring \(R \) is called an \((\in, \in \ldots)\)-intuitionistic fuzzy sub-hemiring of \(R \), if \(\forall x, y \in R \) and \(t_1, t_2 \in [0,1] \), \(s_1, s_2 \in [0,1] \),

1a) \(x(t_1, s_1), y(t_2, s_2) \in A \Rightarrow (x + y)(\min(t_1, t_2), \max(s_1, s_2)) \in q_kA \).
2a) \(x(t_1, s_1), y(t_2, s_2) \in A \Rightarrow (xy)(\min(t_1, t_2), \max(s_1, s_2)) \in q_kA \).

Definition 4. An IFS \(A = (\mu_A, \lambda_A) \) of a hemiring \(R \) is called an \((\in, \in \ldots)\)-intuitionistic fuzzy left (right) ideal of \(R \), if \(\forall x, y \in R \) and \(t_1, t_2 \in [0,1] \), \(s_1, s_2 \in [0,1] \),

1a) \(x(t_1, s_1), y(t_2, s_2) \in A \Rightarrow (x + y)(\min(t_1, t_2), \max(s_1, s_2)) \in q_kA \).
3a) \(x(t_1, s_1), y(t_2, s_2) \in A \Rightarrow (xy)(\min(t_1, t_2), \max(s_1, s_2)) \in q_kA \).

An IFS \(A = (\mu_A, \lambda_A) \) of a hemiring \(R \) is called an \((\in, \in \ldots)\)-intuitionistic fuzzy ideal of \(R \), if it is both \((\in, \in \ldots)\)-intuitionistic fuzzy left ideal and \((\in, \in \ldots)\)-intuitionistic fuzzy right ideal of \(R \).

Theorem 5. Let \(A \) be an intuitionistic fuzzy subset of a hemiring \(R \). Then \((1a) \Rightarrow (1b), (2a) \Rightarrow (2b), (3a) \Rightarrow (3b), \)

where \(\forall x, y \in R \) and \(k \in [0,1] \).
(1b) $\mu_{A}(x+y) \geq \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$ and $\lambda_{A}(x+y) \leq \max \{ \lambda_{A}(x), \lambda_{A}(y), \frac{1}{2} \}$.

(2b) $\mu_{A}(xy) \geq \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$ and $\lambda_{A}(xy) \leq \max \{ \lambda_{A}(x), \lambda_{A}(y), \frac{1}{2} \}$.

(3b) $\mu_{A}(xy) \geq \min \{ \mu_{A}(y), \frac{1}{2} \}$ and $\lambda_{A}(xy) \leq \max \{ \lambda_{A}(y), \frac{1}{2} \}$.

Proof. (1a) \Rightarrow (1b) Let A be an intuitionistic fuzzy subset of a hemiring R, and (1a) holds. Suppose that (1b) doesn’t hold then there exist $x, y \in R$ such that $\mu_{A}(x+y) < \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$ or $\lambda_{A}(x+y) > \max \{ \lambda_{A}(x), \lambda_{A}(y), \frac{1}{2} \}$. So there exits three possible cases.

(i) $\mu_{A}(x+y) < \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$ and $\lambda_{A}(x+y) \leq \max \{ \lambda_{A}(x), \lambda_{A}(y), \frac{1}{2} \}$,

(ii) $\mu_{A}(x+y) \geq \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$ and $\lambda_{A}(x+y) > \max \{ \lambda_{A}(x), \lambda_{A}(y), \frac{1}{2} \}$,

(iii) $\mu_{A}(x+y) < \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$ and $\lambda_{A}(x+y) > \max \{ \lambda_{A}(x), \lambda_{A}(y), \frac{1}{2} \}$.

For the first case, there exist $t \in (0, 1]$ such that $\mu_{A}(x+y) < t < \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$. Now choose $s = 1 - t$, then clearly $x(t,s) \in A$ and $y(t,s) \in A$ but $(x+y)(t,s) \in \overline{qv_{4}A}$. Which is a contradiction. Second case is similar to this case.

Now consider case (iii), i.e $\mu_{A}(x+y) < \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$ and $\lambda_{A}(x+y) > \max \{ \lambda_{A}(x), \lambda_{A}(y), \frac{1}{2} \}$. Then there exist $t \in (0, 1]$ and $s \in [0, 1)$, such that $\mu_{A}(x+y) < t \leq \min \{ \mu_{A}(x), \mu_{A}(y), \frac{1}{2} \}$ and $\lambda_{A}(x+y) > s \geq \max \{ \lambda_{A}(x), \lambda_{A}(y), \frac{1}{2} \}$

$\Rightarrow x(t,s) \in A$ and $y(t,s) \in A$ but $(x+y)(t,s) \in \overline{qv_{4}A}$. Which is again a contradiction. So our supposition is wrong. Hence (1b) holds.

Similarly we can prove $(2a) \implies (2b), (3a) \implies (3b)$.

Definition 5. Let $A = (\mu_{A}, \lambda_{A})$ be an IFS of a hemiring R. Then A is an $(\in, \in \vee q_{4})$-intuitionistic fuzzy sub-hemiring of R if it satisfies the conditions (1b) and (2b).

Definition 6. Let $A = (\mu_{A}, \lambda_{A})$ be an IFS of a hemiring R. Then A is an $(\in, \in \vee q_{4})$-intuitionistic fuzzy left ideal of R if it satisfies the conditions (1b) and (3b).

Remark. Every $(\in, \in \vee q_{4})$-intuitionistic fuzzy left ideal (right ideal, sub-hemiring) $A = (\mu_{A}, \lambda_{A})$ of R need not be an $(\in, \in \vee q_{4})$-intuitionistic fuzzy left ideal (right ideal, sub-hemiring) of R.

Example 1. Let \mathbb{N} be the set of all non negative integers and $A = (\mu_{A}, \lambda_{A})$ be an IFS of \mathbb{N} defined as follows:

$\mu_{A}(x) = \begin{cases}
1 & \text{if } x = 0 \\
0.5 & \text{if } 1 \leq x \leq 4 \\
0 & \text{if } x > 4
\end{cases}$

$\lambda_{A}(x) = \begin{cases}
0.5 & \text{if } 1 \leq x \leq 4 \\
0 & \text{if } x = 0 \\
0.4 & \text{if } 4 < x
\end{cases}$

For all $x, y \in R$,

(1) $\mu_{A}(x+y) \geq \min \{ \mu_{A}(x), \mu_{A}(y), 0.4 \}$ and $\lambda_{A}(x+y) \leq \max \{ \lambda_{A}(x), \lambda_{A}(y), 0.4 \}$,

(2) $\mu_{A}(xy) \geq \min \{ \mu_{A}(y), 0.4 \}$ and $\lambda_{A}(xy) \leq \max \{ \lambda_{A}(y), 0.4 \}$,

(3) $\mu_{A}(xy) \geq \min \{ \mu_{A}(x), 0.4 \}$ and $\lambda_{A}(xy) \leq \max \{ \lambda_{A}(x), 0.4 \}$.

Thus $A = (\mu_{A}, \lambda_{A})$ is an $(\in, \in \vee q_{4})$-intuitionistic fuzzy ideal of \mathbb{N}. But $2(0.45, 0.55), 3(0.45, 0.55) \in A \implies (2.3)(0.45, 0.55) \in \overline{qv_{4}A}$. Thus $A = (\mu_{A}, \lambda_{A})$ is not an $(\in, \in \vee q_{4})$-intuitionistic fuzzy ideal of \mathbb{N}.

Definition 7. For any intuitionistic fuzzy set $A = (\mu_{A}, \lambda_{A})$ in R and $t \in (0, 1]$, $s \in [0, 1)$ and $k \in [0, 1)$ we define $U_{(t,s)} = \{ x \in R : x(t,s) \in A \}$, $A_{(t,s)}_{k} = \{ x \in R : x(t,s)q_{4}A \}$ and $[A]_{(t,s)}_{k} = \{ x \in R : x(t,s) \in \overline{qv_{4}A} \}$.

© 2016 BISKA Bilişim Technology
Obviously, \([A]_{(t,s)} = A_{(t,s)} \cup U_{(t,s)} \), where \(U_{(t,s)} \), \(A_{(t,s)} \) and \([A]_{(t,s)} \) are called \(\epsilon \)-level set, \(\eta \)-level set and in \(\forall \eta \)-level set of \(A = (\mu_A, \lambda_A) \), respectively.

Lemma 1. Every intuitionistic fuzzy subset \(A = (\mu_A, \lambda_A) \) of a hemiring \(R \) satisfies the following condition:

\[
t \in (0, \frac{1}{t+k}], s \in [\frac{1}{t+k}, 1) \iff [A]_{(t,s)} = U_{(t,s)}.
\]

Proof. Let \(t \in (0, \frac{1}{t+k}) \), and \(s \in [\frac{1}{t+k}, 1) \). It is clear that \(U_{(t,s)} \subseteq [A]_{(t,s)} \). Let \(x \in [A]_{(t,s)} \). If \(x \notin U_{(t,s)} \), then \(\mu_A(x) < t \), or \(\lambda_A(x) > s \) and so \(\mu_A(x) + t \leq 2t \leq 1 - k \), or \(\mu_A(x) > s \geq 1 - k \). This shows that \(x \notin U_{(t,s)} \). Therefore \([A]_{(t,s)} \subseteq U_{(t,s)} \).

Theorem 6. If \(A = (\epsilon, \in \forall \eta) \)-intuitionistic fuzzy ideal of \(R \), then the set \(A_{(t,s)} \) is an ideal of \(R \) when it is non-empty for all \(t \in \left(\frac{1}{t+k}, 1 \right] \), \(s \in \left[\frac{t+k}{1+k}, 1 \right) \).

Proof. Assume that \(A \) is an \((\epsilon, \in \forall \eta)\)-intuitionistic fuzzy ideal of \(R \), and let \(t \in \left(\frac{1}{t+k}, 1 \right] \), \(s \in \left[\frac{1}{t+k}, 1 \right) \) be such that \(A_{(t,s)} \neq \phi \). Let \(x, y \in A_{(t,s)} \). Then \(\mu_A(x) + t + k > 1, \lambda_A(x) + s + k < 1 \) and \(\mu_A(y) + t + k > 1, \lambda_A(y) + s + k < 1 \). As \(\mu_A(x+y) \geq \min \{ \mu_A(x), \mu_A(y), \frac{1}{t+k} \} \), \(\lambda_A(x+y) \leq \max \{ \lambda_A(x), \lambda_A(y), \frac{1}{t+k} \} \). We have \(\mu_A(x+y) \geq \min \{ 1 - t - k, \frac{1}{t+k} \} \) and \(\lambda_A(x+y) \leq \max \{ 1 - s - k, \frac{1}{t+k} \} \). Since \(t \in \left(\frac{1}{t+k}, 1 \right] \), and \(s \in \left[\frac{1}{t+k}, 1 \right) \), so \(1 - t - k < \frac{1}{t+k} \) and \(1 - s - k > \frac{1}{t+k} \), thus \(\mu_A(x+y) > 1 - t - k \) and \(\lambda_A(x+y) < 1 - s - k \). Hence \(x + y \in A_{(t,s)} \). Let \(x \in A_{(t,s)} \) and \(y \in R \). Then \(\mu_A(x) + t + k > 1, \lambda_A(x) + s + k < 1 \). Then \(\lambda_A(x) > 1 - t - k, \lambda_A(x) < 1 - s - k \). Since \(A = (\epsilon, \in \forall \eta)\)-intuitionistic fuzzy ideal of \(R \), we have \(\mu_A(xy) \geq \min \{ \mu_A(x), \frac{1}{t+k} \} \), \(\lambda_A(x+y) \leq \max \{ \lambda_A(x), \frac{1}{t+k} \} \). Implies that \(\mu_A(xy) \geq \min \{ 1 - t - k, \frac{1}{t+k} \} \), \(\lambda_A(xy) \leq \max \{ 1 - s - k, \frac{1}{t+k} \} \). Since \(t \in \left(\frac{1}{t+k}, 1 \right] \), and \(s \in \left[\frac{1}{t+k}, 1 \right) \), so \(1 - t - k < \frac{1}{t+k} \) and \(1 - s - k > \frac{1}{t+k} \), thus \(\mu_A(xy) > 1 - t - k \) and \(\lambda_A(xy) < 1 - s - k \). This implies \(xy \in A_{(t,s)} \). Similarly \(xy \in A_{(t,s)} \), Hence \(A_{(t,s)} \) is an ideal of \(R \).

Theorem 7. For any intuitionistic fuzzy subset \(A \) of \(R \), the following are equivalent:

(i) \(A \) is an \((\epsilon, \in \forall \eta)\)-intuitionistic fuzzy ideal of \(R \).

(ii) For all \(t \in (0, \frac{1}{t+k}], s \in [\frac{1}{t+k}, 1) \), \(U_{(t,s)} \neq \phi \iff U_{(t,s)} \) is an ideal of \(R \).

Proof. Let \(A \) be an \((\epsilon, \in \forall \eta)\)-intuitionistic fuzzy ideal of \(R \) and \(x, y \in U_{(t,s)} \) for some \(t \in (0, \frac{1}{t+k}], s \in [\frac{1}{t+k}, 1) \). Then \(\mu_A(x+y) \geq \min \{ \mu_A(x), \mu_A(y), \frac{1}{t+k} \} \geq \min \{ t, \frac{1}{t+k} \} \) and \(\lambda_A(x+y) \leq \max \{ \lambda_A(x), \lambda_A(y), \frac{1}{t+k} \} \leq \max \{ s, \frac{1}{t+k} \} = s \), which implies \(x + y \in U_{(t,s)} \). Now, if \(x \in U_{(t,s)} \) and \(y \in R \) then \(\mu_A(xy) \geq \min \{ \mu_A(x), \frac{1}{t+k} \} \geq \min \{ t, \frac{1}{t+k} \} = t \) and \(\lambda_A(xy) \leq \max \{ \lambda_A(x), \frac{1}{t+k} \} \leq \max \{ s, \frac{1}{t+k} \} = s \), which implies \(xy \in U_{(t,s)} \). Similarly \(xy \in U_{(t,s)} \). This shows that \(U_{(t,s)} \) is an ideal of \(R \).

Conversely, assume that for every \(t \in (0, \frac{1}{t+k}], s \in [\frac{1}{t+k}, 1) \), each non-empty \(U_{(t,s)} \) is an ideal of \(R \). Suppose \(A \) is not an \((\epsilon, \in \forall \eta)\)-intuitionistic fuzzy ideal of \(R \), then there exist \(x, y \in R \) such that one of the following three cases is true.

(i) \(\mu_A(x+y) < \min \{ \mu_A(x), \mu_A(y), \frac{1}{t+k} \} \) and \(\lambda_A(x+y) \leq \max \{ \lambda_A(x), \lambda_A(y), \frac{1}{t+k} \} \).

(ii) \(\mu_A(x+y) \geq \min \{ \mu_A(x), \mu_A(y), \frac{1}{t+k} \} \) and \(\lambda_A(x+y) > \max \{ \lambda_A(x), \lambda_A(y), \frac{1}{t+k} \} \).

(iii) \(\mu_A(x+y) < \min \{ \mu_A(x), \mu_A(y), \frac{1}{t+k} \} \) and \(\lambda_A(x+y) > \max \{ \lambda_A(x), \lambda_A(y), \frac{1}{t+k} \} \).

For the first case, \(t \in (0, \frac{1}{t+k}] \) such that \(\mu_A(x+y) \leq t \leq \min \{ \mu_A(x), \mu_A(y), \frac{1}{t+k} \} \). Now choose \(s = 1 - t \), then clearly \(x + y \in U_{(t,s)} \) but \(x + y \notin U_{(t,s)} \). Which is a contradiction. Case (ii) is similar to the case (i).

Now consider case (iii), then there exist \(t \in (0, \frac{1}{t+k}], s \in [\frac{1}{t+k}, 1) \), such that \(\mu_A(x+y) < t \leq \min \{ \mu_A(x), \mu_A(y), \frac{1}{t+k} \} \) and \(\lambda_A(x+y) > s \geq \max \{ \lambda_A(x), \lambda_A(y), \frac{1}{t+k} \} \). This is a contradiction. So our supposition is wrong, hence \(\mu_A(x+y) \geq \min \{ \mu_A(x), \mu_A(y), \frac{1}{t+k} \} \) and \(\lambda_A(x+y) \leq \max \{ \lambda_A(x), \lambda_A(y), \frac{1}{t+k} \} \) for all
theorem 10.

definition 9.

2

\[x, y \in R. \]

In a similar way we can show that \(\mu_A(xy) \geq \min \{ \mu_A(x), \frac{1-k}{2} \} \) and \(\lambda_A(xy) \leq \max \{ \lambda_A(x), \frac{1-k}{2} \} \), \(\mu_A(xy) \geq \min \{ \mu_A(y), \frac{1-k}{2} \} \) and \(\lambda_A(xy) \leq \max \{ \lambda_A(y), \frac{1-k}{2} \} \) for all \(x, y \in R. \)

Theorem 8. Let \(\{ A_i : i \in I \} \) be a family of \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy sub-hemiring of \(R \). Then \(A = \cap_{i \in I} A_i \) is an \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy sub-hemiring of \(R \).

Proof. Straightforward.

Theorem 9. Let \(\{ A_i : i \in I \} \) be a family of \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy left (right) ideals of \(R \). Then \(A = \cap_{i \in I} A_i \) is an \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy left (right) ideal of \(R \).

Proof. Straightforward.

5 Regular and idempotent hemirings

Definition 8. Let \(A \) and \(B \) be two intuitionistic fuzzy subsets of a hemiring \(R \), then \(A \cdot_k B \) is defined as, \(A \cdot_k B = \langle \mu_{A \cdot_k B}, \lambda_{A \cdot_k B} \rangle \) where

\[
\begin{align*}
(\mu_{A \cdot_k B})(x) &= \min \left\{ \sum_{i=1}^{\infty} y_i z_i \left[\bigwedge_{1 \leq p \leq I} \mu_A(y_i) \land \mu_B(z_i) \right] \right\} \bigwedge \frac{1-k}{2} \\
&= 0 \text{ if } x \text{ cannot be expressed as } x = \sum_{i=1}^{\infty} y_i z_i \\
(\lambda_{A \cdot_k B})(x) &= \max \left\{ \sum_{i=1}^{\infty} y_i z_i \left[\bigvee_{1 \leq p \leq I} \lambda_A(y_i) \lor \lambda_B(z_i) \right] \right\} \bigvee \frac{1-k}{2} \\
&= 1 \text{ if } x \text{ cannot be expressed as } x = \sum_{i=1}^{\infty} y_i z_i
\end{align*}
\]

where \(x \in R. \)

Definition 9. let \(A \) and \(B \) an intuitionistic fuzzy subsets of \(R \). We define the intuitionistic fuzzy subsets \(A_k, A \cap_k B, A \cup_k B \) and \(A \cdot_k B \) of \(R \) as follows:

\[
A_k = \left(\mu_A \land \frac{1-k}{2}, \lambda_A \lor \frac{1-k}{2} \right),
\]

\[
A \cap_k B = (A \cap B)_k = (\mu_A \land_k B, \lambda_A \lor_k B),
\]

\[
A \cup_k B = (A \cup B)_k = (\mu_A \lor_k B, \lambda_A \land_k B).
\]

Theorem 10. Let \(A \) be an \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy sub-hemiring of \(R \). Then \(A_k \) is an \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy sub-hemiring of \(R \).

Proof. Suppose \(A \) is an \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy sub-hemiring of \(R \) and \(x, y \in R. \) Then

\[
(\mu_A \land \frac{1-k}{2})(x+y) = \mu_A(x+y) \land \frac{1-k}{2}
\]

\[
\geq \left(\min \left\{ \mu_A(x), \mu_A(y), \frac{1-k}{2} \right\} \right) \land \frac{1-k}{2}
\]

\[
= \min \left\{ \mu_A(x) \land \frac{1-k}{2}, \mu_A(y) \land \frac{1-k}{2} \right\}
\]

\[
= \min \left\{ (\mu_A \land \frac{1-k}{2})(x), (\mu_A \land \frac{1-k}{2})(y) \land \frac{1-k}{2} \right\}.
\]
and
\[
(\lambda_A \vee \frac{1-k}{2})(x+y) = \lambda_A(x+y) \vee \frac{1-k}{2} \\
\leq (\max\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\}) \vee \frac{1-k}{2}.
\]
\[
= \max\{\lambda_A(x) \vee \frac{1-k}{2}, \lambda_A(y) \vee \frac{1-k}{2}, \frac{1-k}{2}\}.
\]
\[
= \max\{\lambda_A \left(\frac{1-k}{2}\right)(x), (\lambda_A(y) \vee \frac{1-k}{2})(y), \frac{1-k}{2}\}.
\]
Similarly we can show that
\[
(\mu_A \wedge \frac{1-k}{2})(xy) \geq \min\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\}
\]
and
\[
(\lambda_A \vee \frac{1-k}{2})(xy) \leq \max\{\lambda_A \left(\frac{1-k}{2}\right)(x), (\lambda_A(y) \vee \frac{1-k}{2})(y), \frac{1-k}{2}\}.
\]
This shows that $A_k = A \cap \frac{1-k}{2}$ is an $(\epsilon, \in \vee \eta_k)^*$-intuitionistic fuzzy sub-hemiring of R.

Theorem 11. Let A be an $(\epsilon, \in \vee \eta_k)^*$-intuitionistic fuzzy ideal of R. Then A_k is an $(\epsilon, \in \vee \eta_k)^*$-intuitionistic fuzzy ideal of R.

Proof. This proof is similar to the proof of the theorem 10.

Remark. Let A and B be intuitionistic fuzzy subsets of R. Then the following hold.

(i) $A \cap B = (A \cap B_k)$.

(ii) $A \cup B = (A_k \cup B_k)$.

(iii) $A \cdot B = (A_k \cdot B_k)$.

Proof. Let $x \in R$.

1. $(\mu_A \wedge \frac{1-k}{2})(x) = (\mu_A \wedge \frac{1-k}{2})(x) \wedge 1 = \mu_A(x) \wedge \mu_B(x) \wedge \frac{1-k}{2} = (\mu_A(x) \wedge \frac{1-k}{2}) \wedge (\mu_B(x) \wedge \frac{1-k}{2})$

\[
= \mu_A(x) \wedge (\mu_B(x) \wedge \frac{1-k}{2})
\]
and
\[
(\lambda_A \vee \frac{1-k}{2})(x) = (\lambda_A \vee \frac{1-k}{2})(x) \vee 1 = \lambda_A(x) \vee \lambda_B(x) \vee \frac{1-k}{2} = (\lambda_A(x) \vee \frac{1-k}{2}) \vee (\lambda_B(x) \vee \frac{1-k}{2})
\]
\[
= \lambda_A(x) \vee (\lambda_B(x) \vee \frac{1-k}{2})
\]
Hence (1) holds. Similarly we can prove (2).

3. If x is not expressible as $x = \sum_{i=1}^p y_i z_i$ where $y_i, z_i \in R$, then $(\mu_A \cdot \mu_B)(x) = 0$.

Thus $(\mu_A \cdot \mu_B)(x) = (\mu_A \cdot \mu_B)(x) \wedge \frac{1-k}{2} = 0$. As x is not expressible as $x = \sum_{i=1}^p y_i z_i$ so $(\mu_A \wedge \frac{1-k}{2})(x) = 0 \Longrightarrow \mu_A \wedge \mu_B = \mu_A \cdot \mu_B$ and (\lambda_A \wedge \lambda_B)(x) = 1, thus $(\lambda_A \cdot \lambda_B)(x) = (\lambda_A \cdot \lambda_B)(x) \vee \frac{1-k}{2} = 1$ as x is not expressible as $x = \sum_{i=1}^p y_i z_i$ so $(\lambda_A \cdot \lambda_B)(x) = 1 \Longrightarrow \lambda_A \wedge \lambda_B = \lambda_A \cdot \lambda_B$. Hence (3) holds.

Theorem 12. If A and B are $(\epsilon, \in \vee \eta_k)^*$-intuitionistic fuzzy ideals of R then $A_k \cdot B$ is an $(\epsilon, \in \vee \eta_k)^*$-intuitionistic fuzzy ideal of R.

Proof. Let $x, y \in R$ be such that $x = \sum_{i=1}^p a_i b_i$, and $y = \sum_{j=1}^q a'_j b'_j$. Then
\[
(\mu_A \cdot \mu_B)(x) = \bigvee_{x=\sum_{i=1}^p a_i b_i} \left[\bigwedge_{1 \leq i \leq p} [\mu_A(a_i) \wedge \mu_B(b_i)] \right] \wedge \frac{1-k}{2}.
\]
Thus
\[
(\mu_A \cdot \mu_B)(x') = \bigvee_{x' = \sum_{i=1}^{p} a' \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a'_i) \land \mu_B(b'_j)] \right] \land \frac{1-k}{2}.
\]

Thus
\[
(\mu_A \cdot \mu_B)(x) \land (\mu_A \cdot \mu_B)(x') \land \frac{1-k}{2} = \left\{ \begin{array}{l}
\bigvee_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a_i) \land \mu_B(b_j)] \right] \land \frac{1-k}{2} \bigvee_{x' = \sum_{i=1}^{p} a' \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a'_i) \land \mu_B(b'_j)] \right] \land \frac{1-k}{2}
\end{array} \right\}
\]
\[
= \left\{ \bigvee_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a_i) \land \mu_B(b_j)] \right] \land \frac{1-k}{2} \bigvee_{x' = \sum_{i=1}^{p} a' \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a'_i) \land \mu_B(b'_j)] \right] \land \frac{1-k}{2} \right\}
\]
\[
= \left(\mu_A \cdot \mu_B \right)(x \lor x')
\]

and
\[
(\lambda_A \cdot \lambda_B)(x) = \left[\bigwedge_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigvee_{i \leq j \leq p} [\lambda_A(a_i) \lor \lambda_B(b_j)] \right] \lor \frac{1-k}{2} \right],
\]
\[
(\lambda_A \cdot \lambda_B)(x') = \left[\bigwedge_{x' = \sum_{i=1}^{p} a' \beta_i} \left[\bigvee_{i \leq j \leq p} [\lambda_A(a'_i) \lor \lambda_B(b'_j)] \right] \lor \frac{1-k}{2} \right].
\]

Thus
\[
(\lambda_A \cdot \lambda_B)(x) \lor (\lambda_A \cdot \lambda_B)(x') \lor \frac{1-k}{2} = \left\{ \begin{array}{l}
\bigwedge_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigvee_{i \leq j \leq p} [\lambda_A(a_i) \lor \lambda_B(b_j)] \right] \lor \frac{1-k}{2} \bigvee_{x' = \sum_{i=1}^{p} a' \beta_i} \left[\bigwedge_{i \leq j \leq p} [\lambda_A(a'_i) \lor \lambda_B(b'_j)] \right] \lor \frac{1-k}{2}
\end{array} \right\}
\]
\[
= \left\{ \bigwedge_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigvee_{i \leq j \leq p} [\lambda_A(a_i) \lor \lambda_B(b_j)] \right] \lor \frac{1-k}{2} \bigvee_{x' = \sum_{i=1}^{p} a' \beta_i} \left[\bigwedge_{i \leq j \leq p} [\lambda_A(a'_i) \lor \lambda_B(b'_j)] \right] \lor \frac{1-k}{2} \right\}
\]
\[
\geq \left[\bigwedge_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigvee_{i \leq j \leq p} [\lambda_A(a''_i) \lor \lambda_B(b''_j)] \right] \lor \frac{1-k}{2} \right]
\]
\[
= (\lambda_A \cdot \lambda_B)(x \lor x')
\]
\[
\implies \{ (\lambda_A \cdot \lambda_B)(x) \lor (\lambda_A \cdot \lambda_B)(x') \lor \frac{1-k}{2} \} \geq (\lambda_A \cdot \lambda_B)(x \lor x'). \text{ Also, } (\mu_A \cdot \mu_B)(x) \land \frac{1-k}{2}
\]
\[
= \left[\bigvee_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a_i) \land \mu_B(b_j)] \right] \lor \frac{1-k}{2} \right] \frac{1-k}{2}
\]
\[
= \left[\bigvee_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a_i) \land \mu_B(b_j)] \frac{1-k}{2} \right] \right] \lor \frac{1-k}{2}
\]
\[
= \left[\bigvee_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a_i) \land \mu_B(b_j)] \frac{1-k}{2} \right] \right] \lor \frac{1-k}{2}
\]
\[
\leq \left[\bigvee_{x = \sum_{i=1}^{p} a \beta_i} \left[\bigwedge_{i \leq j \leq p} [\mu_A(a_i) \land \mu_B(b_j)] \right] \right] \lor \frac{1-k}{2}
\]
Similarly we can prove

\[\forall x \in \Sigma_{j=1}^{n}, \exists i \in [1, q] : \left(A \lor \lambda_B \right)(x) = \min \left\{ \mu_A(x) \lor \mu_B(x), \frac{1-k}{2} \right\} \]

Thus \((\mu_A \land \mu_B)(x) \leq (\mu_A \lor \mu_B)(x) \).

Similarly we can prove \((\lambda_A \land \lambda_B)(x) \leq \{ (\lambda_A \lor \lambda_B)(x) \lor \frac{1-k}{2} \} \Rightarrow A \land B \) is an \((\epsilon, \in \cap q)\)-intuitionistic fuzzy right ideal of \(R \). On the same line it can be proved that \(\{ (\mu_A \land \mu_B)(x) \lor \frac{1-k}{2} \} \leq (\mu_A \lor \mu_B)(x) \) and \((\lambda_A \land \lambda_B)(x) \lor \frac{1-k}{2} \). Thus \(A \land B \) is an \((\epsilon, \in \cap q)\)-intuitionistic fuzzy right ideal of \(R \).

Theorem 13. If \(A \) and \(B \) are \((\epsilon, \in \cap q)\)-intuitionistic fuzzy left(right) ideals of \(R \), then so is \(A \lor \land B \).

Proof. We only consider the case of \((\epsilon, \in \cap q)\)-intuitionistic fuzzy left ideals.

Let \(x, y \in R \). Then

\[
(\mu_A \land \mu_B)(x + y) = \min \left\{ \mu_A(x + y), \mu_B(x + y), \frac{1-k}{2} \right\}
\]

\[
\geq \min \left\{ \min \{ \mu_A(x), \mu_A(y), \frac{1-k}{2} \}, \min \{ \mu_B(x), \mu_B(y), \frac{1-k}{2} \} \right\}
\]

\[
= \min \left\{ \min \{ \mu_A(x), \mu_B(x), \frac{1-k}{2} \}, \min \{ \mu_A(y), \mu_B(y), \frac{1-k}{2} \} \right\}
\]

\[
= \min \left\{ \mu_A \land \mu_B(x), \mu_A \land \mu_B(y), \frac{1-k}{2} \right\}
\]

and

\[
(\lambda_A \lor \lambda_B)(x + y) = \max \left\{ \lambda_A(x + y), \lambda_B(x + y), \frac{1-k}{2} \right\}
\]

\[
\leq \max \left\{ \max \{ \lambda_A(x), \lambda_A(y), \frac{1-k}{2} \}, \max \{ \lambda_B(x), \lambda_B(y), \frac{1-k}{2} \} \right\}
\]

\[
= \max \left\{ \max \{ \lambda_A(x), \lambda_B(x), \frac{1-k}{2} \}, \max \{ \lambda_A(y), \lambda_B(y), \frac{1-k}{2} \} \right\}
\]

\[
= \max \left\{ \lambda_A \lor \lambda_B(x), \lambda_A \lor \lambda_B(y), \frac{1-k}{2} \right\}.
\]

Now

\[
(\mu_A \lor \mu_B)(x, y) = \min \left\{ \mu_A(x, y), \mu_B(x, y), \frac{1-k}{2} \right\}
\]

\[
\geq \min \left\{ \min \{ \mu_A(y), \frac{1-k}{2} \}, \min \{ \mu_B(y), \frac{1-k}{2} \}, \frac{1-k}{2} \right\}
\]

\[
= \min \left\{ \min \{ \mu_A(y), \mu_B(y), \frac{1-k}{2} \}, \frac{1-k}{2} \right\} = \min \left\{ \mu_A \lor \mu_B(y), \frac{1-k}{2} \right\}
\]
Thus $A \cap B$ is an $(\epsilon, \varphi_{q_k})^{*}$-intuitionistic fuzzy left ideal of R.

Theorem 14. If A is an $(\epsilon, \varphi_{q_k})^{*}$-intuitionistic fuzzy right ideal, and B is an $(\epsilon, \varphi_{q_k})^{*}$-intuitionistic fuzzy left ideal of R, then $A^{*}B \subseteq A \cap B$.

Proof. Let A and B be $(\epsilon, \varphi_{q_k})^{*}$-intuitionistic fuzzy right and left ideals of R respectively. For any $x \in R$,

$$
(\mu_{A^{*}B})(x) = \bigvee_{x \in \sum_{p} n_{b_i}} \left(\bigwedge_{1 \leq i \leq p} [\mu_{A}(a_i) \wedge \mu_{B}(b_i)] \right) \wedge \frac{1-k}{2}
$$

$$
= \bigvee_{x \in \sum_{p} n_{b_i}} \left(\bigwedge_{1 \leq i \leq p} [\mu_{A}(a_i) \wedge \frac{1-k}{2}] \wedge [\mu_{B}(b_i) \wedge \frac{1-k}{2}] \right) \wedge \frac{1-k}{2}
$$

$$
\leq \bigvee_{x \in \sum_{p} n_{b_i}} \left(\bigwedge_{1 \leq i \leq p} [\mu_{A}(a_i) \wedge \mu_{B}(a_ib_i)] \right) \wedge \frac{1-k}{2}
$$

$$
\leq \bigvee_{x \in \sum_{p} n_{b_i}} [\mu_{A}(x) \wedge \mu_{B}(x)] \wedge \frac{1-k}{2} = (\mu_{A} \wedge \mu_{B})(x),
$$

and

$$
(\lambda_{A^{*}B})(x) = \bigwedge_{x \in \sum_{p} n_{b_i}} \left(\bigvee_{1 \leq i \leq p} [\lambda_{A}(a_i) \vee \lambda_{B}(b_i)] \right) \lor \frac{1-k}{2}
$$

$$
= \bigwedge_{x \in \sum_{p} n_{b_i}} \left(\bigvee_{1 \leq i \leq p} [\lambda_{A}(a_i) \vee \frac{1-k}{2}] \lor [\lambda_{B}(b_i) \vee \frac{1-k}{2}] \right) \lor \frac{1-k}{2}
$$

$$
\geq \bigwedge_{x \in \sum_{p} n_{b_i}} \left(\bigvee_{1 \leq i \leq p} [\lambda_{A}(a_ib_i) \vee \lambda_{B}(a_ib_i)] \right) \lor \frac{1-k}{2}
$$

$$
= \bigwedge_{x \in \sum_{p} n_{b_i}} \left(\bigvee_{1 \leq i \leq p} \lambda_{A}(a_ib_i) \right) \lor \left(\bigvee_{1 \leq i \leq p} \lambda_{B}(a_ib_i) \right) \lor \frac{1-k}{2}
$$

$$
\geq \bigwedge_{x \in \sum_{p} n_{b_i}} [\lambda_{A}(x) \vee \lambda_{B}(x)] \lor \frac{1-k}{2} = (\lambda_{A} \vee \lambda_{B})(x).
$$

Thus $A^{*}B \subseteq A \cap B$.

© 2016 BISKA Bilisim Technology
Definition 10. Let A and B be $(\varepsilon, \in \vee q_k)$-intuitionistic fuzzy ideals of R. The intuitionistic fuzzy subset $A +_k B$ of R is defined by

$$A +_k B = (\mu_A +_k \mu_B, \lambda_A +_k \lambda_B)$$

where

$$(\mu_A +_k \mu_B)(x) = \bigvee_{x = y + z} [\mu_A(y) \wedge \mu_B(z)] \wedge \frac{1-k}{2},$$

$$(\lambda_A +_k \lambda_B)(x) = \bigwedge_{x = y + z} [\lambda_A(y) \vee \lambda_B(z)] \vee \frac{1-k}{2} \text{ for } x \in R.$$

Proposition 1. For $(\varepsilon, \in \vee q_k)$-intuitionistic fuzzy ideals A and B of R, $A +_k B$ is an $(\varepsilon, \in \vee q_k)$-intuitionistic fuzzy ideal of R.

Proof. For any $x, x' \in R$,

$$(\mu_A +_k \mu_B)(x) \wedge (\mu_A +_k \mu_B)(x') \wedge \frac{1-k}{2} = \left[\bigvee_{x = y + z} [\mu_A(y) \wedge \mu_B(z)] \wedge \frac{1-k}{2} \right] \wedge \left[\bigvee_{x' = y' + z'} [\mu_A(y') \wedge \mu_B(z')] \wedge \frac{1-k}{2} \right] \wedge \frac{1-k}{2}$$

$$= \bigvee_{x = y + z} \bigvee_{x' = y' + z'} \left[[\mu_A(y) \wedge \mu_B(z)] \wedge \frac{1-k}{2} \right] \wedge \left[[\mu_A(y') \wedge \mu_B(z')] \wedge \frac{1-k}{2} \right] \wedge \frac{1-k}{2} \leq \bigvee_{x = y + z} \bigvee_{x' = y' + z'} [\mu_A(y + y') \wedge \mu_B(z + z')] \wedge \frac{1-k}{2} \leq (\mu_A +_k \mu_B)(x + x'),$$

and

$$(\lambda_A +_k \lambda_B)(x) \vee (\lambda_A +_k \lambda_B)(x') \vee \frac{1-k}{2} = \left[\bigwedge_{x = y + z} [\lambda_A(y) \vee \lambda_B(z)] \vee \frac{1-k}{2} \right] \wedge \left[\bigwedge_{x' = y' + z'} [\lambda_A(y') \vee \lambda_B(z')] \vee \frac{1-k}{2} \right] \wedge \frac{1-k}{2}$$

$$= \bigwedge_{x = y + z} \bigwedge_{x' = y' + z'} \left[[\lambda_A(y) \vee \lambda_B(z)] \vee \frac{1-k}{2} \right] \wedge \left[[\lambda_A(y') \vee \lambda_B(z')] \vee \frac{1-k}{2} \right] \wedge \frac{1-k}{2} \geq \bigwedge_{x = y + z} \bigwedge_{x' = y' + z'} [\lambda_A(y + y') \vee \lambda_B(z + z')] \vee \frac{1-k}{2} \geq (\lambda_A +_k \lambda_B)(x + x').$$
Again,
\[
(\mu_A + k \mu_B)(x) \wedge \frac{1 - k}{2} = \left\lfloor \frac{[\mu_A(y) \wedge \mu_B(z)] \wedge \frac{1 - k}{2}}{2} \right\rfloor \wedge \frac{1 - k}{2}
\]
\[
= \left\lfloor \frac{[(\mu_A(y) \wedge \frac{1 - k}{2}) \wedge (\mu_B(z) \wedge \frac{1 - k}{2})] \wedge \frac{1 - k}{2}}{2} \right\rfloor \wedge \frac{1 - k}{2}
\]
\[
\leq \left\lfloor \frac{[\mu_A(ya) \wedge \mu_B(za)] \wedge \frac{1 - k}{2}}{2} \right\rfloor \wedge \frac{1 - k}{2}
\]
\[
\leq \left\lfloor \frac{[\mu_A(y') \wedge \mu_B(z')]}{2} \wedge \frac{1 - k}{2} \right\rfloor = (\mu_A + k \mu_B)(xa),
\]
and
\[
(\lambda_A + k \lambda_B)(x) \vee \frac{1 - k}{2} = \left\lceil \frac{[\lambda_A(y) \vee \lambda_B(z)] \vee \frac{1 - k}{2}}{2} \right\rceil \vee \frac{1 - k}{2}
\]
\[
= \left\lceil \frac{[(\lambda_A(y) \vee \frac{1 - k}{2}) \vee (\lambda_B(z) \vee \frac{1 - k}{2})] \vee \frac{1 - k}{2}}{2} \right\rceil \vee \frac{1 - k}{2}
\]
\[
\geq \left\lceil \frac{(\lambda_A(ya) \vee \lambda_B(za)) \vee \frac{1 - k}{2}}{2} \right\rceil \vee \frac{1 - k}{2}
\]
\[
\geq \left\lceil \frac{(\lambda_A(y') \vee \lambda_B(z')) \vee \frac{1 - k}{2}}{2} \right\rceil = (\lambda_A + k \lambda_B)(xa).
\]
Similarly we can prove
\[
(\mu_A + k \mu_B)(x) \wedge \frac{1 - k}{2} \leq (\mu_A + k \mu_B)(ax) \quad \text{and} \quad (\lambda_A + k \lambda_B)(x) \vee \frac{1 - k}{2} \geq (\lambda_A + k \lambda_B)(ax).
\]
Hence \(A + k B \) is an \((\mathcal{E}, \vee \mathcal{Q})\)-intuitionistic fuzzy ideal of \(R \).

Definition 11. [18] If \(S \subseteq R \), then intuitionistic characteristic function of \(S \) is denoted by \(C_S = (\chi_S, \chi_S^c) \) and is defined by
\[
\chi_S(x) = \begin{cases}
1 & \text{if } x \in S \\
0 & \text{if } x \not\in S
\end{cases}
\]
and \(\chi_S^c(x) = \begin{cases}
0 & \text{if } x \in S \\
1 & \text{if } x \not\in S
\end{cases} \)
In particular, we let \(T = (\chi_R, \chi_R^c) \) be the intuitionistic fuzzy set in \(R \).

Lemma 2. A non-empty subset \(L \) of a hemiring \(R \) is a left ideal of \(R \) if and only if the intuitionistic characteristic function \(C_L = (\chi_L, \chi_L^c) \) is an \((\mathcal{E}, \vee \mathcal{Q})\)-intuitionistic fuzzy left ideal of \(R \).

Proof. Let \(L \) be a left ideal of \(R \), then obviously \(C_L \) is an \((\mathcal{E}, \vee \mathcal{Q})\)-intuitionistic fuzzy left ideal of \(R \).

Conversely assume that \(C_L \) is an \((\mathcal{E}, \vee \mathcal{Q})\)-intuitionistic fuzzy left ideal of \(R \). Let \(x, y \in L \). Then \(\chi_L(x) = 1 \), \(\chi_L^c(x) = 0 \), and \(\chi_L(y) = 1 \), \(\chi_L^c(y) = 0 \) so \(x(1,0), y(1,0) \in C_L \). Since \(C_L \) is an \((\mathcal{E}, \vee \mathcal{Q})\)-intuitionistic fuzzy left ideal, so
\[
(\chi_L)(x+y) \geq \min \{ \chi_L(x), \chi_L(y), \frac{1+k}{2} \}
\]
and
\[
(\chi_L^c)(x+y) \leq \max \{ \chi_L^c(x), \chi_L^c(y), \frac{1+k}{2} \}
\]
i.e. \((\chi_L)(x+y) = 1 \) and \((\chi_L^c)(x+y) = 0 \). Thus \(x+y \in L \).

Let \(y \in L \) and \(x \in R \). Then \(\chi_L(y) = 1 \), and \(\chi_L(y) = 0 \) so \(y(1,0) \in C_L \). Since \(C_L \) is an \((\mathcal{E}, \vee \mathcal{Q})\)-intuitionistic fuzzy left
ideal, so \((\chi_L)(xy) \geq \min \{\chi_L(y), \frac{1-k}{2}\}\) and \((\chi_R)(xy) \leq \max \{\chi_L(y), \frac{1-k}{2}\}\). i.e. \((\chi_L)(xy) = 1\) and \((\chi_R)(xy) = 0\). Hence \(xy \in L\). Thus \(L\) is a left ideal of \(R\).

Lemma 3. A non-empty subset \(L\) of a hemiring \(R\) is a left ideal of \(R\) if and only if the intuitionistic fuzzy set \((C_L)_k = (\chi_L \wedge \frac{1-k}{2}, \chi_L \vee \frac{1-k}{2})\) is an \((\epsilon, \in \vee q_k)^*\)-intuitionistic fuzzy left ideal of \(R\).

Proof. Straightforward.

Lemma 4. Let \(A\) and \(B\) be non-empty subsets of a hemiring \(R\). Then the following hold:

1. \(C_A \cap_k C_B = (C_{A \cap B})_k\)
2. \(C_A \cdot_k C_B = (C_{A \cdot B})_k\)

Proof. Straightforward.

Theorem 15. For a hemiring \(R\), the following conditions are equivalent:

(i) \(R\) is hemiregular.

(ii) \(A \cap_k B = A \cdot_k B\) for every \((\epsilon, \in \vee q_k)^*\)-intuitionistic fuzzy right ideal \(A\) and every \((\epsilon, \in \vee q_k)^*\)-intuitionistic fuzzy left ideal \(B\) of \(R\).

Proof. Let \(A\) be an \((\epsilon, \in \vee q_k)^*\)-intuitionistic fuzzy right ideal and \(B\) be an \((\epsilon, \in \vee q_k)^*\)-intuitionistic fuzzy left ideal of \(R\) and \(x \in R\). Then there exists \(a \in R\), such that \(x = xa\). Now

\[
(\mu_{A \cdot_k B})(x) = \bigvee_{x = \sum_{i=1}^{m} y_i z_i} \left[\bigwedge_{1 \leq i \leq p} [\mu_A(y_i) \wedge \mu_B(z_i)] \right] \wedge \frac{1-k}{2} \geq \left[\mu_A(xa) \wedge \mu_B(x) \wedge \frac{1-k}{2} \right] \geq \left[\mu_A(x) \wedge \mu_B(x) \wedge \frac{1-k}{2} \right] = (\mu_A \wedge_k \mu_B)(x)
\]

and

\[
(\lambda_A \cdot_k \lambda_B)(x) = \bigwedge_{x = \sum_{i=1}^{m} y_i z_i} \left[\bigvee_{1 \leq i \leq p} [\lambda_A(y_i) \vee \lambda_B(z_i)] \right] \vee \frac{1-k}{2} \leq \left[\lambda_A(xa) \vee \lambda_B(x) \vee \frac{1-k}{2} \right] \leq \left[\lambda_A(x) \vee \lambda_B(x) \vee \frac{1-k}{2} \right] = (\lambda_A \wedge_k \lambda_B)(x).
\]

Thus \(A \cap_k B \subseteq A \cdot_k B\).

By Theorem 14 \(A \cdot_k B \subseteq A \cap_k B\). Hence \(A \cdot_k B = A \cap_k B\).

\((ii) \implies (i)\) Let \(A\) and \(B\) be right ideal and left ideal of \(R\) respectively. Then \(C_A\) is an \((\epsilon, \in \vee q_k)^*\)-intuitionistic fuzzy right ideal and \(C_B\) is an \((\epsilon, \in \vee q_k)^*\)-intuitionistic fuzzy left ideal of \(R\), by assumption

\[C_A \cdot_k C_B = C_A \cap_k C_B \implies (C_A \cdot C_B)_k = (C_A \cap C_B)_k \implies (C_{AB})_k = (C_{A \cap B})_k \implies AB = AB = A \cap B.\]

Thus by Theorem 1 \(R\) is regular.

Theorem 16. The following assertions for a hemiring \(R\) with identity are equivalent:

1. \(R\) is fully idempotent.
(2) Each \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy ideal of \(R\) is idempotent. (an \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy ideal \(A\) of \(R\) is called idempotent if \(A \cdot_1 A = A_k\).)

(3) For each pair of \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy ideals \(A\) and \(B\) of \(R\), \(A \cap_k B = A \cdot_1 B\).

(4) If \(R\) is assumed to be commutative, then the above assertions are equivalent to \(R\) is regular.

Proof. (1) \(\implies\) (2). Let \(A = (\mu_A, \lambda_A)\) be an \((\varepsilon, \in \vee q_k)^*\)-intuitionistic fuzzy ideal of \(R\). For any \(x \in R\), by Theorem 14 \(A \cdot_1 A \subseteq A_k\).

Since each ideal of \(R\) is idempotent, therefore, \((x) = (x)^2\) for each \(x \in R\). Since \(x \in (x)\) it follows that \(x \in (x)^2 = RxRRxR\). Hence \(x = \sum_{i=1}^{q} a_i x a_i^t b_i^t x b_i^t\) and \(q \in N\). Now,

\[
\left(\mu_A \land \frac{1 - k}{2}\right) (x) = \mu_A (x) \land \mu_A (x) \land \frac{1 - k}{2} = \left[\mu_A (x) \land \frac{1 - k}{2}\right] \land \left[\mu_A (x) \land \frac{1 - k}{2}\right] \land \frac{1 - k}{2} \\
\leq \mu_A (a_i x a_i^t) \land \mu_A (b_i x b_i^t) \land \frac{1 - k}{2}, (1 \leq i \leq q).
\]

Therefore,

\[
\left(\mu_A \land \frac{1 - k}{2}\right) (x) \leq \bigvee_{1 \leq i \leq q} \left[\mu_A (a_i x a_i^t) \land \mu_A (b_i x b_i^t)\right] \land \frac{1 - k}{2} \\
\leq \bigvee_{x = \sum_{i=1}^{q} a_i x a_i^t b_i^t x b_i^t} \left[\bigwedge_{1 \leq i \leq q} \left[\mu_A (a_i x a_i^t) \land \mu_A (b_i x b_i^t)\right]\right] \land \frac{1 - k}{2} \\
\leq \bigvee_{x = \sum_{i=1}^{q} a_i x a_i^t b_i^t x b_i^t} \left[\bigwedge_{1 \leq j \leq r} \left[\mu_A (a_j) \land \mu_A (b_j)\right]\right] \land \frac{1 - k}{2} = (\mu_A \cdot_1 \mu_A) (x)
\]

and

\[
\left(\lambda_A \lor \frac{1 - k}{2}\right) (x) = \lambda_A (x) \lor \lambda_A (x) \lor \frac{1 - k}{2} \\
= \left[\lambda_A (x) \lor \frac{1 - k}{2}\right] \lor \left[\lambda_A (x) \lor \frac{1 - k}{2}\right] \lor \frac{1 - k}{2} \\
\geq \lambda_A (a_i x a_i^t) \lor \lambda_A (b_i x b_i^t) \lor \frac{1 - k}{2}, (1 \leq i \leq q).
\]

Therefore,

\[
\left(\lambda_A \lor \frac{1 - k}{2}\right) (x) \geq \bigvee_{1 \leq i \leq q} \left[\lambda_A (a_i x a_i^t) \lor \lambda_A (b_i x b_i^t)\right] \lor \frac{1 - k}{2} \\
\geq \bigwedge_{x = \sum_{i=1}^{q} a_i x a_i^t b_i^t x b_i^t} \left[\bigvee_{1 \leq i \leq q} \left[\lambda_A (a_i x a_i^t) \lor \lambda_A (b_i x b_i^t)\right]\right] \lor \frac{1 - k}{2} \\
\geq \bigwedge_{x = \sum_{i=1}^{q} a_i x a_i^t b_i^t x b_i^t} \left[\bigvee_{1 \leq j \leq r} \left[\lambda_A (a_j) \lor \lambda_A (b_j)\right]\right] \lor \frac{1 - k}{2} = (\lambda_A \cdot_1 \lambda_A) (x).
\]

Thus \(A \cdot_1 A = A_k\).

(2) \(\implies\) (1). Let \(I\) be an ideal of \(R\). Then \(C_I\), the intuitionistic characteristic function of \(I\), is an \((\varepsilon, \in \vee q_k)^*\)-intuitionistic
fuzzy ideal of R. Hence $C_1 \cdot_k C_1 = (C_1 \cdot C_1)_k = (C_1^2)_k = (C_1)_k$. It follows that $I^2 = I$.

(1) \implies (3). Let A and B be $(\in, \in \cup q_k)^*$-intuitionistic fuzzy ideals of R.

By Theorem 14 $A \cdot_k B \subseteq A \cap_k B$. Again since R is fully idempotent, $(x) = (x)^2$, for any $x \in R$. Hence, as argued in the first part of the proof of this theorem, we have

$$\mu_A \wedge_k \mu_B)(x) = (\mu_A)(x) \wedge (\mu_B)(x) \wedge \frac{1-k}{2} \leq \bigvee_{x=\Sigma_{i=1}^r a_i b_i} \left[\bigwedge_{1 \leq i \leq r} [\mu_A(a_i) \wedge \mu_B(b_i)] \right] \wedge \frac{1-k}{2} = (\mu_A \wedge_k \mu_B)(x)$$

and

$$\lambda_A \vee_k \lambda_B)(x) = \lambda_A(x) \vee \lambda_B(x) \vee \frac{1-k}{2} \geq \bigwedge_{x=\Sigma_{i=1}^r a_i b_i} \left[\bigvee_{1 \leq i \leq r} [\lambda_A(a_i) \vee \lambda_B(b_i)] \right] \vee \frac{1-k}{2} = (\lambda_A \wedge_k \lambda_B)(x).$$

Thus $A \cdot_k B = A \cap_k B$.

(3) \implies (1). Let A and B be any pair of $(\in, \in \cup q_k)^*$-intuitionistic fuzzy ideals of R. We have $A \cdot_k B = A \cap_k B$. Take $A = B$. Thus $A \cdot_k A = A \cap_k A = A_k$, where A is any $(\in, \in \cup q_k)^*$-intuitionistic fuzzy ideal of R. Hence, (3) \implies (2). Since we already proved that (1) and (2) are equivalent, hence (3) \implies (1) and so (1) \iff (3). This establishes (1) \iff (2) \iff (3). Finally, if A is commutative then it is easy to verify that (1) \iff (4).

Theorem 17. For a hemiring R with 1, the following conditions are equivalent.

1. R is right weakly regular hemiring.
2. All $(\in, \in \cup q_k)^*$-intuitionistic fuzzy right ideals of R are idempotent.
3. $A \cdot_k B = A \cap_k B$ for $(\in, \in \cup q_k)^*$-intuitionistic fuzzy right ideal A and all $(\in, \in \cup q_k)^*$-intuitionistic fuzzy two-sided ideals B of R.

Proof. (1) \implies (2) Let A be an $(\in, \in \cup q_k)^*$-intuitionistic fuzzy right ideal of R. Then we have $A \cdot_k A \subseteq A_k$.

For the reverse inclusion, let $x \in R$. Since R is right weakly regular, so there exist $a_i, b_i \in R$ such that $x = \sum_{i=1}^q a_i x b_i$. Now we have

$$\left(\mu_A \wedge \frac{1-k}{2} \right)(x) = \mu_A(x) \wedge \mu_A(x) \wedge \frac{1-k}{2}$$

$$= \left[\mu_A(x) \wedge \frac{1-k}{2} \right] \wedge \left[\mu_A(x) \wedge \frac{1-k}{2} \right] \wedge \frac{1-k}{2}$$

$$\leq \mu_A(x a_i) \wedge \mu_A(x b_i) \wedge \frac{1-k}{2},
(1 \leq i \leq q).$$

© 2016 BISKA Bilsim Technology
Therefore,

\[
\left(\mu_A \wedge \frac{1-k}{2} \right)(x) \leq \bigwedge_{1 \leq i \leq q} [\mu_A(xa_i) \wedge \mu_A(xb_i)] \wedge \frac{1-k}{2}
\]
\[
\leq \bigvee_{x = \sum_{j=1}^{m} a_j b_j} \left[\bigwedge_{1 \leq i \leq q} [\mu_A(xa_i) \wedge \mu_A(xb_i)] \right] \wedge \frac{1-k}{2}
\]
\[
\leq \bigvee_{x = \sum_{j=1}^{m} a_j b_j} \left[\bigwedge_{1 \leq i \leq q} [\mu_A(a_j) \wedge \mu_A(b_j)] \right] \wedge \frac{1-k}{2} = (\mu_A \cdot \mu_A)(x).
\]

and

\[
\left(\lambda_A \vee \frac{1-k}{2} \right)(x) = \lambda_A(x) \vee \lambda_A(x) \vee \frac{1-k}{2}
\]
\[
= \left[\lambda_A(x) \vee \frac{1-k}{2} \right] \vee \left[\lambda_A(x) \vee \frac{1-k}{2} \right] \vee \frac{1-k}{2}
\]
\[
\geq \lambda_A(xa_i) \vee \lambda_A(xb_i) \vee \frac{1-k}{2}, \quad (1 \leq i \leq q).
\]

Therefore,

\[
\left(\lambda_A \vee \frac{1-k}{2} \right)(x) \geq \bigvee_{1 \leq i \leq q} [\lambda_A(xa_i) \vee \lambda_A(xb_i)] \vee \frac{1-k}{2}
\]
\[
\geq \bigwedge_{x = \sum_{j=1}^{m} a_j b_j} \left[\bigvee_{1 \leq i \leq q} [\lambda_A(a_j) \vee \lambda_A(b_j)] \right] \vee \frac{1-k}{2}
\]
\[
\geq \bigwedge_{x = \sum_{j=1}^{m} a_j b_j} \left[\bigvee_{1 \leq i \leq q} [\lambda_A(a_j) \vee \lambda_A(b_j)] \right] \vee \frac{1-k}{2} = (\lambda_A \cdot \lambda_A)(x).
\]

Thus \(A \cdot_k A = A_k\)

\((2) \implies (3)\) Let \(A\) and \(B\) be \((\epsilon, \in \cup q_k)^*\)-intuitionistic fuzzy right ideal and \((\epsilon, \in \cup q_k)^*\)-intuitionistic fuzzy two-sided ideal of \(R\) respectively. Then \(A \cap_k B\) is an \((\epsilon, \in \cup q_k)^*\)-intuitionistic fuzzy right ideal of \(R\). By Theorem 14, \(A \cap_k B \subseteq A \cap_k B\). By hypothesis,

\[(A \cap_k B) = (A \cap_k B)_{\cdot_k} (A \cap_k B) \subseteq A \cap_k B\]

Hence \(A \cdot_k B = A \cap_k B\).

\((3) \implies (1)\) Let \(B\) be a right ideal of \(R\) and \(A\) be two sided-ideal of \(R\). Then the intuitionistic characteristic function \(C_A\) and \(C_B\) are \((\epsilon, \in \cup q_k)^*\)-intuitionistic fuzzy two-sided ideal and \((\epsilon, \in \cup q_k)^*\)-intuitionistic fuzzy right ideal of \(R\), respectively. Hence by hypothesis

\[C_B \cdot_k C_A = C_B \cap_k C_A \implies (C_{B\cdot_k A})_{\cdot_k} = (C_{A\cap_k B})_{\cdot_k} \implies B \cdot A = B \cap A\]

Thus by Theorem 2, \(R\) is right weakly regular hemiring.
References