On Weingarten tube surfaces with null curve in Minkowski 3-space

Pelin (Pospos) Tekin1 and F. Nejat Ekmekci2

1Aksaray University, Faculty of Sciences and Arts, Department of Mathematics 68100, Aksaray, Turkey.
2Ankara University, Faculty of Sciences, Department of Mathematics 06100, Ankara,, Turkey.

Received: 16 February 2015, Revised: 19 May 2015, Accepted: 31 May 2015
Published online: 30 September 2015

Abstract: In this paper, we study a tube surfaces, consisted spline curve is null. Furthermore, we have investigated Weingarten conditions of this surface using the the mean curvature H, the Gaussian curvature K and the second Gaussian curvature K_{II}, respectively.

Keywords: Tube surfaces, Weingarten conditions, null curve, curvatures.

1 Introduction

A surface S in either \mathbb{R}^3 or E_1^3 is called a Weingarten surface if there exists a non-trivial functional relation $\Omega(K, H) = 0$ with respect to its Gaussian curvature K and its mean curvature H. The existence of a non-trivial functional relation $\Omega(K, H) = 0$ on the surface S parametrized by $\Phi(u, v)$ is equivalent to the vanishing of the corresponding Jacobian determinant, namely

$$\frac{\partial(K, H)}{\partial(u, v)} = 0$$

Several geometers have studied on Weingarten surfaces and obtained many interesting results. For study of these surfaces, in 1994 W. Kühnel and in 1999 G. Stamou, investigated ruled Weingarten surface in a Euclidean 3-space E^3. Also, in 1997 C. Baikoussis and Th. Koufogiorgos studied helicoidal (H, K_{II})-Weingarten surfaces. in 1999 F. Dillen and W. Kühnel, in 2005 F. Dillen and W. Sodsiri gave a classification of ruled Weingarten surface in a Minkowski 3-space E_1^3.

In 2009 J. Suk Ro and D. Won Yoon studied tubular Weingarten and linear Weingaren surface in three dimension Euclidean space E^3.

In this paper we study a tube surface with null curve in a three dimension Minkowski space.

2 Preliminaries

Let $\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}$ be a 3-dimension space, and let $X = (x_1, x_2, x_3)$ and $Y = (y_1, y_2, y_3)$ be two vectors in \mathbb{R}^3. The Lorentz scalar product of X and Y is defined by

$$\langle X, Y \rangle = x_1y_1 + x_2y_2 - x_3y_3$$

* Corresponding author e-mail: pelinpospos@gmail.com
\(E^3 = (\mathbb{R}^3, \langle X, Y \rangle)\) is called Minkowski 3-space. Since the metric is indefinite, \(x \in E^3\) has three causal characters: these are spacelike vector, null (lightlike) vector or timelike vector if \(\langle x, x \rangle > 0\) or \(x = 0\), \(\langle x, x \rangle = 0\) and \(x \neq 0\), \(\langle x, x \rangle < 0\), respectively. For \(x \in E^3\), the norm of the vector \(x\) is given by \(\|x\| = \sqrt{\langle x, x \rangle}\). Therefore, \(x\) is a unit vector if \(\langle x, x \rangle = \pm 1\).

Similarly, an arbitrary curve \(\alpha = \alpha(t) \subset E^3\) can locally be spacelike, timelike or null (lightlike) curve, if all of its velocity vectors \(\dot{\alpha}(t)\) are respectively spacelike, timelike or null (lightlike) i.e., \(\langle \dot{\alpha}(t), \dot{\alpha}(t) \rangle > 0\), \(\langle \dot{\alpha}(t), \dot{\alpha}(t) \rangle = 0\), \(\langle \dot{\alpha}(t), \dot{\alpha}(t) \rangle < 0\). So, \(\alpha(t)\) is a unit speed curve if \(\langle \dot{\alpha}(t), \dot{\alpha}(t) \rangle = \pm 1\), where \(t\) is the arc-length parameter of \(\alpha\). Any two vectors \(X, Y \in E^3\) are called orthogonal if \(\langle X, Y \rangle = 0\) (O’Neill, 1983).

The vector product of two vectors \(X = (x_1, x_2, x_3), Y = (y_1, y_2, y_3)\) belong to \(E^3\), is defined as
\[X \times Y = (x_3y_2 - x_2y_3, x_1y_3 - x_3y_1, x_3y_1 - x_1y_3).\]

We also recall that the pseudosphere of radius 1 and center at the origin is the hyperquadric in \(E^3\) defined by \(S_1^2(1) = \{v \in E^3 : \langle v, v \rangle = 1\}\) (O’Neill, 1983).

Let \(\alpha = \alpha(u) : (a, b) \rightarrow E^3\) be a spacelike unit speed curve with a timelike binormal \(B\), where \(u\) is the arc length parameter of \(\alpha\). Considering that \(\|T\| = 1\), \(B = \frac{T'}{\|T'\|}\) and \(N = \frac{T \wedge T'}{\|T \wedge T'\|}\), we obtain the orthonormal frame field \(\{T(u), N(u), B(u)\}\).

Consider \(M\) is a timelike tube surface parametrized by \(\Psi : j \times \mathbb{R} \rightarrow E^3\). Then, the position vector of \(\Psi\) can be written in the following form
\[
\Psi(u, v) = \alpha(u) + r(N(u)\cosh v + B(u)\sinh v)
\]
(2.2)

where \(\alpha, N, B : j \rightarrow E^3\) and \(r : j \rightarrow \mathbb{R}\). We call \(\alpha\) a base curve and a pair of two vectors \(N, B\) a director frame of the timelike tube surface \(\Psi\). We must have
\[\|\Psi(u, v) - \alpha(u)\|^2 = r^2\]

The last equation expresses analytically the geometric fact that \(\Psi(u, v)\) lies on a Lorentzian sphere \(S_1^2(u)\) of radius \(r\) centered at \(\alpha(u)\) (Abdel-Aziz and Saad, 2011).

Theorem 2.1. Let \(\Psi\) be a timelike tube surface in Minkowski 3-space \(E_1^3\) defined in (2.2) satisfying the Jacobi condition
\[\Omega(K, H) = 0\]
(2.3)

for the Gaussian curvature \(K\) and the mean curvature \(H\) of \(\Psi\). Then, \(\Psi\) is a Weingarten surface (Abdel-Aziz and Saad, 2011).

Theorem 2.2. Let \(\Psi\) be a timelike tube surface with non-degenerate second fundamental form in Minkowski 3-space \(E_1^3\) satisfying the Jacobi equation
\[\Omega(K_{II}, K) = 0\]
(2.4)

for the second Gaussian curvature \(K_{II}\) and the Gaussian curvature \(K\). Then, the surface \(\Psi\) is a Weingarten surface (Abdel-Aziz and Saad, 2011).
3 Tubular Weingarten surface with a null curve

A parametric equation of a \(\Psi \) tube surface with \(C(t) : (a, b) \rightarrow E_3 \) null curve is given by

\[
\Psi(t, \theta) = C(t) + \theta N(t) + \theta^2 B(t)
\]

(3.1)

where \(T, N, B \) vectors are null, spacelike and null vectors respectively. The orthonormal frame is \{\(T(t), N(t), B(t) \)\} and we have the following conditions

\[
\langle T, T \rangle = \langle B, B \rangle = 0 \\
\langle N, N \rangle = \langle T, B \rangle = 1 \\
\langle N, B \rangle = \langle N, T \rangle = 0 \\
\]

\(\kappa(t) \) and \(\tau(t) \) are curvature and torsion respectively and we can give differential formulas for this system as below

\[
T'(t) = N \\
N'(t) = \tau T - B \\
B'(t) = -\tau N
\]

therefore, differentiation of the tube surface \(\Psi \) can be calculated as follows,

\[
\Psi'_t = (1 + \tau \theta) T(t) + (-\tau \theta^2) N(t) + (-\theta) B(t) \\
\Psi'_0 = N(t) + 2\theta B(t) \\
\Psi'_t \times \Psi'_0 = (-2\tau \theta^3 + \theta) T(t) + (2\theta + 2\tau \theta^2) N(t) + (-1 - \tau \theta) B(t) \\
\|\Psi'_t \times \Psi'_0\| = \sqrt{8\tau^2 \theta^4 + 12\tau \theta^3 - 2\tau \theta^2 + 4\theta^2 - 2\theta}
\]

we find the unit normal vector field of the tube surface \(\Psi \) express by

\[
\xi(u) = \frac{\Psi'_t \times \Psi'_0}{\|\Psi'_t \times \Psi'_0\|} = \frac{1}{\lambda} \left(-2\tau \theta^3 + \theta \right) T(t) + \left(2\theta + 2\tau \theta^2 \right) N(t) + (-1 - \tau \theta) B(t)
\]

where \(\lambda = \sqrt{8\tau^2 \theta^4 + 12\tau \theta^3 - 2\tau \theta^2 + 4\theta^2 - 2\theta} \). Furthermore, components of the first fundamental form of \(\Psi \) are

\[
E = \langle \Psi'_t, \Psi'_t \rangle = -2\theta \left(1 + \tau \theta \right) + \tau^2 \theta^4 \\
F = \langle \Psi'_t, \Psi'_0 \rangle = \tau \theta^2 + 2\theta \\
G = \langle \Psi'_0, \Psi'_0 \rangle = 1
\]

Components of the second fundamental form of \(\Psi \) are

\[
P = \langle \Psi'_t, \sigma \rangle = \frac{1}{\lambda} \left[(1 + 2\tau \theta - \tau' \theta^2) (2\theta + 2\tau \theta^2) \right. \\
+ \left. (1 + \tau \theta - \tau^2 \theta^2) (-1 - \theta) + (\tau \theta^2) (-2\tau \theta^3 + \theta) \right]
\]

\[
Q = \langle \Psi'_0, \sigma \rangle = \frac{1}{\lambda} \left[\left(\tau (-1 - \tau \theta) + (-2\tau \theta) (2\theta + 2\tau \theta^2) + (2\tau \theta^3 - \theta) \right) \right]
\]

\[
W = \langle \Psi'_t, \sigma \rangle = \frac{1}{\lambda} \left[-4\tau \theta^3 + 2\theta \right]
\]
The Gaussian curvature K, second Gaussian curvature K_H and the mean curvature H are given by

\[
K = \frac{PW - Q^2}{EG - F^2} = \frac{1}{4} \left[-8 \tau^3 \theta^8 + 8 \tau^2 \tau' \theta^7 + (12 \tau^2 + 8 \tau \tau' + 20 \tau^4) \theta^6 \\
+ (-4 \tau^2 \tau' + 36 \tau^3 - 8 \tau^3 - 4 \tau \tau') \theta^5 \\
+ (-4 \tau \tau' + 4 \tau \tau' + 16 \tau^2 - 14 \tau - 6 \tau^3 - 8 \tau^4) \theta^4 \\
+ (-6 \tau^2 + 2 \tau \tau' - 16 \tau^3 + 4 \tau) \theta^3 + (-6 \tau^2 + 2 \tau + \tau' + 5) \theta^2 \\
+ (2 \tau^3 + 2 \tau) \theta + \tau^2 \right] \left(1 + 2 \tau \theta^2 + (\tau + 2) \theta \right)
\]

and

\[
H = \frac{EW - 2FQ + GP}{2(EG - F^2)} = -\frac{1}{4} \left[4 \tau^3 \theta^6 + (-4 \tau^2 + 8 \tau^3) \theta^4 + (24 \tau^2 - 2 \tau \tau') \theta^3 \\
+ (-2 \tau + 17 \tau + 4 \tau^2 - 3 \tau') \theta^2 + (-7 \tau^2 + 6 \tau + \tau') \theta \\
-4 \tau + 2 + \tau' \right] \left(1 + 2 \tau \theta^2 + (\tau + 2) \theta \right)
\]

Also, we get

\[
K_H = -\frac{1}{4} \left[(64 \tau^4 (\tau')^2 + 64 \tau^4 \tau') \theta^1 + (-32 \tau^4 \tau'' - 64 (\tau')^3 \tau^2 - 160 \tau^3 \tau' \tau') \theta^12 \\
+ (280 \tau^5 - 64 \tau^2 \tau' \tau' - 32 \tau ^3 \tau' - 208 \tau^2 \tau'' + 240 \tau^6 + 56 \tau^2 \tau'' \tau^2) \theta^11 \\
+ (128 \tau^2 (\tau')^2 - 256 \tau^2 \tau'^3 - 48 \tau^3 \tau^3 - 64 (\tau')^3 \tau^2 + 128 \tau^2 \tau^2 - 192 (\tau')^2 \tau^2) \theta^10 \\
+ (96 (\tau')^3 - 320 \tau^4 + 48 \tau^3 \tau'' - 96 (\tau')^3 \tau^2 + 16 \tau^4 \tau'' - 20 \tau^4 \tau' + 80 \tau^5 \tau'' \\
+ 288 \tau^4 \tau' \tau'' + 160 \tau^5 \tau'' + 96 (\tau')^2 \tau'' + 64 (\tau')^2 \tau''^2 + 64 (\tau')^2 \tau^2 - 80 \tau^3 \tau' \\
+ 96 (\tau')^3 \tau + 160 \tau^5 \tau^2 + 744 \tau^4 \tau^2 - 320 (\tau')^2 \tau + 48 \tau^3 \tau') \theta^9 \\
+ (564 \tau^4 + 192 \tau^2 + 208 (\tau')^2 - 376 (\tau')^2 \tau^2 - 544 \tau^3 \tau^2 + 1852 \tau^2 \\
+ 64 (\tau')^3 - 192 \tau^3 + 240 (\tau')^2 - 352 (\tau')^2 \tau^2 - 288 (\tau')^2 (\tau^2 + 12) \tau^3) \theta^8 \\
- 96 (\tau')^3 \tau + 512 \tau^2 \tau'' - 288 \tau^2 \tau'' + 32 \tau^2 \tau'' - 96 (\tau')^2 \tau'' - 48 (\tau')^2 \tau'' \\
- 16 \tau'' + 16 \tau^2 \tau'' + 32 \tau^2 \tau'' + 288 \tau^4 \tau^2 + 224 \tau^2 \tau'' - 16 \tau'' - 16 \tau'' \\
- 200 \tau^3 \tau' + 40 \tau^3 \tau' + 120 \tau^3 \tau' + 48 \tau^2 \tau'' \theta^7 + (216 \tau^4 + 60 \tau^4 + 319 \tau^5 \\
- 1432 \tau^2 \tau' - 288 \tau (\tau')^2 - 600 (\tau')^2 \tau^2 + 488 \tau^4 \tau'' - 296 \tau^6 - 16 (\tau')^3 + 120 \tau^4 \tau' \\
- 1072 \tau^2 \tau' + 12 \tau^2 \tau' + 752 \tau^2 \tau' - 48 (\tau')^3 \tau + 16 (\tau')^3 \tau^2 + 48 (\tau')^2 \tau^2 \\
+ 16 (\tau')^3 \tau^2 + 480 \tau^4 \tau^3 - 32 \tau^3 \tau'' + 208 \tau^3 \tau'' - 240 \tau^4 \tau' \tau'' - 96 (\tau')^2 \tau'' \\
- 64 (\tau')^3 \tau'' - 256 \tau^4 \tau'' - 32 \tau^2 \tau'' - 480 \tau^4 \tau'' - 24 \tau^4 \tau'' + 184 \tau^4 \tau'' + 296 \tau^5 \tau'' \\
+ 504 \tau^4 \tau'' - 72 \tau^4 \tau'' - 8 \tau^2 \tau'' - 8 \tau^2 \tau'' - 48 (\tau')^3 \tau' \theta^6 + (-370 \tau^3 + 1876 \tau^4 \\
- 184 \tau^2 \tau' + 180 \tau^2 + 1360 \tau^3 \tau^2 - 96 (\tau')^3 \tau^2 - 48 (\tau')^3 \tau^2 - 180 (\tau')^2 \tau^2 - 2808 \tau^4 \tau' \\
+ 1272 \theta^3 + 32 \theta^3 - 578 \tau^2 + 96 (\tau')^3 \tau^2 + 320 \tau^3 \tau^2 + 128 (\tau')^3 \tau^2 + 768 (\tau') \tau^2 \\
- 64 (\tau')^3 \tau^2 + 36 \tau^2 - 488 \tau^2 \tau' \tau' + 48 \tau^2 \tau' \tau' + 8 \tau^3 \tau'' + 24 (\tau')^2 \tau'' \\
+ 48 (\tau')^2 \tau'' + 16 \tau^2 \tau' \tau'' + 152 \tau^2 \tau' \tau'' - 32 \tau^2 \tau' \tau'' + 208 \tau^4 \tau'' - 208 \tau^4 \tau'' \\
- 32 \tau^2 \tau'' + 4 \tau^3 \tau'' - 684 \tau^2 \tau'' + 352 \tau^2 \tau'' - 48 \tau^2 \tau'' + 56 \tau^2 \tau'' + 44 \tau'' \\
+ 8 \tau^2 \tau'' - 56 \tau^2 \tau''' + 16 \tau^2 \tau''' \theta^7 + (236 \tau^2 + 528 \tau^3 + 396 \tau^4 + 1970 \tau^2 \\
+ 4188 \tau^3 - 2376 \tau^2 \tau' + 96 \tau^2 + 532 \tau^2 \tau')^2 + 716 \tau^2 \tau' + 472 \tau^2 \tau' - 1468 \tau^2 \\
- 8 (\tau')^2 + 84 \tau^2 - 8 \tau^2 \tau' + 624 \tau^2 \tau' - 224 \tau^2 (\tau')^2 + 324 \tau^2 (\tau')^2 + 24 (\tau')^2 \\
+ 258 \tau^4 + 8 (\tau')^2 - 5 \tau^2 + 4 \tau^2 \tau' - 92 \tau^2 \tau' + 28 \tau^2 \tau' - 74 (\tau')^2 \tau' - 50 \tau' + 48 \tau^2 \tau'' \\
- 6 \tau^2 \tau' + 8 \tau^2 \tau' - 8 \tau^2 \tau'' + 56 \tau^2 \tau'' + 16 \tau^2 \tau'' - 2 \tau^2 \tau'' - 2 \tau^2 \tau'' + 114 \tau^2 \tau'' \\
+ 12 \tau^2 \tau'' - 12 (\tau')^2 + 48 \tau^2 \tau'' - 54 \tau^2 \tau'' - 10 \tau'' \theta^8 + (31 \tau^2 - 46 \tau + 416 \tau \\
- 226 \tau^2 - 234 \tau^2 - 858 \tau^2 + 212 \tau^2 + 158 \tau^3 - 80 \tau^3 - 97 (\tau')^2 + 10 (\tau')^2 \\
- 28 (\tau')^2 \tau^2 - 226 \tau^2 + 22 \tau^2 - 6 \tau^2 + 7 \tau^2 \tau' + 4 (\tau')^2 + 20 \tau^2 (\tau')^2 - 10 \tau''
\]
Proof. Let K be a tube surface in Minkowski 3-space E^3_1 defined in (3.1) satisfying the Jacobi condition
\[
\Omega(K, H) = 0
\]
for the Gaussian curvature K and the mean curvature H of Ψ. Then, Ψ is a Weingarten surface.

Proof. Let Ψ be a tube surface in E^3_1 parametrized by (3.1) and satisfying Jacobi condition. Then, we have,
\[
\frac{\partial K}{\partial u} \frac{\partial H}{\partial v} - \frac{\partial K}{\partial v} \frac{\partial H}{\partial u} = 0 \tag{3.2}
\]
differentiating K and H with respect to t,
\[
\frac{\partial K}{\partial t} = \frac{1}{2} [\frac{\partial}{\partial t} (16t^3\tau') \theta^3 + (8t^4\tau'' + 8t^2(\tau')^2 - 24t^2\tau') \theta^3] + (16t^3\tau' + 60t^2\tau' + 16t(\tau')^2 + 12t^2\tau') \theta^3
\]
\[
+ (152t^2\tau' - 8t^3\tau' + 4t(\tau')^2 + 8(\tau')^2 - 4t^3\tau' + 4t^2\tau' + 8t\tau'' + 24t\tau') \theta^6
\]
\[
+ (124t^2\tau' + 16t^3\tau' - 8t^2\tau' - 8t\tau'' - 24t\tau' - 12t^2\tau' - 8t(\tau')^2) \theta^3
\]
\[
+ (32t\tau' + 4t\tau'' - 14\tau' - 4t\tau'' - 4t(\tau')^2 + 2t^2\tau'') \theta^4
\]
\[
+ (-12t^3\tau' + 3t\tau' + 4t\tau'' - t - 5t^2\tau' + 8t\tau'' - 12t\tau' + 2t\tau') \theta^2
\]
\[
(2t' + 7t^2\tau') \theta + 2t\tau'/((t\theta + 1)(1 + 2t\theta^2 + (t + 2)\theta)\theta).
\]
Gaussian curvature

For the proof, we can use the similar way with the theorem 3.1. When we take the partial derivative of the
Proof.

Theorem 3.2

satisfying the Jacobi condition

Then,

\[\Psi \]

From the above equations (3.2) is satisfied, and then, the surface \(\Psi \) is a Weingarten surface.

Theorem 3.2. Let \(\Psi \) be a tube surface with non-degenerate second fundamental form in Minkowski 3-space \(E_1^3 \) satisfying the Jacobi condition

\[\Omega(K_{II}, K) = 0 \]

(3.3)

for the second Gaussian curvature \(K_{II} \) and the Gaussian curvature \(K \). Then, the surface \(\Psi \) is a Weingarten surface.

Proof. For the proof, we can use the similar way with the theorem 3.1. When we take the partial derivative of the Gaussian curvature \(K \) and the second Gaussian curvature \(K_{II} \), we can find the following equation

\[\frac{\partial K}{\partial t} \frac{\partial K_{II}}{\partial \theta} - \frac{\partial K}{\partial \theta} \frac{\partial K_{II}}{\partial t} = 0. \]

(3.4)

Then, \(\Psi \) is a Weingarten tube surface.

References

[6] Lopez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, Mini-Course Taught at the Instituto de Matematica e Estatistica (IME-USP), University of Sao Paulo, Brasil, 2008.