The relation between quasi valuation and valuation ring and filtered ring

M.H. Anjom SHoa1, M.H. Hosseini2

1,2University of Birjand

Abstract: In this paper we show the relation between filtered ring and quasi valuation and valuation ring. We show if R is a filtered ring then we can define a quasi valuation. And if R is some kind of filtered ring then we can define a valuation. Then we prove some properties and relations for R.

Keywords: Filtered ring, Quasi valuation ring, Valuation ring, Strongly filtered ring.

1. Introduction

In algebra valuation ring and filtered ring are two most important structure [5],[6],[7]. We know that filtered ring is also the most important structure since filtered ring is a base for graded ring especially associated graded ring and completion and some similar results, on the Andreadakis–Johnson filtration of the automorphism group of a free group [1], on the depth of the associated graded ring of a filtration [2],[3]. So, as these important structures, the relation between these structure is useful for finding some new structures, and if R is a discrete valuation ring then R has many properties that have many usage for example Decidability of the theory of modules over commutative valuation domains [7], Rees valuations and asymptotic primes of rational powers in Noetherian rings and lattices [6].

In this article we investigate the relation between filtered ring and valuation and quasi valuation ring. We prove that if we have filtered ring then we can find a quasi valuation on it. Continuously we show that if R be a strongly filtered then exist a valuation, Similarly we prove it for PID. At the end we explain some properties for them.

2. Preliminaries

Definition 2.1 A filtered ring R is a ring together with a family $\{R_n\}_{n \geq 0}$ of subgroups of R satisfying in the following conditions:

i. $R_0 = R$;
ii. $R_{n+1} \subseteq R_n$ for all $n \geq 0$;
iii. $R_nR_m \subseteq R_{n+m}$ for all $n, m \geq 0$.

Definition 2.2. Let R be a ring together with a family $\{R_n\}_{n \geq 0}$ of subgroups of R satisfying the following conditions:

i. $R_0 = R$;
ii. $R_{n+1} \subseteq R_n$ for all $n \geq 0$;
iii. $R_nR_m = R_{n+m}$ for all $n, m \geq 0$.

Then we say R has a strong filtration.
Definition 2.3. Let \(R \) be a ring and \(I \) an ideal of \(R \). Then \(R_n = I^n \) is called \(I \)-adic filtration.

Definition 2.4. A map \(f : M \to N \) is called a homomorphism of filtered modules if: (i) \(f \) is \(R \)-module an homomorphism and (ii) \(f(M_n) \subseteq N_n \) for all \(n \geq 0 \).

Definition 2.5. A subring \(R \) of a filed \(K \) is called a valuation ring of \(K \) if for every \(\alpha \in K, \alpha \neq 0 \), either \(\alpha \in R \) or \(\alpha^{-1} \in R \).

Definition 2.6. Let \(\Delta \) be a totally ordered abelian group. A valuation \(v \) on \(R \) with values in \(\Delta \) is a mapping \(v : R^* \to \Delta \) satisfying:

i. \(v(ab) = v(a) + v(b) \);

ii. \(v(a + b) \geq \min\{v(a), v(b)\} \).

Definition 2.7. Let \(\Delta \) be a totally ordered abelian group. A quasi valuation \(v \) on \(R \) with values in \(\Delta \) is a mapping \(v : R^* \to \Delta \) satisfying:

i. \(v(ab) \geq v(a) + v(b) \);

ii. \(v(a + b) \geq \min\{v(a), v(b)\} \).

Remark 2.1. \(R \) is said to be vaulted ring: \(R_v = \{x \in R : v(x) \geq 0\} \) and \(v^{-1}(\infty) = \{x \in R : v(x) = \infty\} \).

Definition 2.8. Let \(K \) be a filed. A discrete valuation on \(K \) is a valuation \(v : K^* \to \mathbb{Z} \) which is surjective.

Theorem 2.1. If \(R \) is a UFD then \(R \) is a PID (see [2]).

Proposition 2.1. Any discrete valuation ring is a Euclidean domain(see[3]).

Remark 2.2. If \(R \) is a ring, we will denote by \(Z(R) \) the set of zero-divisors of \(R \) and by \(T(R) \) the total ring of fractions of \(R \).

Definition 2.9. A ring \(R \) is said to be a Manis valuation ring (or simply a Manis ring) if there exist a valuation \(v \) on its total fractions \(T(R) \), such that \(R = R_v \).

Definition 2.10. A ring \(R \) is said to be a Prüfer ring if each overring of \(R \) is integrally closed in \(T(R) \).

Definition 2.11. A Manis ring \(R_v \) is said to be \(v \)-closed if \(R_v/v^{-1}(\infty) \) is a valuation domain (see Theorem 2 of [8]).

3. Quasi Valuation and Valuation derived from Filtered ring

Let \(R \) be a ring with unit and \(R \) a filtered ring with filtration \(\{R_n\}_{n \geq 0} \).

Lemma 3.1. Let \(R \) be a filtered ring with filtration \(\{R_n\}_{n \geq 0} \). Now we define \(v : R \to \mathbb{Z} \) such that for every \(\alpha \in R \) and \(v(\alpha) = \min\{i \mid \alpha \in R_i \setminus R_{i+1}\} \).

Then we have \(v(\alpha \beta) \geq v(\alpha) + v(\beta) \).

Proof. For any \(\alpha, \beta \in R \) with \(v(\alpha) = i \) and \(v(\beta) = j \), \(\alpha \beta \in R_i R_j \subseteq R_{i+j} \).

Now let \(v(\alpha \beta) = k \) then we have \(\alpha \beta \in R_k \setminus R_{k+1} \).

We show that \(k \geq i + j \).

Let \(k < i + j \) so we have \(k + 1 \leq i + j \) hence \(R_{k+1} \supseteq R_{i+j} \) then \(\alpha \beta \in R_{i+j} \subseteq R_{k+1} \) it is contradiction. So \(k \geq i + j \).

Now we have \(v(\alpha \beta) \geq v(\alpha) + v(\beta) \).
Lemma 3.2. Let R be a filtered ring with filtration $\{R_n\}_{n>0}$. Now we define $v: R \to \mathbb{Z}$ such that for every $\alpha \in R$ and $v(\alpha) = \min\{i \mid \alpha \in R_i \setminus R_{i+1}\}$.

Then $v(\alpha + \beta) \geq \min\{v(\alpha), v(\beta)\}$

Proof. For any $\alpha, \beta \in R$ such that $v(\alpha) = i$ and $v(\beta) = j$ and $v(\alpha + \beta) = k$ so we have $\alpha + \beta \in R_k \setminus R_{k+1}$. Without losing the generality, let $i < j$ so $R_i \subset R_j$ hence $\beta \in R_i$. Now if $k < i$ then $k + 1 \leq i$ and $R_i \subset R_{k+1}$ so $\alpha + \beta \in R_i \subset R_{k+1}$ it is contradiction. Hence $k \geq i$ and so we have $v(\alpha + \beta) \geq \min\{v(\alpha), v(\beta)\}$.

Theorem 3.1. Let R be a filtered ring. Then there exist a quasi valuation on R.

Proof. Let R be a filtered ring with filtration $\{R_n\}_{n>0}$. Now we define $v: R \to \mathbb{Z}$ such that for every $\alpha \in R$ and $v(\alpha) = \min\{i \mid \alpha \in R_i \setminus R_{i+1}\}$.

Then

i) By lemma (3.1) we have $v(\alpha \beta) \geq v(\alpha) + v(\beta)$.

ii) By Lemma(3.2) we have $v(\alpha + \beta) \geq \min\{v(\alpha), v(\beta)\}$. So by Definition 2.7 R is quasi valuation ring.

Proposition 3.1. Let R be a strongly filtered ring. Then there exists a valuation on R.

Proof. By theorem (3.1) we have $v(\alpha \beta) \geq v(\alpha) + v(\beta)$ and $v(\alpha + \beta) \geq \min\{v(\alpha), v(\beta)\}$. Now we show $v(\alpha \beta) = v(\alpha) + v(\beta)$. Let $v(\alpha \beta) > v(\alpha) + v(\beta)$ so $k > i + j$ and it is contradiction. So $v(\alpha \beta) = v(\alpha) + v(\beta)$, then there is a valuation on R.

Corollary 3.1. Let R be a strongly filtered ring, then R is a Euclidean domain.

Proof. By proposition (3.1) R is a discrete valuation and so by proposition (2.1) R is a Euclidean domain.

Proposition 3.2. Let P be a prime ideal of R and $\{P^n\}_{n \geq 0}$ be P-adic filtration. Then there exists a valuation on R.

Proof. By theorem (3.1) we have $v(\alpha \beta) \geq v(\alpha) + v(\beta)$ and $v(\alpha + \beta) \geq \min\{v(\alpha), v(\beta)\}$. Now we show $v(\alpha \beta) = v(\alpha) + v(\beta)$. Let $v(\alpha \beta) > v(\alpha) + v(\beta)$ so $k > i + j$ then $\alpha \beta \in P^k \subset P^{i+j}$ and $k \geq i + j + 1$, since P is a prime ideal hence $\alpha \in P^{i+1}$ or $\beta \in P^{j+1}$ and it is contradiction. So $v(\alpha \beta) = v(\alpha) + v(\beta)$, then there is a valuation on R.

Proposition 3.3. Let R be a PID then there is a valuation on R.

Proof. By theorem (3.1) and proposition (3.2) there is a valuation on R.

Corollary 3.2. If R is an UFD then there exists a valuation on R, then R is a Euclidean domain.

Corollary 3.3. Let R be a ring and P is a prime ideal of R. If R has a P-adic filtration and $R = \bigcup_{i=0}^{\infty} P^i$, then R is a Euclidean domain.

Proof. By proposition (3.2) R is a discrete valuation and so by proposition (2.1) R is a Euclidean domain.

Corollary 3.4. Let R be a PID then R is a Euclidean domain.

Proof. By proposition (3.3) and proposition (2.1) we have R is a Euclidean domain.

Corollary 3.5. Let R be a UFD then R is a Euclidean domain.

Corollary 3.6. Let R be a strongly filtered ring. Then R is Manis ring.

Corollary 3.7. Let P be a prime ideal of R and $\{P^n\}_{n \geq 0}$ be P-adic filtration. Then R is Manis ring.

Proposition 3.4. Let R_v be a Manis ring. If R_v is v-closed, then R_v is Prüfer.
Proof. See proposition 1 of [9]

Proposition 3.5. Let \(R \) be a strongly filtered ring. Then \(R \) is \(v \)-closed.

Proof. By proposition (3.1) and definition (2.9) we have \(R \) is Manis ring and \(R = R_v \).

Now let \(\alpha, \beta \in R \) and
\[
v(\alpha) = i \text{ and } v(\beta) = j
\]

Consequently if
\[
(\alpha + v^{-1}(\infty))(\beta + v^{-1}(\infty)) \in v^{-1}(\infty)
\]

Then \(i + j \geq \infty \) so \(\alpha \in v^{-1}(\infty) \) or \(\beta \in v^{-1}(\infty) \). Hence by definition (2.11) \(R \) is \(v \)-closed.

Corollary 3.8. Let \(R \) be a strongly filtered ring. Then \(R \) is Prüfer.

Proof. By proposition (3.6) \(R \) is \(v \)-closed so by proposition (3.4) \(R \) is Prüfer.

Proposition 3.6. Let \(P \) is a prime ideal of \(R \) and \(\{P^n\}_{n \geq 0} \) be \(P \)-adic filtration. Then \(R \) is \(v \)-closed.

Proof. By proposition (3.2) and definition (2.9) we have \(R \) is Manis ring and \(R = R_v \).

Now let \(\alpha, \beta \in R \) and
\[
v(\alpha) = i \text{ and } v(\beta) = j
\]

Consequently if
\[
(\alpha + v^{-1}(\infty))(\beta + v^{-1}(\infty)) \in v^{-1}(\infty)
\]

Then \(i + j \geq \infty \) so \(\alpha \in v^{-1}(\infty) \) or \(\beta \in v^{-1}(\infty) \). Hence by definition (2.11) \(R \) is \(v \)-closed.

Corollary 3.9. Let \(P \) is a prime ideal of \(R \) and \(\{P^n\}_{n \geq 0} \) be \(P \)-adic filtration. Then \(R \) is Prüfer.

Proof. By proposition (3.6) \(R \) is \(v \)-closed so by proposition (3.4) \(R \) is Prüfer.

References

[3] Algebras, Rings and Modules by Michiel Hazewinkel CWI, Amsterdam, The Netherlands Nadiya Gubareni Technical University of Csztochowa, Poland and V.V. KirichenkoKiev Taras Shevchenko University, Kiev, Ukraine KLUWER.

