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Abstract: Numerous studies have presented evidence that certain financial assets may exhibit stochastic volatility or jumps, which 

cannot be captured within the Black-Scholes environment. This work investigates the valuation of power options when the variance 

follows the Heston model of stochastic volatility. A closed form representation of the characteristic function of the process is derived 

from the partial differential equation (PDE) of the replicating portfolio. The characteristic function is essential for the computation of 

the European power option prices via the Fast Fourier Transform (FFT) technique. Numerical results are presented. 
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1. Introduction 

Since Black & Scholes (1973) introduced the Black-Scholes model for option pricing, many scholars have tried to 

relax the assumptions made used in accordance to the model. This is because many studies have shown that in reality, 

certain financial assets may exhibit stochastic volatility or jumps. The evidence of this in option pricing has become an 

important issue because it gives possibility to model option pricing more accurately. One of the most accepted 

stochastic volatility models is due to Heston (1993). Such a model relaxes the constant volatility assumption made in 

the Black-Scholes approach. In this work, the asset price is assumed to follow the log-normal process governed by a 

single Brownian motion, with the volatility process driven by a second Brownian motion process. Both the asset price 

process and the volatility process are correlated by a constant correlation coefficient. With the assumption that the 

market is complete, a replicating portfolio technique is used in obtaining a partial differential equation (PDE). 

Consequently, using the PDE, the characteristic function of the logarithm of the underlying asset price is derived, which 

enables the application of the Fast Fourier Transform (FFT) for the computation of the power option prices. The FFT 

method has been used increasingly since it was first introduced in option pricing by Carr & Madan (1999). It is flexible 

approach in that it can encapsulate properties such as stochastic volatility, and still maintain its computational efficiency 

(see Pillay & O'Hara, 2011). Nevertheless, comparison between the FFT approach and Monte Carlo simulation (see 

Boyle, 1977) is demonstrated numerically to highlight the efficiency of the FFT technique. 

2. The Model 

Let         be a probability space on which two Brownian motions,   
  and   

  for    , are given.        
  is the filtration generated by the Brownian motions and suppose   is a risk-neutral probability. Given the underlying 

asset price    risk-free rate   and a constant factor  , Itô's Lemma implies that   
 

 is also a geometric Brownian motion 

following 

   
 

     
 

 
       

 
       

 
      (2.1) 
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We introduce an artificial asset     
 

. Then Equation (2.1) becomes 

       
 
 
     

 
 
                  

                                                     
 (2.2) 

 

where           
 

 
    . From Equation (2.2), we observe the volatility is affected by a factor    Hence, within 

the Heston environment, we propose the following model that governs the asset price process: 

       
 
 
     

 
 
                 

                                                  
 (2.3) 

 

where the variance,      . Thus we can represent Equation (2.3) as follows: 

       
 

 
    

 

 
                  (2.4) 

  

                          (2.5) 

  

                  (2.6) 
 

where   follows a square-root mean reverting process,   is the speed of the mean reversion,   is the average level of the 

volatility, and   is the correlation coefficient between the two Brownian motions. 

3. The Heston PDE for Power Options 

Following Gatheral (2006), for a risk-neutral portfolio, we need to hedge the artificial asset and the random changes 

in the volatility. Assuming the market is complete (Esser, 2003), we consider a portfolio   of an option with value f, 

   units of Z and –  units of another option with value  , to make the net amount equal to zero, which relies on the 

volatility, 

             (3.1) 
 

Employing the two-dimensional extension of Itô's Lemma yields 

    
  

  
 

  

  
    

 

 
    

 

 
     

  

  
         

 

 

   

   
       

 

 

   

   
  

    

 
   

    
    

       
  

  
          

  

  
           

(3.2) 

 

This is the same for    that is: 

    
  

  
 

  

  
    

 

 
    

 

 
     

  

  
         

 

 

   

   
       

 

 

   

   
  

    

 
   

    
    

       
  

  
          

  

  
           

(3.3) 

 

The change in the portfolio   in time    is given by              . It follows that by replacing the actual 

parameters yields,  
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(3.4) 
 

Knowing that    , we have        . In order to cancel out the randomness terms       and      , we use 

the following: 

  

  
    

  

  
 (3.5) 

  
   

  
   

  

  
  (3.6) 

 

For that reason, 

    
  

  
     

  

  
     

 

 
    

 

 
      

  

  
         

 

 

   

   
     

 
 

 

   

   
  

     
   

    
    

         
 

 
    

 

 
       

    
  

  
 

  

  
    

 

 
    

 

 
     

  

  
         

 

 

   

   
     

 
 

 

   

   
  

     
   

    
    

      

      
  

  
             

  

  
          

   
  

  
       

  

  
           

  
  

  
 

 

 

   

   
      

 

 

   

   
  

     
   

    
    

      

   
  

  
 

 

 

   

   
      

 

 

   

   
  

     
   

    
    

        

(3.7) 

 

In order to avoid arbitrage opportunities, the portfolio should earn a risk-free rate  . Mathematically, this means 

                      

Since     , then     . On that account, using the respective Equation (3.5), Equation (3.6) and Equation (3.7) 

renders 
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(3.8) 

 

Following Heston (1993), both sides of Equation (3.8) are equal to some function, say   such that        
                , where             is the volatility risk premium. Thence, 

  

  
 

 

 

   

   
      

 

 

   

   
  

     
   

    
    

         
  

  
 

  

  
                  (3.9) 

 

Suppose we have the risk-neutral measures be       , and    
  

   
. This cancels out the volatility risk premium. 

Consequently, the stochastic process followed by the variance is now 

                            (3.10) 
 

It follows that Equation (3.9) becomes 

  

  
 

 

 

   

   
      

 

 

   

   
  

     
   

    
    

    
  

  
             

  

  
       (3.11) 

 

which has a similar form to the Heston PDE. Assume that      . Solving for its partial derivatives, and then 

substituting the results into Equation (3.9) returns 
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4. Deriving the Characteristic Function 

So as to solve for the characteristic function, we conjecture that the solution for the PDE (3.12) has the following 

form: 

    
        

 
 
                    

            
 
 
               

 (4.1) 

 

It follows that by replacing the form (4.1) into the PDE (3.12) yields 
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This can be represented as            
 

 
                          , where one possible solution is       

       . Alternatively, this implies that    and    must satisfy the PDEs 
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for      , where              
 

 
    

 

 
            

 

 
     

 

 
                   and       . 

We now investigate the characteristic function within the Heston framework for power options. We suggest that the 

characteristic function has the following form: 

                      
         (4.4) 

 

Accordingly, we substitute the characteristic function (4.4) into PDE (4.3), 

            
 

 
      

 

 
  

      
        

               
       

         

 
 

 
        

   
 

 
     

       
          

      
        

     

     
             

   

  
      

   

  
  

     
 

 
  

   
                    

 

 
   

 

 
  

     
     

      
    

   

       
    

   

  
            

 

 
                    

   

  
  

(4.5) 

 

subject to the following boundary conditions:        , and        . This reduces to solving two ordinary 

differential equations (ODE), 
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Equation (4.6) is nonlinear and is of the form of a Riccati equation. Any equation of the Riccati type can always be 

transformed to the following second order linear homogeneous ordinary differential equation (Bastami et al., 2010) 

using a substitution      
  

  
: 

       
  

 
           (4.8) 

 

where   
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   . Making further 

substitutions,           
  

 
  and     , the ODE (4.8) is now, 

 
   
     

  
  

      

              
 

(4.9) 

 

Besides, the characteristic equation of the ODE (4.9) is            which is a quadratic equation with roots, 

     
     

                    
             

 
   

    
   

                          

 
  

(4.10) 

 

Suppose that    and     are distinct real numbers, then the general solution is of the form,      
       

   , where 

   
  

  
      

         
   . Replacing this back into     

  

  
 yields, 
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Recall the terminal condition         . It follows that 

 
  
  

 
  

  

  

Carrying on with the calculation, 

   
                

    
  

 
    

      

            
    
  

 
    

      
  

 

 
 
       

           

  
  
  

             
   

  
 

 
           

  
  
  

         
   (4.12) 

 

We now define the following, 

              
             

    
    

   
                            

  
  
  

 
     

               

     
               

  

Thus, continuing to solve (4.12), 

   
              

      

  
   

 
      

       
   (4.13) 

 

Given the solution in (4.13), we can now solve the ODE (4.7) by first integrating both sides of the ODE. 

             
 

 
                

 

  
   

                
             

       

   
    (4.14) 

 

We have now obtained solutions for the ODE as given by (4.6) and (4.7), which are shown in (4.13) and (4.14), 

respectively. Choosing      , and replacing the solutions into Equation (4.4) results to the following, 

             

           
    

  
   

                       
       

   
    

     
 

  
   

                
      

       
     

(4.15) 

 

where 

                   
          

  
              

              
  

Using the result in (4.15), we can now apply the Fast Fourier Transform technique to price the power option when the 

volatility is stochastic. 

 

5. Power Option Pricing using the Fast Fourier Transform 

The essence behind the FFT approach is the characteristic function of the stochastic process. Provided that this is 

obtained analytically, we can use this approach to price the options. The characteristic function is defined as follows: 
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Definition 5.1: (Characteristic Function). For a one-dimensional stochastic process         , the characteristic 

function is the Fourier transform of the probability density function         given as follows: 

         
                      

 

  

 (5.1) 
 

Let   be the strike price and   the maturity of a power option with terminal asset price    
 

, which is governed by the 

dynamics (2.1). The price of a power call option is computed as the discounted risk-neutral conditional expectation of 

the terminal payoff     
 
             

 
     : 

                  
 
   

 
   

    (5.2) 
 

where   is a constant interest rate. We define         and   
   

 
. Moreover, we express the option pricing function 

(5.2) as a function of the log strike   instead of the terminal log asset price   , 

       
                        

 

 

 (5.3) 
 

where        is the density function of the process   . Following Carr & Madan (1999), for     , we define a 

modified power call price, 

                   (5.4) 
 

where the Fourier Transform (FT) of          is given by: 

                    
 

  

  (5.5) 
 

Applying the inverse FT to (5.5), then substituting (5.4) with (5.3) into (5.5), and also by the definition of the 

characteristic function (5.1), we obtain the price of a power call option as follows: 

       
    

  
          

            

              
  

 

  

   (5.6) 
 

where 

          
            

              
  (5.7) 

 

Thus for an efficient implementation of the FFT, a closed-form representation of the characteristic function       is 

needed, which we have shown earlier, has the form of (4.15). Given the pricing function (5.6), we can price the power 

call option as follows: 

        
     

 
    

  
 

                      
 

 
              

 

   

  (5.8) 

 

where                          
  

 
    

  

 
, and    is the Kronecker delta function which is unity for 

      and zero otherwise. The choice of    and   is essential because it governs this approach. A small   gives us a 

range of prices across a wide range of strike prices; while a large value of   can give inaccurate prices. Moreover, the 

FFT is an algorithm that evaluate the summations of the following form efficiently: 

         
  
 

                          

 

   

 (5.9) 

 

with                  
 

 
              . Hence, the presentation of the power call price in the form (5.8) is a 

special case of (5.9) which enables the use of the FFT.  
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6. Power Option Pricing using Monte Carlo Simulation 

Consider the problem of pricing a power call option of the form (5.2), as exhibited in Section 5. For application of the 

Monte Carlo simulation, we apply the fully truncated Euler scheme by Lord et al. (2010). 

Let         be a probability space on which is defined two standard Wiener processes   
  with respect to the 

underlying, and   
 , with respect to the volatility. Let           be the filtration generated by these Brownian 

motion. Suppose   is a risk-neutral probability under which the asset price process          is governed by 

dynamics given in (2.4) and (2.5). To facilitate the discretization, we consider the log-asset price         
 
   Applying 

Itô's Lemma to this function yields the following log-asset price Dynamics 

        
 

 
           

   (6.1) 
 

Suppose we approximate the paths of the log asset price process (6.1) and the stochastic volatility process (2.5), on a 

discrete time grid via Euler discretization. Let                  be a partition of the time interval       into 

  equal segments of length     that is    
  

 
 for each            .  The fully truncated Euler discretization of the 

log asset price process is 

              
 

 
   

             
        (6.2) 

         
             

              
        (6.3) 

 

where    
                       and               , where         . Using the Milstein scheme, the 

discretization of the volatility process (6.3) is: 

         
             

              
       

 

 
        

      (6.4) 
 

We simulate the diffusion part of the log asset price by drawing a random sample from a normal distribution with 

mean 0 and standard deviation 1 for both    and    for each          , and obtain a log asset price for the maturity 

date of the option,        . By repeating this procedure, many paths can be generated. The price of a power call 

option (5.2) can be estimated by Monte Carlo simulation using 

          
        

 
          

 

 

   

       (6.5) 

 

where   is the number of sample paths used in simulation and     denotes the simulated value of    over each sample 

path using   time steps. This Monte Carlo estimator converges to the correct price          as the number of time 

steps   and the number of samples   become large. 

7. Numerical Results 

In this section, we present a numerical comparison between the Fast Fourier Transform (FFT) approach and the 

Monte Carlo simulation technique. We apply the two approaches for the pricing of a power call option with stochastic 

volatility with a view to comparing the performance of the two techniques.
1
 

We employed the FFT scheme with               and   between [0.28, 0.32] to minimize the relative error 

between the results obtained from both techniques. Linear interpolation is applied to obtain a single option price 

corresponding to the respective strike price. For the Monte Carlo simulation, we employed the Milstein scheme because 

this produce better result than the Euler discretization. We take N = 500, 000 sample paths, and partition the time 

interval       into         equal segments. Since we are only considering the comparison of the accuracy and 

efficiency of the models, we do not calibrate the model parameters, and rather we use the following hypothetical 

parameters of                                                     . 

                                                           
1 The codes were written in MATLAB, and the computations were conducted on an Intel Core 2 Duo processor P8400 @2.26 GHz machine running 
under Windows Vista Service Pack 2 with 2 GB RAM. 
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Table 1 compares the pricing accuracy between the two techniques across a range of strike prices, as well as the 

relative error (in percentage) between the two prices. Using the Monte Carlo simulation as the benchmark, it 

demonstrates the efficiency of the FFT technique over the Monte Carlo simulation technique. 

            

Strike, K FFT Computation Time (seconds) Monte Carlo Computation Time (seconds) % Difference 

0.5 3.9480 0.003092 3.9346 26.196885 0.340568292 

1.0 3.4626 0.003568 3.4742 27.867434 0.333889816 

1.5 3.0064 0.003087 3.0130 28.040573 0.219050780 

2.0 2.5508 0.003033 2.5526 24.529332 0.070516336 

2.5 2.1001 0.003479 2.0904 30.537946 0.464026024 

3.0 1.6456 0.003223 1.6427 24.736727 0.176538625 

3.5 1.2163 0.003309 1.2196 24.399634 0.270580518 

4.0 0.8450 0.003407 0.8476 24.733935 0.306748466 
 

Table1: Comparison of prices for the power call option with stochastic volatility computed by FFT and Monte Carlo 

simulation 

8. Conclusion 

In this paper, we provide a valuation of power options under the Heston dynamics using the fast Fourier transform 

(FFT) technique. We present an analytical form of the characteristic function which is derived from the partial 

differential equation (PDE) of the replicating portfolio. The numerical results show that the FFT technique is more 

efficient than the Monte Carlo simulation. 
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Abstract: The images are very largely used in our daily life; the security of their transfer became necessary. In this work a novel 

image encryption scheme using stream cipher algorithm based on nonlinear combination generator is developed. The main 

contribution of this work is to enhance the security of encrypted image. The proposed scheme is based on the use the several linear 

feedback shifts registers whose feedback polynomials are primitive and of degrees are all pairwise coprimes combined by resilient 

function whose resiliency order, algebraic degree and nonlinearity attain Siegenthaler’s and Sarkar, al.’s bounds. This proposed 

scheme is simple and highly efficient. In order to evaluate performance, the proposed algorithm was measured through a series of 

tests. These tests included visual test and histogram analysis, key space analysis, correlation coefficient analysis, image entropy, key 

sensitivity analysis, noise analysis, Berlekamp-Massey attack, correlation attack and algebraic attack. Experimental results 

demonstrate the proposed system is highly key sensitive, highly resistance to the noises and shows a good resistance against brute-

force, statistical attacks, Berlekamp-Massey attack, correlation attack, algebraic attack and a robust system which makes it a potential 

candidate for encryption of image.   

© 2012 Published by NTMSCI Selection and/or peer review under responsibility of  NTMSCI Publication Society. 

 Keywords: Cryptosystem, Decryption, Image Correlation, Image Encryption, Key Stream, Nonlinear combination Generator, Resilient Function.  
 

1.  Introduction  

The numerical networks knew a strong growth in the last few years. The majority of these networks are inter-

connected and connected to Internet which is considered today as a motorway where circulates freely a quantity of 

information increasingly important. The transmitted information is not exclusively in the form of textual but also audio 

data, digital images and other multi-media. The circulation of the images on these networks is very largely used in our 

daily life, and more their use is increasing, more their safety is vital. For example, the images to be transmitted can be 

collected and copied during their course without losses of quality. The intercepted images can be thereafter the subject 

of an exchange of information and illegal numerical storage. It is thus necessary to make incomprehensible of the 

transferred files and to protect them from any undesirable interception. The modern cipher of the data is very often the 

only effective means to answer these requirements.  

In this paper, we are interested in the security of the data images, which are regarded as particular data because of 

their sizes and their information which is two-dimensional and redundant natures. These characteristics of the data make 

the classical cryptographic algorithms such as DES, RSA, and ... are inefficient for image encryption due to image 

inherent features, especially high volume image data. Many researchers proposed different image encryption schemes to 

overcome image encryption problems [1, 2, 3, 4].  In this approach we have tried to find a simple, fast and secure 

algorithm for image encryption using a stream cipher algorithm based on the combination of several linear feedback 

shift registers (LFSRs) by a Boolean function satisfying all the criteria cryptographic necessary to carry out a maximum 

safety. Finally, this algorithm is robust and very sensitive to small changes in key so even with the knowledge of the 

key approximate values; there is no possibility for the attacker to break the cipher. 

http://www.ntmsci.com/
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2. Stream Cipher Based on Nonlinear combination Generator 

Most practical stream ciphers are based on linear feedback shift registers (LFSRs). An LFSR of length L  is a L  

stage register with a linear feedback function. During its operation contents of each storage unit are shifted to the next 

unit and the output of the feedback function is fed to the last storage unit. If the feedback function of the LFSR is 

primitive and its initial state is a non-zero state, then the output sequence produced by the LFSR has the maximum 

period of 2 1L  .  

A system of stream cipher based on nonlinear combination generator generally breaks up into three parts: An engine, 

primarily made up of linear feedback shift register with maximum period, the goal of this engine is to provide one or 

more continuations, having good statistical properties already; generally, registers (LFSRs) are used whose feedback 

polynomials are primitives and of degrees are all pairwise coprimes.  

The outputs of the (LFSRs), having more or less strong properties of linearity, it is essential to make disappear to the 

maximum these properties of linearity. The second part is thus a module whose role is to break this linearity by 

combining the outputs to (LFSRs) by a nonlinear Boolean function having the best possible cryptographic properties. 

These a nonlinear Boolean function must be selected very carefully to offer a resistance to the attacks.  

A module of combination the key stream with the plaintext, most common is reduced to a modulo2 addition (XOR). 

The key stream 
0( )t tz 

 is generated as a nonlinear function f of the outputs of the component LFSRs. Such key stream 

generator is called nonlinear combination generator, and f  is called the combining function. The outputs of f  is 

bitwise XORed with the plaintext
0( )t tm 
 to produce the cipher text

0( )t tc 
, this construction is illustrated in figure 1.  

The combining function must have high algebraic degree, high nonlinearity and good correlation immunity to 

prevent correlation and linear attacks [5, 6, 7, 8]. It must also have high algebraic immunity to provide resistance 

against the algebraic attacks. [9, 10, 11, 12, 13, 14].  

 

   

 

 

 

 

 

 

 

 

 

 
Fig. 1. System of Stream Cipher Based on Nonlinear Combination Generator; 

 

3. Proposed Approach 

We used stream ciphers algorithm based on nonlinear combination generator for constructing our new approach. The 

layout of our method is presented in Figure 2. Let 13 LFSRs denoted 1 2 13, , ...,R R R  whose respectively length

1 2 13, , ...,L L L  are pairwise distinct greater than 2, are combined by a nonlinear function f as in figure 1 which is 

expressed in algebraic normal form. Denote the output of iR  at time t  by ( )is t . Then the key stream ( )z t is given as 

 

 1 2 13( ) ( ), ( ), ..., ( )z t f s t s t s t                                                                                                    (1) 

The linear complexity of the key stream is  1 2 13( ) , , ...,s f L L L  is evaluated over the integers rather than over
2 . 

Let Y  an original image (plain-image) of n m  pixels.  First, sender transforms the plain image Y into binary array 

(plain image digit). Let ( ), ( )y t c t  and ( )z t   be the plain image digit, cipher image digit and key stream digit at time t . 

Then the encryption process can be described by the equation 

( ) ( ) ( )c t y t z t                                                                                                                       (2) 

mt 

ct 

f 
        zt 

xn 
LFSRn 

x2 
LFSR2 

x1 
LFSR1 
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where  is the function XOR (Or exclusive). 

The cipher image digit ( )c t is sent to the receiver over an unsecure channel and is decrypted a bitwise XOR operation 

the key stream digit and the plaint image digit can be described as  

( ) ( ) ( )y t c t z t                                                                                                                           (3) 

The cipher image digit at the receiver is decrypted by producing the same key stream. The receiver transforms the 

decrypt image digit in to plain image y of n m  pixels.  

Their main advantages are their extreme speeds and their capacity to change every symbol of the plaintext. Besides, 

they are thus used in a privileged way in the case of communications likely to be strongly disturbed because they have 

the advantage of not propagating the errors [15].  

3.1. Key K  

The secret key K of the cryptosystem is then either made up of the initialization of only one register but of 13 

registers is a chain of bits length 53 59 61 67 71 73 79 83 89 91 95 101 102 1024              bits. This chain of bits must 

be sufficiently large in order to guarantee a maximum security and also to avoid, at the present time and with reasonable 

means, any attempt at against brute-force attack. 

3.2. LFSRs 

We considered thirteen maximum-length LFSRs whose lengths
iL ,  1,...,13i are all pairwise coprimes which 

feedback polynomials are respectively
1 13, ...,p p . We chose the following feedback polynomials: 

 
53 6 2

1 ( ) 1p x x x x x     , 59 22 21

2 ( ) 1p x x x x x     ,  

61 5 2

3 ( ) 1p x x x x x     , 67 5 2

4 ( ) 1p x x x x x     , 

71 5 3

5 ( ) 1p x x x x x     , 73 4 3 2

6 ( ) 1p x x x x x     , 

79 4 3 2

7 ( ) 1p x x x x x     , 83 7 4 2

8 ( ) 1p x x x x x      , 

89 6 5 3

9 ( ) 1p x x x x x     , 91 7 6 5 3 2

10 ( ) 1p x x x x x x x       , 

95 6 5 4 2

11 ( ) 1p x x x x x x x       , 101 7 6

12 ( ) 1p x x x x x      

102 6 5 3

13 ( ) 1p x x x x x     . 
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Fig. 2.  Block Diagram of the Proposed Approach; 

 

3.3. Nonlinear Combining Function 

The combining function used for generating the key stream is a Boolean function f  from 13

2F  into
2F . At each time

t , thirteen sequences bits 1 2 13( ), ( ),..., ( )s t s t s t are inputs to the Boolean function f  to calculate the key stream ( )z t  as 

show equation (1).  

The combining function f used in our approach is presented in [16].  This function is 5-resilient function, of 

algebraic degree 7 and nonlinearity 3969Nf   with algebraic immunity 6, satisfies all the cryptographic criteria 

necessary carrying out the best possible compromises. 

3.4. Algorithm1: Encryption and Decryption Image Algorithm 

Encryption  

1. Load the plain-imageY  (i.e. Original image); 

2. Transform the plain-image into column digit (i.e. plain image digit) and to store them in y ; 

3. N  the length of y ; 

4.  for 1t   to N  to make ; 

5. To generate the key-stream  1 2( ) ( ), ( ), ..., ( )nz t f s t s t s t as show the algorithm 2 ;  

6.   End to make ; 

7. for 1t  to N  to make 

8. Calculate the cipher image digit using relation  ( ) ( ), ( )c t XOR y t z t  ; 

9.   End to make ; 

10.  Sent the cipher image digit. 

 

Decryption 

1. Load the cipher-image digit  c   

2. N   the length of c ; 

3. for 1i   to N  to make ; 

4. To generate the key stream  1 2 13( ) ( ), ( ), ..., ( )z t f s t s t s t  as show the algorithm 2;  

Encryption  

Image 

Original  

Key stream Z(t)  

 

Cipher 

image digit 

 

Coding 

 

Decoding 

Decryption   

Cipher 

image digit 
Image 

Original 

 

Key stream Z(t) 
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5. End to make ; 

6.  for 1t   to N  to make; 

7.  Calculate the decipher image digit using relation  ( ) ( ), ( )y t xor c t z t  ; 

8.  End to make ; 

9. To put the decipher image digit y  in the form of an image of n m pixels and to store it in Y  ; 

3.5. Algorithm2: Key stream 

1. To read N , length of y ; 

2. To introduce the secret key, the value of initialization of 13 registers ; 

3. for 1t   to N  to make; 

4. To generate the output of
1 2 13( ), ( ),..., ( )s t s t s t  ; 

5. End to make ; 

6. for 1t   to N  to make;  

7. To generate the key stream   1 2 13( ) ( ), ( ), ..., ( )z t f s t s t s t ; 

8. End to make. 

 

4. Test Results 

In this section, the performance of the proposed image encryption scheme is analyzed in detail. We discuss the 

security analysis of the proposed image encryption scheme including some important ones like statistical sensitivity, 

key sensitivity analysis, key space analysis etc. to prove the proposed cryptosystem is secure against the most common 

attacks. 

4.1. Visual Testing 

A number of images are encrypted and decrypted by the proposed method, and visual test is performed. Two 

examples are shown in Fig. 3 (a) and Fig. 3 (d), with respectively 128 x 128 and 256x256 pixels. By comparing the 

original and the encrypted images in Fig. 3, there is no visual information observed in the encrypted image. 

 

 

 

 

 

 

 

 

 

Fig. 3.  Frame (a) and (d) Gray image show the original image of Lena and IRM, frame (b) and (e) respectively show the encrypted 

image, frame (c) and (f) respectively show the decrypted image. 
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Fig. 4, Frame (a) show the difference between original image figure 3(a) and decrypted image figure 3(c). Frame (b) show the 

difference between original image figure 3(d) and decrypted image figure 3(f). 

 

Difference between original images and their decrypted images shown in figure 3, are illustrated in figure 4(a), 4(b), 

are prove that, there is no loss of information, the difference is always 0. 

5. Security Analysis 

5.1. Key Space Analysis 

The key space should be large enough to make the exhaustive search attack infeasible. Since the algorithm has a chain 

1024bits is the initialization of 13 registers, the intruder needs 10242  tests by exhaustive search. An image cipher with 

such as a long key space is sufficient for reliable practical use. 

5.2. Histogram Analysis  

In the experiments, the original images and its corresponding encrypted images are shown in figure 3, and their 

histograms are shown in figure 5. It is clear that the histogram of the encrypted image is nearly uniformly distributed, 

and significantly different from the histogram of the original image. So, the encrypted image does not provide any clue 

to employ any statistical attack on the proposed encryption of an image procedure, which makes statistical attacks 

difficult.  

These properties tell that the proposed image encryption has high security against statistical attacks. In the original 

image (i.e. plain image), some gray-scale values in the range [0, 255] are still not existed, but every gray-scale values in 

the range [0, 255] are existed and uniformly distributed in the encrypted image. Some gray-scale values are still not 

existed in the encrypted image although the existed gray-scale values are uniformly distributed. Different images have 

been tested by the proposed image encryption procedure. 

 

 

 

Fig. 5, Histogram analysis: Frame (a) and (c) respectively, show the histogram of the plain images shown in figure 3(a) and 3(d). 

Frame (b) and (d) respectively; show the histogram of the encrypted images shown in figure 3(b) and 3(f). 
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5.3. Correlation Coefficient Analysis  

Correlation is a measure of the relationship between two variables if the two variables are the original image and their 

encryptions then they are in prefect in correlation. In this case the encrypted image is the same as the original image and 

the encryption process failed in hiding the details of the original image. If the correlation coefficient equals zero, then 

the original image and its encryption are totally different i.e. the encryption image has no features and highly 

independent on the original image. If the correlation coefficient equal -1, this means encrypted image is a negative of 

the original image. 

Table 1 gives the corresponding correlation coefficient between plain-images (i.e. original image) shown in figure 

3(a), 3(d) and 6(a) and their encrypted images. It is observed that the correlation coefficient is a small correlation 

between plain-images and encrypted image. 

 

Table 1. Correlation Coefficients analysis 

Cases Correlation coefficient 

Image 3.a -0.0086 

Image 3.d -0.0068 

Image 6.a -0,0055 

 

 

5.4. Image Entropy 

A secure cryptosystem should fulfill a condition on the information entropy that is the ciphered image should not 

provide any information about the plain image. It is well known that the entropy ( )E m  of a message source m  can be 

calculated as: 
1

2

0

1
( ) ( ) log

( )

G

i

i i

E m p m
p m





                                                                                   (4)  

 

where G  Gray value of an input image (0-255), ( )ip m  represents the probability of symbol
im  and the entropy is 

expressed in bits. Let us suppose that the source emits 82 symbols with equal probability, i.e.,  81 2 2
, , ...,m m m m

Truly random source entropy is equal to 8. Actually, given that a practical information source seldom generates random 

messages, in general its entropy value is smaller than the ideal one. However, when the messages are encrypted, their 

entropy should ideally be 8. If the output of such a cipher emits symbols with entropy less than 8, there exists certain 

degree of predictability, which threatens its security.  

Table 2 gives the entropy values of plain images and of their encryptions images shown in figure 3 and 6. The values 

obtained are very close to the theoretical value of 8. This means that information leakage in the encryption process is 

negligible and the encryption system is secure upon the entropy attack. 

 

Table 2. Image Entropy 

Plain-Image Entropy Encrypted 

Image 

Entropy 

Image 3.a 7.4697 Image 3.b 7.9870 

Image 3.d 5.4753 Image 3.e 7.9971 

Image 6.a 2.8284 Image 6.c 7.9889 
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5.5. Key sensitivity analysis 

An ideal image encryption procedure should be sensitive with respect to secret key. The change of a single bit in the 

secret key should produce a completely different encrypted image. To prove the robustness of the proposed scheme, 

sensitivity analysis with respect to key is performed. High key sensitivity is required by secure image cryptosystems, 

which means the cipher image cannot be decrypted correctly even if there is only a small difference between the 

encryption and decryption keys. In the key sensitivity tests, we change one bit of the key. Figure 6 show key sensitivity 

test result. It can be observed that the decryption with a slightly different key (different secret key or initial values) fails 

completely. Therefore, the proposed image encryption scheme is highly key sensitive.  

 

                              

                              

                      

                                                                                              

 

Fig. 6, Sensitivity analysis: (a) original mage of mri, (b) histogram of mri (c) encrypted image by a 1024 bits key, (d) histogram of encrypted image 

by a 1024 bits key, (e) decrypted image by key in (b) with a bit changed,(f) histogram of decrypted image by key in (b) with a bit changed.  

5.6. Noise analysis 

We also tested the resistance our cryptosystem to the noise by adding to the cipher-images a noise. From the cipher-

images illustrated in the figures 3.b, and 3.e we added a noise of the same size of plain-images. The results are given in 

the figure 7a and 7.c. From the images 7a and 7.c, we apply the decryption algorithm presented in section 3.4; we have 

the results illustrated in figure 7b and 7.d. The noise added to ciphers-images 3.b, and 3.e is a matrix containing pseudo-

random values drawn from a normal distribution with mean zero and standard deviation one, generates with function 

“randn”. In this case examined, we can note that the decrypted images presented in figures 7b and 7.d are identical to 

the original images (see 3.a, 3.d), there is no difference pixel with pixel has indeed between the decrypted images and 

plain-images because of reversibility of our technique of encryption.  
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Fig. 7, Noise Analysis: Frame (a) show cipher image shown in figure 3 (b) with noise added , Frame (b) show deciphered image,  Frame (c) show 

cipher image shown in figure 3 (e) with noise added , Frame (d) show deciphered image. 

5.7. Berlekamps-Massey 

The Berlekamps-Massey attack [17] requires 2 ( )s  data successive. In order to mount a Berlekamp-Massey attack, 

the key stream generator must produces a key stream with linear complexity highest possible. This linear complexity 

depends entirely on the combining function. Linear complexity ( ) (53,59,...,101,102)s f   used in our cryptosystem is 

between 472 and 482 , it is sufficiently large. This complexity completely excludes to use the Berlekamp-Massey attack. 

 

5.8. Correlation Attack 

The combining function f used in our system is correlation immune of order 5. In order to mount a correlation attack 

of Sigenthaler [18], the attacker must consider at least six shift registers simultaneously. The sum of the lengths of the 

shortest six LFSRs of the keystream generator is 53+59+61+67+71+73=384. Therefore, the complexity of 

Siegenthaler's correlation attack against our approach is at least  3842 . This is out of reach this type of attack. 

 

5.9. Algebraic Attack 

In the algebraic attacks, the system is rewritten in the form of a nonlinear system of equations between the output of 

the filtering function f  and its inputs in the following way: 

0 ( )z f K  ; 

 1 ( )z f h K  ; 

… ; 

 ( )i

iz f h K ,  

Here h  denotes the linear update function to the next state of the LFSR’s involved, K  the total key of the system. 

Complexity to solve this system of equations strongly depends on the degree of these equations. The complexity 

 ,C L d  of the algebraic attack on the stream cipher system with a key of size L bits and equations of d degree is 

given by   .

0

,

w
d

w d

i

L
C L d L

i

  
      
 , where w  corresponds to the coefficient of the method of the solution most 

effective by the linear system and d  is equal to algebraic immunity of the function of combination. We employ here 
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d 
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the expression of Strassen [19] which is

2log (7) 2.807w   . In our cryptosystem the secret key is 1024 bits and the 

algebraic immunity of the nonlinear filter function is equal to 6. This leads to an algebraic attack with a complexity 

which is between 1682  and 1692 , which is sufficiently large. It is not easy to make a linear approximation of the nonlinear 

filter function within the framework of an algebraic attack.  

6. Conclusion 

In this paper, an encryption scheme using stream cipher based on nonlinear combination generator presented. The 

proposed encryption system included two major parts, 13 LFSRS with maximum period whose length are all pairwise 

comprimes, the goal of this engine is to provide one or more continuations, having good statistical properties already 

and nonlinear Boolean function satisfying all the cryptographic criteria necessary carrying out the best possible 

compromises. Simulations were carried out different images. The encrypted images obtained for these input images and 

the corresponding histograms are discussed. It is seen that encrypted images does not have residuals information and the 

corresponding histograms are almost flat offering good security for images. The proposed schemes key space is large 

enough to resist all kinds of brute-force attack. In addition, this method is very simple to implement, the encryption and 

decryption of image. Here the security aspects like key space, statistical and sensitivity with respect to key are discussed 

with examples. It is seen that the present cryptosystem is secure against the statistical, brute force and cryptanalytic 

attacks. 
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Abstract: This work will discuss one of the structures in Mathematics Algebra, namely Order. Simply put, order is a ring that 

certain criteria. For R is a ring which is of order, defining the R-ideal is difference with defining ideal (regular) in R as it is known in 

general. An R-ideal in R is certainly an ideal (regular) in R. However, in general, an ideal (regular) in R is not an R-ideal in R. 

However, in certain circumstances, the ideal (regular) in R is also an R-ideal. In addition to R-ideal, in order also known notion some 

other ideal.  In this paper will be discussed the relationship between several types of ideal in the order. 

 Keywords: ideal, invertible, order, reflexive, quotient ring.  
 

1.  Introduction  

This paper will discuss one of the structures in Mathematics Algebra, that is Order. Further, some kind of ideal that is 

closely associated with the order and types of linkages between these ideals will be the focus of study. Simply put, the 

order is a ring that meets certain criteria. For defining the order necessary for the understanding of the quotient ring and 

some other sense. Moreover, the definition of the quotient ring requires understanding of regular elements. Therefore, 

the order begins with understanding the definition of a regular element in a ring.  

In the ring R which is an order known some ideal sense, such as R-ideal, fractional R-ideal,  reflexive ideal, invertible 

ideal, and v-ideal. Furthermore, for R is a ring which is an order, the definition of R-ideal in R different from the 

defining ideal (regular) in R as it is known in general. An R-ideal in R is a ideal (regular) in R. However, in general, an 

ideal (regular) in R  is not a R-ideal in R. 

This paper will describe the notion of ideal types referred to in paragraph above. Apart from presenting the ideal type, 

is presented as well as some theory that links between the order and these ideals. 

2. Definition, symbol, and Basic Theory 

This  study is a literature review of studies that use methods of adaptation and exploitation. Therefore, in this section 

are presented some sense, the basic theories, and the results of studies of several researchers who will adapted and 

exploited.  

Definition. 2.1 [Zariski dan Samuel, 1958] 

Let R be a ring. An element        is called right regular if       implies      While the left regular element 

is defined similar. If     is a right and left regular element, then      is called reguler. 

The set of all regular elements in a ring form a set which is closed under multiplication and this set contains the 

identity element of R. The set is called multiplicative set. In general, a subset of a ring which is closed under 

multiplication, contains the identity element, and does not contain zero element is called multiplicative set. 

Reguler elements in a ring does not necessarily have an inverse in the ring. This encourages the undefined quotient 

ring, which ring contains elements that revert all regular elements with specific propries.  

http://www.ntmsci.com/
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Let Q be a ring that contains the ring R and the inverse of all regular elements in R. The ring Q is called the right 

quotient ring of R, if every       can be written        for an     and    is a regular element in R. The right 

quotient ring of R is defined similar. A ring Q arena called the quotient ring of R if Q is a right and left quotient ring of 

R. 

Furthermore, the ring which is the quotient ring of the ring itself is called the quotient ring. Thus, it can be concluded 

that a ring Q is called the quotient ring, if every regular element is a unit element.   

Observing the process of defining the quotient ring of a ring, it appears that not every ring has a quotient ring. 

Associated with the existence of the quotient ring, there are necessary and sufficient condition of a ring which has a 

quotient ring. Terms are granted by understanding the conditions Ore.   

Let S be a subset of the ring R which is closed under multiplication. The set S is said to satisfy the right Ore condition 

if, for each       and      there exist       and       such that           Left Ore condition is defined similar. 

Furthermore, the ring R which satisfy the right (left) Ore condition for       is called right (left) Ore ring. 

Using the Ore condition above, the following necessary and sufficient conditions are presented ring that has a 

quotient ring. 

Lemma 2.1 [McConnell and Robson, 1987] 

1. A ring with identity element which does not contain divisor of zero element has a  right quotient ring if and 

only if it is a right Ore domain. 

2. A right Noetherian ring with  identity element  which does not contain divisor of zero element is a right Ore 

domain. 

Using Lemma 2.1 we can conclude that the right Noetherian ring with identity element which is not contain divisor of 

zero elements has a  quotient ring.  

Furthermore, relooking at the quotient ring, it was found that two different ring may have the same quotient ring. For 

example, the ring      and         . This phenomenon inspired the definition of  order. 

Let   be the quotient ring. Subring      is called the right order in     if every        in the form         for 

some        So also for the order left,   subring      is called the left order in     if every        in the form 

        for some         If R is a right order once the left order, then R is called an order.  

In the quotient ring, order is not unique. This encourages defines the maximum order.  

Definition 2.2 [McConnell dan Robson, 1987]  

Let    be a quotient ring and           are right orders in  . Relation     is defined with          if there exist   

                unit in    such that              and             

It is clear that the relation ~ in Definition 2.2 is an equivalence relation. These relationships will form the equivalent 

classes. Order right order R is called right-maximal if  R maximum in the equivalent class. Similar maximal left order 

defined. While R is called maximal order if R is a maximal order right and left.  

Several types of order are defined in the order or closely related to the order presented in this section. Ideal types of 

order in question, among others, fractional ideal, invertible ideal, and v-ideal. Apart from presenting the ideal type, is 

presented also some theories that found links between the order and these ideals. 
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Definition 2.3 

Let     be an order in the quotient ring  . Right submodule       of     that meet      and       for some unit 

      is called fractional right R-ideal. Fractional left R-ideal is defined similar. If I is a left and right R-ideal 

fractional, then I called a fractional R-ideal. Furthermore, if  I is an R-fractional ideal right and     , then I called 

right R-ideal. The same is true for left R-ideal. R-ideal that once left and right R-ideal is called R-ideal. 

Using Definition of  R-ideal above is not the same as the defining ideal (regular) in R as it is known in general. An 

ideal (regular) I in R is not necessarily  a R-ideal in R, because the unit element      that satisfy      do not 

necessarily exist. However, in certain circumstances, the ideal (regular) in R is also an R-ideal.  

Here, some definitions and notations used in the theory of order. Suppose that R is order in the ring Q. For the sets of  

X and Y of Q, is defined (Marubayashi, Miyamoto, and Ueda, 1997), 

                     

                     

                    

For right fractional    -ideal    of  , denoted 

                            

For left fractional  -ideal     of  , denoted 

                            

They are called right order and left order of I respectively.  

Using the above definitions and notation, the relationship between the maximum order, fractional ideal, and R-ideal is 

given in the following theorem. 

Theorem  2.2 [McConnell dan Robson (1987)]  

If   is a right order in    then the following conditions are equvqlent: 

a.    is a maximal right order 

b.               for all fractional   -ideal     

c.               for all  -ideal   . 

Fractional ideal, as defined in Definition 2.3, was further developed into an invertible ideal and v-ideal. 

Definition 2.4 [Marubayashi, Miyamoto, dan Ueda, 1997]  

A fractional R-ideal I is called right v-ideal if        where                  Similarly, fractional R-ideal J is 

called left v-ideal if       where                . A fractional R-ideal I is called v-ideal, if        . 

Meanwhile, a fractional R-ideal I is called invertible if                  .   

Apart from the  invertible ideal and v-ideal, fractional ideal can also be developed into a reflexive ideal. To define the 

following notation is required reflexive ideal. Suppose R is a right order in the quotient ring Q and I is a fractional right 

R-ideal, denoted 

                         

Apart from the notations, the following theorem is needed to clarify the definition of reflexive ideal. 
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Theorem 2.3 [McConnell and Robson, 1987] 

If     and      are maximal orders in quotient ring    and    is a fractional  -ideal, then                      

Using Theorem 2.3 and the notation    , the reflexive ideal is expressed as follows. 

Definition 2.4  [McConnell and Robson, 1987] 

Let    be an order in the quotient ring     and     be a fractional   -ideal. If        ,  then    is said reflexive.  

Observing the sense of reflexive ideal and v-ideal, the relationship between them is obtained as shown the following 

lemma. 

Lemma 2.4 

   be an order in the quotient ring     and     be a fractional   -ideal. Then I reflexive if and only if  I is a    -ideal. 

Proof: 

Using Theorem 2.2, we obtain  

                             

On the other hand, Theorem 2.3 stats that                 Therefore we obtain the following: 

               if and only if                               

This completes the proof.    

Lemma 2.4 has presented the link between v-ideal with a reflexive ideal. In addition to the reflexive ideal, it turns out, 

v-ideal is also associated with invertible ideal. To prove the links between them, the following lemma is required. 

Lemma 2.5 [Marubayashi, Miyamoto, dan Ueda, 1997]  

If     is an invertible ideal, then                                   

Furthermore, the linkage between the invertible ideal with v-ideal is given in the following lemma and it can be 

proved using Lemma 2.5. 

Lemma 2.6 

Let R be a ring with identity element and  I is an ideal in R. If     is an invertible ideal, then I is a v-ideal. 

Proof: 

Let    be an invertible ideal, then                       For     ,                  This means       

              So        Conversely, let       ,  then           So         Therefore we get        with similar way, 

we can show that        This implies             or     is a  -ideal.    
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Abstract: Rootfinding is a classical problem that still remains an interest to many researchers. A series of hybrid methods called 

Higher Order Homotopy Taylor-perturbation method via start-system functions (HTTPss) are implemented to give approximate 

solutions for nonlinear equations,       . The techniques serve as alternative methods for obtaining approximate solutions for 

different types of nonlinear equations. Thus, this paper presents an analysis on numerical comparison between the classical Newton 

Raphson (CNR), Homotopy Perturbation method (HTPss) and Higher Order Homotopy Taylor-perturbation via start-system 

(HHTPss). A computational system Maple14 is used for this paper. Numerical and Illustrative results reveal that HHTPss methods 

are acceptably accurate and applicable. 

 Keywords: HHTP, NONLINEAR, START SYSTEM 
 

1.  Introduction  

Numerical method provides as an alternative way to solve nonlinear problems in many areas of science and 

technology. Among the numerical methods known for its efficiency and effectiveness is the Newton-Raphson method 

which is proven for its second order convergence. However there are problems in this method because its effectiveness 

lies in the accuracy and closeness of the initial value picked at the beginning of the iteration process. 

There are also modified Newton methods for problem such as multiroots where a multiplier ‘m’ representing the 

highest power of higher order polynomial functions, is added into the original Newton-Raphson iterative method (S.G. 

Li et.al, 2010; Rafiq & Awais, 2008). However, it is effective only for simple nonlinear multiroots problems, but 

ineffective for more complex equations and higher order homotopy Taylor-perturbation. Besides the easiness of 

Newton-homotopy, it does not guarantee to converge. Other new and surprising methods also offer solutions to 

problems such as the perturbation technique that is based on an assumption that a small parameter must exist in the 

equation, the homotopy method (He, 1999, 2009), the hybrids such as homotopy perturbation (hpm), higher order hpm 

and hpm and with startsystem, as well as the robust approaches of these methods (Saeed et.al., 2011; Nor Hanim et.al, 

2011a-d; Palancz, 2010; Saeed & Khthr, 2010; Pakdemirli & Boyaci, 2007). The applications of the start-system 

functions helps to accelerate the rate of convergence of the functions, because of the closeness of the start-system values 

suggested (Nor Hanim et.al, 2011 1-c). Their approaches are iterative, and in many cases appears to be considerably 

more computational oriented. The ideas of these new approaches are somehow simple and proven effective

http://www.ntmsci.com/
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This paper presents hybrid methods of higher order Taylor’s series, perturbation techniques, homotopy continuation 

method and the start-system concepts in order to generate faster and more effective ways to solve multiroots of 

nonlinear problems for        . 

2.  Methodology  

Higher-order homotopy Taylor-perturbation method involves the substitution of the perturbation techniques into the 

Taylors series up to the value of ‘n’ required, and the conversion of the original functions into homotopy functions (Nor 

Hanim et.al, 2011a-d, 2010). Furthermore, the convex homotopy for the function is defined as                   

as,                         ; where,   is an embedded parameter,         ;      as the start system 

function where          , and n is preferably the highest power of x of a nonlinear function     ;      as the 

target system function; C is any real number in     ; and                                . Here, the step 

size is set to 0.2 and the stop-criteria are set to               . 

To determine the initial value   , only equate      to zero. The selection of      only requires a part of the original 

equation     , which is known to have at least one trivial solution. There are also several other ways to identify a start-

system of a linear homotopy as mentioned by Nor Hanim et.al. (2011 a-d) and Palancz et.al. (2010). 

2.1. First Order Taylor-perturbation 

The formulation of the first order Taylor-perturbation is illustrated. For a nonlinear equation, let       . Assume a 

perturbation expansion with only one correction term         . By using algebraic manipulation         , 

insert into Taylor Series expansion of order 1,  

                                  (1) 

Substitute          into (1) 

                                 (2) 

Assuming the RHS equals to 0 then becomes, and solve for    , and we get 

                   

            
     

             
        (3) 

 

Add an iteration feature such as follow (equivalent to the classical Newton-Raphson), 

               
                       (4) 

2.2. Second Order Taylor-perturbation (HTP) 

The formulation second order Taylor-perturbation is illustrated. For a nonlinear equation, let       . Assume a 

perturbation expansion with two correction term              , thus using algebraic manipulation we get, 

               (5) 

Inserting (5) into Taylor Series expansion of order 2, 

                                              
     (6) 

Substitute                into (6), 

Similarly, expand and ignore the last 2 terms and factorize, we get 

                       
            

   
       (7) 

          
                    

                (8) 
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The sum of first 2 terms and the sum of last 2 terms of equation (8) be equal to 0, 

          
                          

      
        

              
    (9) 

 

From equation 9, solve     and     . Hence we get, 

    
                                 

             
                     

     
          

            
   (10) 

     
                

      
 
         

              
 
           

      
 
 

     (11) 

 

Then, substitute equation (10) and (11) into equation (8), 

            
                    

 
          

 
    (12) 

Add an iteration feature such as follow, (The iteration scheme of HTP) 

               
                    

 
          

 
              (13) 

Finally, convert equation (13) to homotopy equation,  

               
                    

 
          

 
              (14) 

The same steps of calculations were done for order-3, order-4, order-5 and order-6. The equations were summarized 

as in Table 1. Hereafter, our discussion will only proceed with the above schemes. The derivations were first done 

manually. Then, countercheck using the mathematical software, Maple14. 

Table1. The iteration scheme of the higher order correctional terms of homotopy Taylor-perturbation (HHTP) 

methods with start-system (ss). 

Correctional 

Terms 

Higher Order Homotopy Taylor-Perturbation Method (HHTP-iterative form, 

        ) 

1
st
 order             

        

2
nd

 order              
                     

          
          

3
rd

 order              
                     

          
         

            
        

                         
          

4
st
 order              

                     
          

         

            
        

                         
         

              
           

          

5
st
 order              
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6
st
 order              

                     
          

         

            
        

                         
         

              
           

         

              
          

                         
         

         
      

         
                

      
      

    

           
     

            
               

   
 
 

               
       

     

                 Sources:(Nor Hanim et.al, 2011a-d) 

3.  Numerical Analysis  

The list of the higher order iterative schemes of Homotopy Taylor-perturbation by using start-system (HHTPss) can 

be referred at Table 1. While, Table 2 shows the selected nonlinear equations, start-system functions,     , and the 

selected initial value,   . The efficiency of the iterative hybrid methods from 1
st
 order to the 5

th
 order homotopy Taylor-

perturbation method using start-system (HHTPss) is also given in Table 2, which gives equal or better results in terms 

of convergence rate as compared to the classical Newton-Raphson. The given test function (i)-(xii) are used and the 

results of the approximated zeros is given in 10
-5

 error accuracy. Furthermore, the choice of a suitable      is not 

unique and different choices of      work better for different types of equations. 

Table 2: The approximated zeros using Classical Newton-Raphson (CNR) and higher order Homotopy Taylor-

Perturbation (HHTP) via start-system: startsystem function, initial value and number of iterations needed to converge. 

 NL Functions 

           

       

          

CNR 1
st
 2

nd
 3

rd
 4

th
 5

th
 

i                               

          

1098612289 

5 2 2 1 4 5 

ii  

 
 

 

 
                

     

0.5 

3 1 2 1 1 1 

iii                     

         ; 0.0 

4 1 1 1 1 1 

iv            

         

-1.189207115,1.189207115 

37 34 24 20 20 20 

v                  

       

-3.0,3.0 

27 21 15 13 11 11 

vi                   

       

0.0,-2.514866859, 2.514866859* 

118 39 28 24 24 23 

vii            

       

1.148698355 

21 19 14 12 12 12 

viii              

        ; 0.0,-3.0* 

14 12 9 8 8 8 

ix                      3 1 1 1 1 1 
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1.570796327 

x                   

       ; 

2.514866859,2.514866859 

6 5 3 3 3 3 

xi                

       ; 

1.259921050 

4 2 2 2 2 2 

xii                       

       ;0.0, 3.0 

3 2 1 1 1 1 

 

4.  Conclusions  

It is concluded that the method of higher-order homotopy Taylor-perturbation is an effective alternative method in 

accelerating the converge rate in solving nonlinear functions. Combined with the method of start-system, it facilitates 

the way to determine the initial value for the iteration. Thus, the computing time is reduced. 
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Abstract: Blob shape recognition is used in various application fields such as industrial vision systems, parts recognition, 

positioning, inspection, etc. This is based on numerical signature which is an effective image processing technique for shape 

recognition. 

This paper describe a new fast algorithm for pattern recognition, shapes are being coded by using two vectors, the first one is contour 

distances and the second one is of the surface histogram, these are working in relative manner. The principle coding is reduced to a 

product between the mask and the binary image of the shape. 

The first merit of this algorithm is the high-speed image processing, instead of using images it does operate on vectors. The second 

merit is the precise recognition of known geometries shapes even for arbitrary or complexes ones. 

 Keywords: Distance mask, Histogram equality, Numerical signature, linear approximation, Stationary series, Pattern recognition 
 

1.  Introduction  

The pattern recognition technique is a very important task and very required in various industrials systems and in 

vision systems; such as in positioning, automated visual inspection and many other applications. 

In these applications the processing time is very important and high speeds are much sought for the industrial 

requirements. But the image has a large numerical data which means a conventional basic processing is too slow. In 

order to speed up the processing there are two types of solutions. The first type consists of subdividing the processing 

into tasks which will be given to parallel processors [1]. Other solution consist of reducing the quantity of information 

and instead of working on the whole data of the image; we use a compressed or reduced quantity [2]. 

Our work is based on the second type of solution, because the image immediately coded in two vectors, the first 

vector having the dimension of the contour pixels number of the object in question, the second vector having the 

dimension of the circle radius generating this object, then all the operations are deduced from the manipulations of the 

two vectors. In addition, the operation of information compression is very fast as we are going to present, this has been 

leading to inexpensive method in time and very reliable. Thus, this will find implementation in visual recognition real 

time process. 

In this paper, we will present first the theoretical tools used. Then, we will use these tools to present the information 

compression principal and the image coding. Later this presentation will be used in detailed manner to expand our steps 

of recognition. Finally we will present the obtained experimental results over several samples of images. 
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2.  Theoretical Tools  

From the viewpoint of shape recognition, the shape plane, this can be described by the couple of information; its 

surface   and its contour  . This information can be given by the Cartesian coordinate as follows: 

1. A set of Cartesian coordinate point       such that        . 

2. An analytical function   describing   such that       . 

with     

 : The definition domain of the shape, 

 : The departure set of points of  , 

 : The arrival set of points. 

The original image data is two dimensional matrix therefore this shape will be presented by a set of finite couple. If 

the contour   is constituted of   pixels the a couple vector of         with        of dimension   sufficient to 

represent it                                        . 

Or in the coordinate system      ,                                        . Thus,   is represented by two 

sets: 

1. The set of distances 

                  (1)  
 

2. The set of angles                 which will be replaced by a set pixels forming  . 

This representation of shapes offers two possibilities of exploitation. Handling these distances to sort an analytical 

expression        modeling the contour  , which is valid for known geometries shapes. But for arbitrary or 

complexes shapes the modeling becomes difficult, thus we were interested to working directly from this numerical 

representation of shapes without going through the analytical expression. 

A planer shape can undergo translations, rotations and homothety zoom. If we denote by                 the surface 

and the contour before transformation and               after then, 

                                       (2)  
 

with     for translations and rotations and    for homothety. 

We start by coding the contour by the distances vector (1)         by   and        by  , therefore for the 

translations and rotations we have 

             (3)  
 

Whereas for homothety of   ratio: 

           (4)  
 

For    ,   and   are of the type: 

                                                     (5)  
 

Such as, 

                             (6)  
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Inversely if    . 

At this stage, we must point out the following problems: 

1. The ratio   is not always an integer which gives a number of pixels            not necessarily an integer and 

which should be an integer due to the digital mesh? 

2. The pixels            of   have only one image which is    in   that we have associated    , then how about 

the other points        ? 

For the first problem when we are on the element    of rank   in  , we take the rounded product              to 

determine its counterpart for    in  . This allow us some stationary, hence a frequency of repetition more or less 

regularly. Concerning the second problem, this consists of giving estimation of missing distances         that have 

not images in  , we have opted for a linear approximation of first order, for example having; 

                   (7)  
 

We estimate         data distances by the right segment linking the points     and    . Finally, to check (4)…(7) it 

is necessary to find particulars pixels that can serve as reference and as departure points in and , while working as 

relative manner. 

For the surfaces, the pixels forming        and        are coded in distances to give images of gray level, if we denote 

by        and        their histograms [3], then for the translations and the rotations we have; 

                             (8)  
 

Whereas, for homothety of   ratio                  . 

Having the level   in        , it will be affected by the level     and which repeat             so that 

                         (9)  
 

Let                                   and                                                       . 

The two histograms must verify (10) and (11) first their sum; 

     

       

         

      

 (10)  

 

And their compounds are related by: 

               (11)  
 

Practically, (11) means that the transition from the histogram         to the histogram        is performed by a 

simple linear transformation. 

Now, we go to the information reduction step of the image, by doing its code by two vectors, the first is of contour 

distances and the second is of the surface histograms. 

3.  Procedure of representations 

3.1. Principle of coding 

This representation is very delicate if we proceed with theoretical coding of distances as the ultimate erode [4], 

furthermore it is very computationally prohibitive task. To remedy to these problems we have develop a simple, fast and 

effective; it consists of creating a mask image  , of gray level formed by concentric circles, where the pixel take as 
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gray level the distances which does separate them from the center as it shown by figure 1 [5] [6]. Later, this mask image 

is used in the representation as follow: 

1. From the binary image that represent the shape, its gravity center is calculated then its contour of thickness 1 

pixel. 

 

Figure 1  : Distance mask 

2. By simple translation of the mask, we coincide the mask center   with the gravity center of   the shape, the 

product point by point is done to give two images of gray level, the first contain the contour   where the pixels 

have as level the distance which separate them from the gravity center of the shape and the second image is of the 

shape where each pixel is coded in distance. 

3.2. Departure pixel choice 

For each shape, we have to do a particular and wise choice of the followed departure pixel. For example, for this 

shape we have chosen the most far pixel regarding the gravity center; which correspond to the maximum of distances. 

Let   be the set of pixels: 

                        (12)  
 

If      , which means several pixels verify this condition, we will see later that we have to pass them one after the 

other so that we converge to the one which will verify our recognition criteria. 

3.3. Loading of representation vectors 

According to what is presented in 3.1 and 3.2; for each shape and in relative manner we determine; 

1. The reference pixels, which is its gravity center and departure pixel. 

2. Using this data and by basic operation of the contour tracking  , the distances met are loaded systematically to 

the vector distance   defined by (1)(5). 

3. Finally the image distances gives the histogram vector  . 

4. Recognition Algorithm 

Having an object beside the camera, its image is taken then we apply the representation procedure given in paragraph 

3. There are two pairs of representation vectors, (             ) for the model and (               ) for the object 

candidate. The recognition procedure uses the following steps: 

Step 1: Calculation of the two forms ratio: A global ratio between the two forms is calculated based on the dimension 

ratio of the two vectors 

                      
 

or reverse so to have    . In the same time, ratio between the two surfaces is been calculated according to (9) (10) 
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these two ratios should coincide. We have to point out that the surface ratio is more precise than the contour one 

because this latter is not always smoothed. 

Step 2: Histograms Comparison: According to (11) the histograms are related and we can switch from one to the other 

by simple linear transformation. Knowing that the ratio   is calculated form step 1, if     we transform         if not 

we transform        according to (11). The histogram obtained by transformation s compared to the non transformed 

one. For example for             is transformed onto        
  this latter is been compared to       . Thus, the two 

histograms have to be equal. If so we follow the process to step 3, if not we stop the comparison and the samples are 

different. 

Step 3: Contours Comparison: This step is divided into three elementary stages these are as follow: 

3.1: Determinations of departure point and the tracking contour direction in each contour: With respect to the 

application, a particular point such the most far one or the nearest of the gravity center, is chosen as departure point for 

the two contours. If         contains   pixels and        contains   pixels checking this particularity then we combine 

  and   pixels, and for each pair of pixel, we try to maximize a topologic similarity function furthermore by combining 

the incremental angle between positive and negative in each contour, all the possibilities of tracking direction are taken 

into account. The conditions allowing this maximization are retained. These conditions correspond to departure pixels 

and the tracking direction in each distance contour. 

3.2: Synchronous reading and partial ratios calculation: Two reading operations are simultaneously triggered in         

and       , their distances are loaded respectively in         and       . With an increment       for the small 

vector and   for the great vector              the ratios of these distances                      is calculated then 

stored in      with   the partial ratios vector. 

3.3: Evolution analysis of the partial ratios: Following the loading of vector  , for two identical shapes, the partial ratios 

have to be close to the global ratio  [7]; then a second decision is taken; 

If (the series   is stationary with mean value  ) Then 

 Follow the process to step 4, 

Else  stop the comparison and 

 Shapes are different. 

EndIf 

Step 4: Refine the comparison: This step is necessary only for ratios     or    . It consists of doing a linear 

approximation of the first order to estimate the points         that have not an image in       (11). Then, calculate the 

error as a gap between the reel distances and their estimated counterparts by approximation, these gaps are stored in the 

vector  . 

If (mean( ) and variance ( ) are weak) Then 

 the shapes are similar 

 of proportionality factor equal to  . 

Else shapes are different. 

EndIf 
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5. Experimental results 

5.1. The algorithm illustration: 

In what follows, we will present the algorithm progress upon two objects showing the obtained results in each step. 

The two objects are presented by distances as it is shown by figure 2. 

Step 1: Ratios Calculation between the two shapes The vector         and        are calculated               and 

            , hence the global ratio from the contours is         . And from histograms the surfaces are 

             and            . Using (9)           where the calculated ratio from the surfaces is     

      . the ratios are close then we go to step 2. 

Step 2: Histograms comparison The images histograms coded in distances are presented in figure 3.a, as we can notice 

these histograms are different. By using (11), we have kept the model histogram (       blue) not changed but the 

object one (        red) we apply upon it the transformation        
     

 

      
                 . In the figure 3.b 

we have presented the histogram unchanged of the model (       blue) and the transformed histogram of the object 

(       
  red). As we can notice the two histograms coincide perfectly, and to quantify the degree of similarity, we have 

used the  

 

Figure 2 a-object, b-model 

criteria of Swain [8]: 

         
    

             
               

   
   

          
   
   

   (13)  

 

         
    

             
               

   
   

          
   
   

    (14)  

 

These distances are close to unity for identical histograms, whereas for different histograms          
    is weak and 

         
    is great. In our publication,          

          and          
          , which show effectively that the two 

histograms coincide perfectly because the two criteria are    and we go to step 3. 
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Step 3: Contour comparison 

1. The departure pixel as well the direction tracking contour are calculated for the object and for the model they are 

presented in figure 4. 

 

Figure 3 a-pre-histograms, b-histograms after 

 

Figure 4 Left: object, Right: model 

2. The synchronous reading of the two shapes has allowed the marked red points in figure 4, and the partial ratios 

vector   is loaded. We notice that still there are white points in         that not images in       . 

3. The variation of partial ratios stored in  , its average                 its standard deviation          and 

the accuracy 
            

 
              this confirm that the shapes are related and that one is the image  of 

the other by simple homothety. 

Finale decision: The two shapes are identical and they have a ratio of proportionality of         . 

5.2. Recognition of random shapes: 

We have constituted two lots of images, the first contains images presenting the same object, only the acquisition 

conditions are different (camera setting, camera distance, object orientation), and the second constituted of images of 

different object. Its on these two lots that we have developed a comparative study of the following parameters: 

5.2.1. Variations of the three ratios 

For the same test, we have calculated three ratios, the one of contour or global  , the one of surfaces and finally the 

average of partial ratios, obtained in the  following of         ; results of first lot are presented in figure 5.a and the 

those of the second lot in figure 5.b. 
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Figure 5 Variations of the three Ratios a-lot1 b-lot2 

5.2.2. The accuracy variations 

We have marked the accuracy evolution 
            

 
, the results of the first lot in figure 6.a, the accuracy is less that 

5% whereas in the second lot of figure 6.b the accuracy is greater than 27%. 

 

Figure 6 Accuracy variations a:lot1 b:lot2 

5.2.3. Histograms equality 

The figure 7.a summarizes the variation of          
       , and the          

        during the different tests of the first 

lot, and figure 7.b those of the second lot. 

 

Figure 7 Histograms equality a-lot1 b-lot2 

5.3. Summary 

According to our comparative study, the following table summarizes the different parameters. 

The parameter Identical samples Different samples 

Contour ratios, 

Surface, 

Average 

 

Equals 

 

Different 

Partial ratios 

Variations 

Weak 

Stationary 

Great 

Not stationary 

Accuracy <5% >5% 

Histograms Equals Different 
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Conclusion 

We have presented here, a novel and very simple technique of shapes representation as two vectors, the first is of 

contour distances and the second is the distances histogram of its surface. The boring step of calculus is accelerated 

enormously by the use of image mask of distances; which is generated previously outside the recognition procedure. 

Thus, the coding is reduced to a product point by point between the mask and the binary image of the shape, and the 

shape itself becomes a vector of weak dimension, so less memory used, and simple to use, for this reason it is called 

numerical signature. 

As we can notice, our method has two strengths. The first is its simplicity of manipulation, instead of using images it 

does operate on vectors, so it does manipulate shapes quickly. The second is its working in relative manner; it does 

manipulate random shapes and without previous setting of the acquisition chain neither for precise positioning. 

This last strong point has permitted a great request in industry. In addition with its linear approximation, this 

technique could compare shapes with different scales, this is very promising as a recognition operations in uncontrolled 

conditions. 

Finally, with determined parameters of recognition, the obtained results are very promising and testify its 

effectiveness. 
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Abstract: Let                be a vector in the space    with   ring of integers and   be a positive integer,   a polynomial in 

  with coefficient in  . The exponential sum associated with   is defined as               
       

 , where the sum is taken over 

a complete set of residues modulo  . The value of        depend on the estimate of cardinality    , the number of elements 

contained in the set                     where    is the partial derivatives of   with respect to  . To determine the 

cardinality of  , the p-adic sizes of common zeros of the partial derivative polynomials need to be obtained. In this paper we estimate 

the p-adic sizes of common zeros of partial derivative polynomials of        in         of degree nine by using Newton polyhedron 

technique. The degree nine polynomial is of the form                              . 

 Keywords: Exponential sums; cardinality; p-adic sizes; Newton polyhedron. 
 

1.  Introduction  

In our discussion, we use notations the ring of p-adic integers   , the completion of algebraic closure of    the field 

of rational p-adic numbers    and       is the highest power of   dividing  . It follows that for rational number   and 

 ,         if and only if    ,                                                    with equality 

if            . 

Loxton and Vaughan (1985) are the researches who investigate the exponential sums                         

where   is a nonlinear polynomial in     . They showed that the number of common zeros of the partial derivative 

polynomials of   with respect to   modulo   gives the estimation of       . 

From the works of Loxton and Smith (1982), they found that the p-adic sizes of common zeros to partial derivative 

polynomials associated with   in the neighbourhood of points in the product space   
     , can estimate the 

cardinality of  . Their result is the estimation of            that will lead to a derivation of estimate of        . 

The estimations for lower degree two-variable polynomials by using Newton polyhedron technique are found by 

many researchers such as Mohd. Atan (1986), Chan and Mohd. Atan (1997) who estimates the cardinality         of 

the set of solutions to congruence equations modulo a prime power and also Heng and Mohd. Atan (1999). However, 

results for the polynomials of higher degrees are less complete. 

Our approach entails the work developed by Mohd. Atan and Loxton (1986) who presented the p-adic Newton 

polyhedral method of finding the p-adic order of polynomials in         which is an analogue of Newton polygon 

defined by Koblitz (1977). Sapar and Mohd. Atan (2002) improved the result and then Yap, Sapar and Mohd. Atan 

(2011) showed that the p-adic sizes of common zeros of partial derivative polynomials associated with a cubic form can 

http://www.ntmsci.com/
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be found explicitly on the overlapping segment of the indicator diagrams associated with the polynomials by using 

Newton polyhedron technique. 

Our work involves application of the Newton polyhedron technique at the point of intersection in the combination of 

indicator diagrams to determine explicitly the p-adic sizes of the component       a common root of partial derivative 

polynomials of        in         of degree nine. 

2.  p-ADIC Orders of Zeros of A Polynomial  

Sapar and Mohd Atan (2002) proved that for every point of intersection of the indicator diagrams, there exist 

common zeros of both polynomials in         whose p-adic orders correspond to point       as mention in Theorem 

2.1 below: 

Theorem 2.1. Let   be a prime. Suppose   and   are polynomials in        . Let       be a point of intersection of the 

indicator diagrams associated with   and   at the vertices or simple points of intersections. Then there are   and   in    

satisfying                   and                 . 

Our investigation concentrates on the p-adic sizes of common zeros of partial derivative associated with a polynomial 

                             . First we prove the following lemma. 

Lemma 2.1. Let     be a prime,     and   in    and       zeros of                        . Let 

   
      

      
        

      

      
  

If      
        , then                    

 

 
    

 

 
, for       and                 

 

 
. 

Proof. The zeros of                         are given by 

    
              

 
            

Since      
         and    , we have         

 

 
              

Hence,         
 

 
            . Therefore, 

                   
 

 
        (2.1) 

 

It can be shown that            . 

It follows that,                     
(2.2) 

 

From (2.1) and (2.2), since    , we have 

           

      

      
 

 

 
                    

That is        
 

 
    

 

 
             (2.3) 

 

Clearly, 
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where       
           

 
. 

Thus, 

                                                                           

Since          
          and by (2.1), (2.2) and (2.3) we have 

            
 

 
    

 

 
            

It can be shown that 

                

                             

                
   (2.4) 

 

where      
          

    and        
 

 
  

Since          
          and                          and simplifying (2.4) we have 

                

 

 
 

as asserted. 

Throughout the following discussion, 

   
      

      
        

      

      
   (2.5) 

 

with       zeros of                               since      . 

Lemma 2.2. Suppose       in   
 . Let     be a prime,     and   coefficient of   and     as in (2.5)   . If 

     
        , then                                                   . 

Proof. 

                   
      
      

  
      
      

                                                                                     

                                                                     
 (2.6) 

 

Now, let    and    be the zeros of                         are of the form 

   
              

  
        

              

  
  

From (2.6), we have  

                                     
       

  
                           . 

Therefore, from (2.6) we have 

                   
       

  
                                                      

Since      
        ,  and by proof of Lemma 2.1,                    for      , we obtain 
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as asserted. 

From the above result, it is clear that to ascertain the p-adic sizes of               we need to examine the p-adic 

size of                           . To do this, the sizes of each quantity in the expression should be 

considered. This is done in the proof of the following assertion. 

Lemma 2.3. Suppose      in   
  and         

           
   where    and    as in (2.5). Let     be a  

prime,     and   coefficient of   and       and      
        . Then       

 

 
  and       

 

 
   

12      6 7 or      ≥14 −12      6 7−3  in an exceptional case with  =        ,      and some  ≥0 

which can be specified explicitly. 

Proof. From         
               

  , we have 

   
       

     

 

 
 
       

   

        
 
  

Thus,      
 

 
              

 

 
            (2.7) 

 

and                                  
   (2.8) 

 

By (2.7), Lemmas 2.1 and 2.2, we have 

      
 

 
                               

 

 
        

Now, we have to consider two cases. 

Case 1:                                    

(i) Suppose                                                            

It follow that,       
 

 
                     

 

 
        

Since     and      
        , we have 

      
 

 
          (2.9) 

 

It follow that,       
 

 
 . 

From the definition of        , 

                 
          

     

From (2.9), 

     
             

Thus,  
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Hence from (2.8), we have 

                                       
         

and from the proof of Lemma 2.1 and simplify it, we have 

                
 

 
     

 

 
    

  

  
  

by Lemma 2.1, we have 

      
 

 
   

 

 
    

   

  
   

Hence, in this case, 

      
 

 
            

 

 
   

 

 
    

   

  
   

(ii)         Suppose                                                   (2.10) 
 

We have 

      
 

 
            

 

 
       

 

 
          

 

 
      

           (2.11) 
 

Since      
        , we have 

     
             

That is,       
 

 
 . 

By (2.10) and (2.11), 

      
 

 
                     

 

 
       

 

 
       

 

 
           

 

 
        

That is,       
 

 
         . 

Now                   
  . Thus, 

                         

It follows that, 

                    

By (2.8), and the same argument as in (i) we have, 

      
 

 
   

 

 
    

   

  
   

Case2:                                     

We have 
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Since                                   and    , 

      
 

 
                     

 

 
        

Since     and      
        , we have 

      
 

 
          

 

 
                 

Therefore,       
 

 
           

It follows that,       
 

 
   

From (2.7) and (2.8), we obtain 

                              
 

 
              

 

 
              

By Lemmas 2.1 and 2.2, we obtain 

                
 

 
    

 

  
 

 

 
                                   (2.12) 

 

Let,                                      (2.13) 
 

Then, there exist   and   such that, 

            with         and                 with        . 

From (2.13),                    Hence from (2.12), we have 

      
 

 
        

 

 
    

 

  
 

 

 
           

Let            , then 

      
 

 
          

 

 
    

   

  
 

 

 
   

It follows that, 

      
 

 
  

 

 
    

   

  
 

 

 
   

Hence, we have 

      
 

 
   

 

 
    

   

  
     

with                 and           . 
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Therefore,       
 

 
  and       

 

 
   

 

 
    

   

    or       
 

 
   

 

 
    

   

       

with                 and     as asserted. 

The following lemma gives explicit estimates of the components     in   and   in terms of p-adic sizes of integers in 

   where   and   as in Lemma 2.3. the proof utilizes the result obtained above. 

Lemma 2.4. Suppose      in   
  and         

           
   where    and    as in (2.5). Let     be a  

prime,         and   in         
        ,                         and              . If       

 

 
    

     

      
 and       

 

 
    

     

      
 then       

 

 
      and       

 

 
      or       

 

 
        

for some    . 

Proof. Since         
           

   and      
        , we have from Lemma 2.3 

      
 

 
  (2.14) 

 

where                   . 

Now, 

      
 

 
    

     

      
           

 

 
    

     

      
  

It follows from (2.14) that 

      
 

 
    

     

      
              

By proof of Lemma 2.1,                    for      . As such 

      
 

 
                    (2.15) 

 

If                                then 

      
 

 
               

By the hypothesis, we obtain 

      
 

 
       

Now, if                                  then 

      
 

 
                 

Since                     it follows that 

      
 

 
               

By the hypothesis, we obtain 
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By Lemma 2.3, we have 

      
 

 
   

 

 
    

   

  
           

 

 
   

 

 
    

   

  
     (2.16) 

 

for some     where                   . 

For the first inequality we have from (2.16), 

      
 

 
 
 

 
     

     

      
  

 

 
    

   

  
         

Since                    for        

      
 

 
                  

       
    (2.17) 

 

Since      
        , we have 

      
 

 
                     

By using the same method as equation (2.15), we have 

      
 

 
       

Now, we consider the second inequality, 

      
 

 
   

 

 
    

   

  
      

with                    and for some     . 

By the same argument for the first inequality not involving   , we let       and we will arrive at 

      
 

 
         

Therefore,       
 

 
      and       

 

 
      or       

 

 
         

as asserted. 

The next theorem will gives the p-adic sizes of common zeros of partial derivative polynomials associated with a 

polynomial        in        , in terms of the coefficients of its dominant terms. 

Theorem 2.2. Let                               be a polynomial in         with    . Let   

                           and      
        . İf            ,                 then there exists 

      such that          ,           and       
 

 
     ,       

 

 
      or in an exceptional case 

      
 

 
        with a certain    . 

Proof. Let      and      and   be a constant where,                          and          

       . 
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Then, 

                                               That is  

           

     
     

      

     
      

  

     
      

    

     
  (2.18) 

 

By completing the square in (2.18), we have 

           

     
     

     

     
    

 

 
    

     
  (2.19) 

 

with 

  

     
  

     

     
 
 

   (2.20) 

 

That is,                     . 

From the equation (2.20) above, we have 

   
              

  
        

              

  
  

Let the above       be the zeros of the equation (2.20) whose expressions are given in Lemma 2.1.      , since 

     
         implies       . 

Now let 

     
      

      
    (2.21) 

     
      

      
    (2.22) 

                    (2.23) 
 

and 

                    (2.24) 
 

Substitution of   and   in (2.19), for      , we have polynomials in      , 

                
        (2.25) 

                
          (2.26) 

 

The combination of the indicator diagrams associated with the Newton polyhedron of (2.25) and (2.26) is shown in 

figure below 
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Figure 2.2.1. The indicator diagrams of                 
        (bold line) and                 

        (broken line) 

From Figure 2.2.1 and by Theorem 2.1, there exists         in   
  such that           ,            and          , 

          with    
 

 
    

     

      
 and    

 

 
    

     

      
. 

Suppose      and      in (2.21) and (2.22). Thus, there exists         in   
  such that 

     
      

    (2.27) 

     
      

    (2.28) 
 

with    
      

      
 and    

      

      
,       the zeros                        .       since    . 

By solving (2.27) and (2.28) simultaneously, we have 

    
         

     

 

 
 

        
     

         
   

That is, 

       
 

 
                

 

 
            (2.7) 

 

and 

                                     
   

From Lemma 2.4, we have 

       
 

 
             

 

 
                

 

 
                      

Let      and     . Since            and           , by back substitution in (2.23) and (2.24) we would have 

                 and                 . Thus,       
 

 
     ,       

 

 
      or       

 

 
        where       is a common zero of    and                            , for some    . 

3.  Conclusion  

From this project, we found that if   is a prime,                                   with all 

coefficients in    such that for    ,                          and      
         if            , 
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                then there exists       such that          ,           and       
 

 
     ,       

 

 
      or in an exceptional case       

 

 
        with a certain    . 

The p-adic sizes of common zeros that we obtained in this project can be used to find the cardinality     and through 

that we can solve the exponential sums                         that depended from estimate of cardinality. 

Therefore, we also suggest that by using the same technique as in this project, the p-adic sizes of common zeros of 

partial derivative polynomials associated with much higher degree two-variable polynomials also can be found. 
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Abstract: In this paper we recall some results of matrix functions with eal cofficients. The aim of this paper is to provide some 

properties and results of continued fractions with matrix arguments. Then we give continued fractions expansions of some inverse of 

hyperbolic and circular functions                               and          where   is a positive definite matrix. 

Keywords: Continued fraction expansion, positive definite matrix, function of matrices 
 

1. Introduction and mativation  

Over the last two hundred years, the theory of continued fractions has been a topic of extensive study. The basic idea 

of this theory over real numbers is to give an approximation of various real numbers by the rational ones. One of the 

main reasons why continued fractions are so useful in computation is that they often provide representation for 

transcendental functions that are much more generally valid than the classical representation by, say, the power series. 

Further; in the convergent case, the continued fractions expansions have the advantage that they converge more rapidly 

than other numerical algorithms. 

Recently, the extension of continued fractions theory from real numbers to the matrix case has seen several 

developments and interesting applications (see [5],[7], [11]). The real case is relatively well studied in the literature. 

However, in contrast to the theoretical importance, one can find in mathematical literature only a few results on the 

continued fractions with matrices arguments. The main difficulty arises from the fact that the algebra of square matrices 

is not commutative. 

For simplicity and clearness, we restrict ourselves to positive definite matrices, but our results can be, without special 

difficulties, projected to the case of positive definite operators from an infinite dimensional Hilbert space into itself. 

2. Preleminary and notations 

Matrix functions play a widespreased role in science and engineering, with applications areas ranging from nuclear 

magnetic resonance [2]. So for any scalar polynomial          
  

    gives rise to a matrix polynomial with scalar 

coefficients by simply substituting    ve   : 

         
 

 

   

 

 

 

More generally, for function   with a series representation on an open disk containing the eigenvalues of  , we are 

able to define the matrix function      via the Taylor series for   [4]. 

Alternatively, given a function      that is analytic inside on a closed contour   which encircles the eigenvalues of 

       can be defined, by analogy with Cauchy's integral theorem, by 

http://www.ntmsci.com/
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The definition is known as the matrix version of Cauchy's integral theorem. We now mention an important result of 

matrix functions. 

Lemma 2.1 (i) If two matrices      and      are similar, with 

        

 

Then the matrices      and      are also similar, with 

               

(ii) If      is a block diagonal matrix 

                                

Proof. For         we have          . Hence for every polynomial   it follow that 

               

Therefore if either one of      or      equals zero then so does the other, implying that A and B share the same 

minimal polynomial. From definition there exists an interpolating polynomial      such that 

                        

and since for every polynomial we have                 the result follows. 

(ii) We deduce it from (i). 

Let        is said to be positive semidefinite (resp. positive definite) if A is symmetric and 

                                           

where <.,.> denotes the standard scalar product of    . 

We observe that positive semidefiniteness induces a partial ordering on the space of symmetric matrices: if A and B 

are two symmetric matrices, we write            is positive semidefinite. 

Henceforth, whenever we say that       is positive semidefinite (or positive definite), it will be assumed that A is 

symmetric. 

For any matrices        with B invertible, we write 
 

 
        It is easy to verify that for any invertible matrix 

X we have 

 

 
 

  

  
 

  

  
 

Definition 2.2 Let          and          be two sequences of matrices in   . We define the sequences        

    and           by 

 
           

          
                 

                
                

            (2.1) 

The matrix       is called the     convergent of         , the fraction 
  

  
 is called its     partial quotient. The 

proof of the next proposition is elementary and we left it to the reader. 
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Propotion 2.3. For any two matrices C and D with C invertible, we have 

     
  

  

 
   

 

                  
   

   
  

 
   

  

  

 
  

  

 
   

 

 

Definition 2.4. Let                          be four sequences of matrices. We say that the continued fractions 

         and          are equivalent if we have       for all      where    and    are the     convergents of 

         and          respectively. 

In order to simplify the statements on some partial quotients of continued fractions with matrices arguments, we need 

the following proposition which is an example of equivalent continued fractions. 

Proposition 2.5. (see [10]) Let     
  

  
 
   

  

 be a given continued fraction. 

Then  

  
  

     
  

  

 
   

 

     
        

  

        
   

   

 

  

where                             are arbitrary invertible matrices. 

We also recall the following proposition in real cace. 

Proposition 2.6. Let      be   non-zero sequence of real numbers. The following continued fractions 

    
  
  

 
  
  

 
  
  

               
    
    

 
      
    

 
      
    

           

are equivalent. 

We end this section by introducing some topological notions of continued fractions with matrix arguments. We 

provide    with the topology induced by the following classical norm: 

                 
    

   
               

Definition 2.7. Let      be a sequence of matrices in   . We say that      converges in    if there exists a matrix 

     such that        tends to 0 when n tens to   . In this case we write ,          . 

The continued fraction     
  

  
 
   

  

 is said to be convergent in    if the sequence             
       converges in 

   in the sense that there exists a matrix      such that                 

3. Man Result 

Let      be a positive definite matrix. Our aim in this section is to give a continued fraction expansion of arcsin, 

arcsh(A), arccos(A) and arcch(A). For simplicity, we start with the real case and we begin by recalling Laguerre's 

continued fraction in the following lemma. 

Lemma 3.11 (see [3]) Let x be a real number such that      . Then there holds 

          

         
    

 

 
 
             

       
 

             

       
 
   

  

 (3.1) 

 

Now we establish a main theorem which, is a matrix version of the previous lemma. 

Theorem 3.2. Let      be a positive definite matrix such that      . Then a continued fraction expansion of 

arcsin(A) is 
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 (3.2) 

 

Since                       by vertu of proposition 2.6 and the previous theorem, we have the next result. 

Corollary 3.3. A continued fraction expansion of arcsh(A) is given by 

             
          

 
 
            

        
 

            

        
 
   

  

 (3.3) 

 

Proof. Let      be a positive definite matrix Then there exists an invertible matrix X such that        , where 

                               

As the function              is analytic in the open halfplane              , then 

                                                                       . 

Let us define the sequences      and      by: 

 
               
               

   

and for      

 
                                   

                                   
   

 
                                   

                                   
   

 

We see that    and    are diagonal matrices, by setting           
    

      
   and           

    
      

    we 

obtain for each         

 
   
      

      
     

   
      

      
   

   

and for      

 
   
              

              
      

 

   
              

              
      

 
   

 
     
            

              
      

 

     
            

              
      

 
   

 

By lemma 3.1, the convergent   
    

  converges to      
                It follows that       converges to    

 2) 1/2arcsin , so that 

          

         
    

 

 
 
   

   
 
   

   
 
             

        
 
             

        
 
   

  

 

 

Then, we multiply the continued fraction  
          

         
  by           in the left to obtain 
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by proposition 2.3, we get 

                   
    

            
 
               

   
 
   

   
 
            

        
 
             

        
 
   

  

 

Let us define the sequence          by 

 
        

                      
   

Then 

 
 
 

 
 

     
      

  

         
 
       

  
 

          

 

     
       

 
       

  

         
   

   

   

  

For      we have 

                  
  

             
   

            

        
  

By applying the result of proposition 2.5 to the sequence           we finish the proof of theorem 3.2. 

Before giving continued fraction expansions of arccos(A) and arcch(A), we begin with the real case in the following 

lemma 

Lemma 3.4. (see [7]) Let x be a real number such that 0 < x < 1, Then there holds 

          

         
    

 

 
 
            

       
 
            

       
 
   

  

 (3.4) 

                                         

Now we establish a main theorem which, is a matrix version of the lemma 4. 

Theorem 3.5. Let      be a positive definite matrix such that      . Then a continued fraction expansion of 

arcsin(A) is 

              
          

 
 
            

        
 
            

        
 
   

  

 (3.5) 

                                         

since                    , by vertu of proposition 2.6 and theorem 3.5, we have: 

Corollary 3.6. A continued fraction expansion of arcch(A) is given by  

             
          

 
 
            

       
 
            

       
 
   

  

 (3.6) 

 

                                         

With a similar method as in theorem 3.2, we prove the result of this theorem. 
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A Remark on A Fundamental System of Units of 

Numbers Fields of degree 2, 3, 4 and 6 
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Abstract: Let               where                   and        . The integer    is always written as 

         where    is a non-zero positive integer; assuming    square-free, we exhibit a fundamental system of units for 

families of pure fields         
    including a family already given by H.-J. Stender. 

 Keywords: Fundamental system of units (FSU), Parametrization, the integral basis. 
 
 

1. Introduction  

There is a closed link between a fundamental system of units of some number fields, the resolution of some 

Diophantine equations, the cycle of continued fractions, and certain protocols in cryptography, see J. Buchmann [2]. 

Also, the regulator of a number field  , based on knowledge of a system fundamental of units, is essential to compute 

the class number of  , and therefore the Hilbert class towers and the construction of a codes on this number field (see 

V. Guruswami [5]. This, in addition to many other applications, justifies the study of such a system. 

If   is an algebraic extension of degree        on    the field of rational numbers, where   is the number of real 

embeddings and    is the number of complex embeddings of   , Dirichlet (1840) established that the unit group    of  

  is generated by       units. The group    is said to be of rank      . The set                    of all 

generators, form what is called a fundamental system of units of the field K. However, the explicit determination of 

such a system is very limited.  

The methods for determining a fundamental system of units of a number field   are very varied. However, regardless 

to the method adopted, the way followed by several mathematicians is to find in the field    

(1) Units, 

(2) an independent system of units 

(3) a maximal independent system of units, 

(4) a fundamental system of units. 

Such a program can be illustrated as follows: L. Bernstein and H. Hasse [1] considered the field         where 

       
 

  with     and they gave a system of units. The result was generalized by F. Halter-Koch and H.-J. 

Stender [6] for     . Based on a work of G. Frei and C. Levesque [4] that ensures the maximality of this system for 

           , H-J Stender studied: 

(1) In [11] (page 211), the case    , where he assumes that      is squarefree. 

(2) In [13], the case     where he assumes that       is free of power fourth. 

(3) In [12] (page 87), the case      where he assumes that      is squarefree. 

                                                           
1 E. Mail: ziane12001@yahoo.fr 
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These assumptions allow him to use directly the Bernstein and H. Hasse units [1] to determine a fundamental unit of 

the quadratic fields             and              and a fundamental unit of the pur cubic field         
   

hence the author determines then a fundamental system of units of the fields         
   and         

  . 

Question: What happens if    contains one     power? 

To partially answer to this question, (based on an idea of C. Levesque, laval University, Quebec- Canada), we 

introduce the parameterizations: 

                                       

Here the plus sign commutes with the minus sign in the expression of    and    , that is to say: 

 

 
                                          

                                         
  

Let 

        

where 

       
                                                  

                                                   
  

And let 

        

where 

       
                                 

                                 
  

In both cases, we have the form                  . In the following, we assume that    is square-free, but the 

   always, contains an nth power,          , unless    , (the case     coincides with the case of Stender. In the 

following we always assume       Obviously,                 
   but    no longer admits a 

parametrization similar to that of   , therefore the Bernstein units [1] are no longer valid. In this paper, we determine a 

fundamental systems of units of the number fields 

         
 

                            
   

and obviously  those of quadratic sub-fields             and             . 

In T. Nagell [7], T. Nagell [8] and H.-J. Stender [15] we find a full theory dealing with the Diophantine equations of 

the form                           in connection with the fundamental unit of a quadratic field; for C = 1, we 

summarize (see [15], theorem 3, page 295):  

Theorem 1.1 Given a solution       of the Diophantine equation                            and AB is 

square-free, such that 

  
 

 
      

 

 
      

 

 
      

 

 
  

then 
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is a fundamental unit>1 of positive norm of the field          . 

Now we give the main results of this section. 

Theorem 1.2 Let t; v be two nonzero positive integers,             Let 

               
         

  

Suppose that    is square-free. Then 

     
  

             
 

is  a fundamental unit of  

            

Proof: Consider the equation  

             

First of all        , indeed: 

Case “-“: Let   an integer such that     and                                              

               . Then                     . 

an then              Thus          

Case “+“: Let   an integer such that     and                                              

               . Then                     . 

             Thus          In addition the equation      has the solution, 

      

 
  
 

  
 

                                 
 

 
      

 

 
 

 

 
                                

  
                                  

 

 
      

 

 
 

 

 
                                       

 

 
      

  

So in both cases, and by theorem 1.1, 

     
  

             
 

is the fundamental unit of the quadratic field             . 

Theorem 1.3 Let t;   be two nonzero positive integers,             Let 

               
          

Suppose that    is square-free.Then 

     
             

  

 

is a fundamental unit of 
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           . 

Proof: Consider the equation 

             

First of all        , indeed: 

Case “-“: Let   an integer such that     and                then                 

But      Then              

Case "+": is such. In addition the equation      has the solution, 

      

 
 
 

 
 

                              

                                       

  
                     +      t :

                                     

  

So in both cases, and by theorem 1.1, 

     
             

  

 

is the fundamental unit of            . 

2. A Fundamental System of Units of          
 

Let the Diophantine equation 

              

with        square-free,       According to Stender [14], we have two possibilities for the fundamental unit of 

       
 : 

Theorem 2.4 Let               . Let (x, y) be a solution of the equation (G). Then 

      
 

    
 

   

is either a fundamental unit, or the square of the fundamental unit of the  field          
    

Now we give the main results of this section. 

Theorem 2.5 Let     be two nonzero positive integers             Let 

               
               

   

Suppose that    is square-free. Then 

    
             

  

 

is either   fundamental unit, or the square of the fundamental unit of the field         
    

Proof: Case “-“: Let t e equat on 
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which has the solution 

                  

Case "+": Let the equation 

                

which has the solution 

                  

In both cases and bay theorem 2.4, 

    
             

  

 

is the fundamental unit, or the square of the fundamental unit of the field     

Let    be a positive integer cube free, then we set        with                    
 

          
 

 

We say that 

(1)       
 

  is of  first kind if 

              

(2)       
 

  is of  second kind if 

              

and by Dedekind [3], we have 

Proposition 2.6  (i) If   is of first kind, then          is an integral basis of          

(ii) If   is of second kind, then  
 

 
                 is an integral basis of       . Moreover each algebraic 

integer of       can be written in the form 
 

 
                  . 

Now, and more precisely, the fundamental unit of the field         
   is given by 

Theorem 2.7 Let t; v be two nonzero positive integers,             Let 

               
               

   

Suppose that    is square-free. Then 

    
             

  

 

is  a fundamental unit of the field         
          

Proof: As     is square free, according to the proposition 2.6,           is an integral basis of           if     is 

of first kind; and  
 

 
   f              is an integral basis of          if     is of second kind. In addition, 

according to the proposition 2.6, each algebraic integer of           can be written in the form 
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(1) Case"-":                                          

                            (2.1)  
 

Suppose that      , where   is a unit of      

(a) Let    is of first kind. Then  

                         

as      , we have 

           (2.2)  

                   (2.3)  

             (2.4)  

Let’s s o  t at  

                                

 

According to (2.3),     and     In addition    ; Indeed, suppose    ; then according to (2.2),     ; 

according to (2.3),               i.e.               but according to (2.4),           ; then we have 

                 i.e. 3|4, a contradiction. According to (2.3),       and according to (2.2),     . Then   and   

have the same sign, i.e.        

According to (2.2), we have 

                              

Then           According to (2.3),         i.e.      .  Then (2.4) becomes 

                 (2.5)  
             

Then              And (2.3) becomes 

                               (2.6)  
 

Then               since        And (2.4) becomes 

                                     (2.7)  
 

But        then, (seeing that        

                        

But                  then 

                       

But 

                             

Then (2.7) implies 

                                    (2.8)  
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which is impossible for        but      whereby that               .   

(b) Let     of the second kind. Then 

  
 

 
                                

As      , we have 

           (2.9)  

 

                     (2.10)  

 

               (2.11)  
 

Then                   The 9 is excluded because    is square free. whether          We have then the 

propriete (**) of first case, and get the equivalent of (2.8), namely 

                                     

which is impossible for        i.e. for all    . 

Whether          according to (2.9),     or    . If      then according to (2.10),      If    , then according to 

(2.11),      Brief,     and    . Let 

    
 

 
         

 

 
                

 

 
  

Then 

  
             (2.12)  

 

        
              (2.13)  

 

        
          (2.14)  

 

Which brings us back again to the same contradiction above. 

(2) Case “+”: As 

              (2.15)  

We derive 

   
     

  
 (2.16)  

Furthermore, 

                             (2.17)  
 

Suppose that        We distinguish two cases. 
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(a) Let     be of the first kind. Then 

                                

Then 

            (2.18)  

 

                  (2.19)  

 

              (2.20)  
 

Let’s s o  t at 

                                                  

 

According to (2.18),         . According to (2.19),        Then (2.20) becomes 

               (2.21)  
 

and       

Let’s s o  t at 

                                 

We have     and     otherwise according to (2.20),              In addition    ; suppose the contrary; 

according to (2.19),                         according to     ,          according to (2.16),    
     

  , Then 

                         
  

     

  
  

which is impossible for       According to (2.18),               then       According to (2.20),     

            then      . Then      The equation (2.19) becomes 

                             (2.22)  

Then 

                       
        

  
     

  
  

which is impossible for        

(b) Let     be of the second kind. Then 

  
 

 
                                

As      , we have 

           (2.23)  

 

                   (2.24)  
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               (2.25)  

According to (2.23),                  .  9 is excluded. Whether           We have then the property      and we 

deduce a contradiction as above. Let         . According to (2.23),       If     , then according to (2.24),    . If 

   , then according to (2.25),    . Let  

    
 

 
         

 

 
           

 

 
   

and we deduce a contradiction as above. 

3. A Fundamental System of Units of        
   

We have    is square-free, the field              
   is of degree 6 over  , in addition it admits a quadratic sub-

field            with fundamental unit      (theorem 1.2), and a cubic sub-field          with fundamental unit 

   (theorem 2.7). For the determination of a fundamental system of units of the field         
  , we use the Stender 

theorem [12]: 

Theorem 3.8 Let      be the fundamental unit of      , and let    be the fundamental unit of     Let          such that 

        
                       

            

and 

        
                    

              

Let       be the smallest unit>1, satisfying: 

        
                    

         

Then 

           

is a fundamental system of d’units of   . 

Let   be a third root of unity,           ; the conjugates      of an algebraic integer   of field           are 

given by: 

 
  
 

  
 

      
       
       

        

        

         

  (3.26)  

 

And according to Stender [12], the product     can be written in the form: 

   
 

 
          

  

 
   

  

 
  

  

   
   

  

   
  (3.27)  

 

with             

Remark 3.9 Since      is square free, then we can take           in (3.27), (see [12] page 80 and page 87). 
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In addition, we have: 

Proposition 3.10 Let   be an algebraic integer of the field          Let   be a unit >1 such that 

        
                   

        

Suppose that       Then 

     
  

    
             

 
           (3.28)  

 

where                           . In addition      and      . 

Now we give the main results of this section. 

Theorem 3.11 Let     be two nonzero integers,             Let 

               
               

   

Suppose that    is square-free. Then 

     
     

     

    
          

       
 

      
     

    

is a fundamental system of units of          
   

Proof:    and     satisfies theorem 3.8, namely: 

        
                       

        

And  

        
                    

         

For  

     
     

     
   

       
      

  
 

where 

   
  

        
 

we have 

             
                      

         (3.29)  
 

Let’s s o  t at    is the smallest unit that verifies (3.29): 

Lemma 3.12 (i) In Case"-", we have 

 
 
 

 
      

  

             

      

  

           

  

(ii) In Case “+”, we have 
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Proof: (   Case “-“: 

            

Since  

                

we deduce 

  

           
             

and 

  

     
                                                  

We have 

     
  

             
 

 

  

 
  

          
   

 

  

              

then 

     

  

            

Similarly 

    
     

     

 
     

  

                                                

Then 

      

  

             

(    Case “+”:     , and just swap    and     

Lemma 3.13 

     

 
 
 

 
     

      

    
           

    
      

     
           

  

Proof: Case “-“ 

     
   

              
  

      
       

      

      
       

      

     
  

On the other hand, according to lemma 3.12, 
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In Case"+", we use lemma 3.12 and the fact that      . 

Lemma 3.14  (i) Case “-“: 

     
   

     
   

       
     

    
  

(ii) Case “+”: 

     
   

     
   

       
    

     
  

Proof: According to (3.26),   
   

   
        

. Then    
   

     
   

 . On the other hand, 

   
   

      
   

 
 
     

   
 

  
     

   
 
 
     

   
 
  

 

and 

   
   

 
 

   
   

   
        

    
   

  
   

 
               

               
     

Then 

   
   

                 
   

 
 

   

We have 

            
    

  
      

    
  

      
    

  
 

Then 

   
   

     
   

     
   

 
 
     

    
  

   

On the other hand, 

   
   

     
   

     
   

  
   

 
   

     
       

    
    

 

  
               

               
 

   
             

  

 

Then 

Case “-“: We  ave      ; then 

   
   

   
      

    
 

   

 
      

  

       
     

    
  

Case “+”:We  ave      ; and 
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Lemma 3.15      is the smallest unit > 1 of field         such that 

         
                      

        

Proof: Argue by contradiction and assume that 

                  

There          because        and      
    . Let    . In specializing       in the proposition 3.10, then for 

        we have 

      
 

    
     

       
   

 
 

    

Case “-“: 

        
      

    
  

such that 

   
   

       
     

    
  

we obtain 

      
     

    
        

     

    
 

 

        
   

         
 

 

  
   

     
    (3.30)  

But 

         
     

    
 

 

       
     

        

 
 

 

       
 

         
 

 

 

          
   

         
 

 

        
     

         
 

 

 

        
 

     
 

 

 

   
   

     
 

 

     
  

     

    
 

     

        

 
 

         
 

Then       , because         , and      because    is an integer. In addition, 
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   (3.31)  

But 

      
     

    
 

 

    

       
   

         
 

 

    

 
   

     
     

 
     

    
  

 

        
 

Then     . 

Case “+”: 

           
 

     
 

 

        
 

     
 

 

  
 

  
  (3.32)  

Then in a analogous manner     . In addition, 

           
 

  
  

        

     

 

        
 

    
 

 

  
 

  
  (3.33)  

Then     . This completes the prof of theorem 3.11. 

4. A Fundamental System of Units of        
   

We assume that    is square-free, the field               
    is of degree 4 over  , in addition it admits a sub-

quadratic field             with fundamental unit      (theorem 1.3). We introduce here the proprieties of fields of 

degree 4 taken follows [9] and [11]. 

Every algebraic integer   of     can be written as form 

  
 

 
           

                                (4.34)  

We denote by 

 
 

      
 

       
       

        

  (4.35)  

 

the four conjugates  . replacing   respectively by                in (4.42), we get 

     
 

 
                       (4.36)  
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                         (4.37)  

                                                                     

     
 

 
                         (4.38)  

 

If in addition   is an algebraic integer such that            then 

      
 

  
         

 

   

    (4.39)  

 

Denote by    the smallest unit >1 of    satisfying the property 

    
   

     (4.40)  
 

then any other unit   of     which satisfies the properties (4.40), is of the form 

    
          (4.41)  

 

writing 

   
 

 
                       with                (4.42)  

then according to (4.40) and (4.41) we have in addition 

       
 

  
        (4.43)  

Theorem 4.16 Let      be the fundamental unit of the quadratic field               and let    be the smallest unit of 

   satisfying     
   

  . If        
       , then 

          

is a fundamental system of unit of   . 

Now we give the main results of this section. 

Theorem 4.17 Let t, v be two nonzero positive integers,           Let  

     
        

  

  
         

Suppose that     is square-free. Then  

      
        

   

  

     
     

     

  

is a fundamental system of units of the quartique real field         
   

Proof: Remains to verify that the unit    satis_es the property (4.40), and that    is of the first kind (i.e.:   

       
        . In fact, 
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is a unit of      of norm 1 because 

    
     

     

                                 

is an algebraic integer such that 

          
     

     

  
      

      

  
      

      

  
       

       

    

Lemma 4.18 Let      
     

     
         

 

 
           

        with     . Assume that      
  with    . 

Then 

1. Case “+”:     
 

   
      

  
 

2. Case “-“:     
 

   
          

      
 

Proof: Since              , then 

     
                            
                           

  

But 

    
     

     

                                 (4.44)  

 

which gives us 

    

 
 
 

 
                      

     

  

  

           
     

  

          

  

then 

    

 
 
 

 
           

   

     
 

  

  

          

          
   

     
 

        

      

  

in fact 

Case “+”: Accord ng to               
     

   
 , and then one applies     . 

Case “-”: Accord ng to      
  

     
 

      

     , according to         

     
 

        

       
, finally 

   

     
 

        

      
 

Then we have 
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According to (4.43) 

       
 

  
        

Then  

       
 

  
 

  
   

     
 (4.45)  

 

replacing 
   

     
, by 

  

  
  n Case “+”  and by 

        

      
  n Case “-“  conclude us ng      

Lemma 4.19 Suppose that    is square free. Then 

     
     

     

  

is the smallest unit of    which satisfies 

    
   

   

Proof: recall that    . We have then 

    
   

  
     

     

  
      

      

    

Argue by contradiction. Then according to (4.41) we have, 

     
            

 

 
                   with      . 

According to lemma 4.18, we have 

(i) Case “+”  

     
 

  
 

    

  

 (4.46)  

Since       then 
 

   
 

 
. Then 

     
 

  
 

    

  

 
 

  
 

    

     
 

 

 
 

    

    
 

But 

 

 
 

    

    
                       

This is true for    . Then for     

     
 

 
 

    

    
   

 

Then     , contradiction with (4.43). the result remains true for        , because for    , just directly replace in 

(4.46). The same for      and    , just replace directly in (4.46). For            , just replace directly in (4.45). 
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In the following, we do not treat the first two values of             because the result is the same by the same 

argument.  

(ii) Case "-", 

     
 

  
 

        

      
 

 

 
  

                  

     
  

 

 
 

  

  
   

Then we have the same contradiction. 

We show that          
         But 

         
      

    

             
 

 

                   

If      then         . According to (4.42), we have 

      
 

 
                                        . 

Using (4.39), we have 

      
 

  
          

    

 

   

 

Then  

     
 

  
               

According to      we have 

Case “+”  

     
 

  
                

 

  
 
  

 
 

   
 
    

 
 

    
 
    

    

Case “-“  

     
 

  
               

 
         

                  
 

 

  
 

      

                  
 

 
  

  
 
   

 
     

 
       

 
 

  
 

 

  
 
   

 
    

   

Then     ; then the same contradiction arises. This completes the demonstration of theorem 4.17. 
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Abstract: The concept of graph theory is therefore perfectly suitable to structure a problem in its initial analysis phases since a 

graph is the most general mathematical object. At the structural level, the nodes represent the objects, the variables… and the arc 

forms the binary relation of influence among them. Many real problems can be modeled as path partition in directed graph that 

played particular role in the operation of arranging a set of nodes especially in case of directed acyclic graph (DAG). We encounter 

such graph in schedule problems, the analysis of language structure, the probability theory, the game theory, compilers…. Moreover 

managerial problem can be modeled as acyclic graphs, also the potential problem has a suitable solution if and only if the graph   is 

acyclic. 

The arc – disjoint paths in a graph has an important application in several areas and needs exact algorithms to find it. In this paper we 

analyze the bounds of path number in directed graph and we give certain properties characterizing directed acyclic graph that permit 

to give a structural representation of such graph. The algorithm used determines the topological ordering in time           . We 

introduce two efficient algorithms that allow the construction of a minimal path-partition, one for the directed acyclic graph with time 

complexity             and the second for the strangely connected tournament having unique Hamiltonian circuit and having time 

complexity      . 

Keywords: Acyclic graph, Path Partition, tournament, Hamiltonian circuit, Adjacency list, Adjacency matrix, canonical ordering, Spanning tree. 

 

1.  Introduction  

In management and economic, combinational problems necessitate a complicated formulation since their solution are 

not easily figured out, need complicated method and are sometime very difficult to set. The graph theory constitutes for 

instance, without any doubts, one of the most important and most efficient theories to model such kind of problem. 

In fact we can use graph as tools to structure relationships among objects, variables etc… where the information can 

be represented in compact form. The concept of graph theory is therefore perfectly suitable to structure a problem in its 

initial analysis phase since a graph is the most general mathematical object. At the structural level (relational level) the 

nodes represent the objects, the variables etc…. and the arcs form the binary relation of influence among them. 

Many real problems can be modeled as path-partition in directed graph that played particular role in the operation of 

arranging a set of points especially in case of directed acyclic graph (DAG). There exists several areas in which DAG 

arise as models e.g. project management, assignment problem network etc….we encounter such graphs in schedule 

problems, the analysis of language structure (Computation theory) the probability theory, the game theory etc… 

moreover managerial problem can be modeled as acyclic graphs. In the other hand the potential problem has a solution 

of certain type if and only if the graph   is acyclic see [17]. 

1.1. Concept of Graph 

                                                           
1 Tel.:+00961 3 288906. 
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The terminologies and notations are those of ([6], [8], [9], [12]). A directed graph is a pair         where   is a 

finite set and   is a binary relation on  . The set   is called the vertex set and its elements are called vertices. The set   

is called the arcs set and its element is called directed edges or arcs. A path is a sequence of vertices              such 

that:             for               . The length of path is the number of arcs in the path. A path   

             forms a circuit if       and the path contains at least an arc. A directed graph with no circuit is called 

acyclic (DAG). 

Let         be a directed graph, for    , we denote by   –    the sub- graph obtained from   by deleting the 

vertex   and the adjacency arcs to it. The out-degree of vertex   denoted   
     is the number of arcs leaving it and in-

degree of vertex x denoted   
    , is the number of arcs entering it. 

From now on we denote: 

  
                   

  
                   

 

  
          

       
     

  
          

       
     

 

A path partition of directed graph         is a set   of arc-disjoint paths such that every arc in   is include in 

exactly one path of  . path my start and end anywhere, and they may be of any length including 0. 

A minimum path partition of   is a path partition of   that use a fewest possible number of paths. The path number of 

directed graph  , denoted     . 

Definition 1.2 

An asymmetric graph is a directed graph such that       is an arc implies       is not an arc. A tournament of order   

denoted          is a complete asymmetric graph on   vertices see [5, 7, 21, 24] 

Definition 1.3 

Let         be a directed graph of order  . If               
       

         
 . We say   has the property 

 . 

2. Results on the path number in directed graph. 

The arc–disjoint paths in a graph has an important application in several areas and needs exact algorithms to find it. 

Alspach and Pullman [4] have conjectured that for any simple graph   of order  ,             , O Brian [22], proved 

this conjecture. From O.Ore [23], we have: 

                
       

     
    

 
 

Thus for a directed graph  , we deduce that: 

            
  

 
  

For a further detailed study of     , we refer also to ( [1], [11]). 

2.1. Path-Partition in Tournaments 

Theorem 1. 

Let          be a tournament of order   then        
     

 
 . 
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The number of arc in tournament   , is given by the following result: 

    
       

     
   

             

Then     
      

 
 

The maximum number of arcs in any path partition is    –    . Thus the minimum number of paths needed to cover 

every arc in    is 
 

 
, since       is an integer, we must have: 

       
     

 
  

From the preceding result and for any tournament   , we deduce then: 

 
     

 
         

  

 
  

Thereafter, we study the tournament    having a unique Hamiltonian circuit. A characterization of    have been 

given by Douglas [13]. 

Theorem 2. 

For    , a tournament          admits a unique Hamiltonian circuit   if and only if the following conditions 

hold: 

(i) There exist a partition of vertices in             

Where                                                       

(ii)    

          

     

(iii)                         

(iv) For                               

(v) If     and     and if           then:           

If       we have a tournament having a unique Hamiltonian circuit and has exactly   –        elementary circuits. 

This tournament will be denoted         . The path                  is a spanning tree and the vertices 

               constitute the canonical ordering of   , and in the following this sequence will be denoted 

            . 

The tournament    is characterized by: 

                                        

A curious fact concerning the number      of tournament    having a unique Hamiltonian circuit is equal to 

    –    
  

 Fibonacci number. Garray [15] shows that for     we have: 

          –     –      –      

Gutin G. [16] provides a characterization allowing to find the number of non isomorphic tournament for       

Paths and circuits are fundamental sub-structure in tournaments see : [5], [10], [19], [25], [26]. 

There is a      algorithm for finding Hamiltonian circuit in a tournaments ([20]). 
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Theorem 3. (I. Abdel Kader [1]). 

Let          be a tournament having a unique Hamiltonian circuit, then               –   . 

For a further detailed study of tournament having unique Hamiltonian circuit and their number, we refer to ([15], 

[16]). 

Property 1        
  

 
    

It is clear that    

                         

           

        

     
     

 
 

but    

         

          –        –                       

   

         

          

Then                            
  

 
      

    

As                                

We have then the equality. 

From the above result, the upper bound of       is the best possible. 

It is important to note that there exist tournaments having a unique Hamiltonian circuit which are not isomorphic to 

   and which satisfy the equality              
  

 
   . An example of this is the tournament    for which     

 . 

Algorithm 1. Path Partition of Tournament          

1 Initialize the number of vertices    of the tournament    
 

2 Determine the canonical ordering             
  of this tournament 

3 Initialize                                

4     

5 while      

6     

7 For    
 

 
         –    

8                                 

9         

10     –     

11 End for 

12                    

13       

14 For         
 

 
  

15                

16 End for 
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17        

18 end while 

Theorem 4 . 

The path partition in tournament    can be computed in       time. 

Proof. 

We not by    the cost of statement           . The algorithm 1 is based on 2 consecutive For Loops. The running 

time of the first For Loop is less than or equal to 
 

 
           , whereas for the second For Loop the running time 

is 
 

 
   . The While Loop implicates that each statement is executed   times. The running time    of algorithm 1 is the 

sum of the running time of each statement executed. Then the worst running time can be expressed as: 

             
 

 
                

 

 
       

Thus            

Application 1 

Consider the tournament    having the spanning tree                    

 

Figure 1. Spanning tree 

Let                                 the set of arc-disjoint paths partitioning the arc of tournament    generated by 

 –     . From    we have the set of paths                                                      that partition the arcs of 

  . 

2.2. Path Partition in Directed Acyclic Graph 

In this section we prove that any directed acyclic graph   satisfies          . This result confirms that the lower 

bound of      is the best possible. The result obtained in this section will be interesting since there exist several 

important application areas in which directed acyclic graph arises as model: project management, assignment problem, 

network, etc… see Abdel Kader [2]. 

In the following we give a short and neat method to take advantage of directed acyclic graphs 

Lemma 1. 

Let         be a graph of order  , if   included in   
    , then   has at least a circuit. 

Proof. 
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Let    be a vertex of graph  , by hypothesis we have          
    , then there exists at least an element      

with      
                 etc… at step            

    , there exists a vertex      with            , if    

is a vertex already encountered we have a circuit if not the process continues and as   is finite, we will have a circuit. 

Theorem 5. 

Let         be an acyclic graph, the following statements are held: 

i.  There exists at least a vertex   such that   
       

ii.  The vertices of   can be arrayed in such a way the index of each vertex is less than the index of its 

successors. 

Proof. 

i.  Assume   
      , for all    , then there exists at least a vertex      such that        

     (for all 

   ), so   is included in   
    , and from lemma 1,   has a circuit, contradiction then our assumption is 

false and there exists at least an    , with   
       

ii.  Let             
                      the sub-graph of   induced by    . The graph    is 

acyclic then there exists at least a vertex        such that:            for certain      , and so on, 

at step   we have the sub-graph              of graph  .    is acyclic then there exists at least a vertex    

such that  
        and            . Thus the vertices of   can be arrayed in such a way that the index of 

each vertex is less than the index of its successors. 

It is obvious that the condition (ii) is equivalent to the fact that   is directed acyclic graph. 

From the previous result we deduce that the vertices of the directed acyclic graph   can be indexed as:            

such that:   
        

         
      where the arcs in   run from left to right. In this way we have a topological 

ordering of graph  . 

Theorem 6. The topological ordering can be computed in          time. 

To prove this result, enumerate the arcs of   one by one, this allows the computation of the in-degree    
      for all 

node   in linear time. Consider the array   that contains all the sources of graph  . Now execute the following 

algorithm, using an auxiliary list    that is initially empty: 

Procedure: Typological Ordering ( ) 

repeat 

for each vertex     do 

for each arc         do 

begin 

  
       

        

If   
       then add j    

end 

print L 

      

      

until      

It is obvious that the computation takes only          total time since every node and every arc appears precisely 

one in the process. 

Theorem 7. 
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Let         be a directed graph of order n and     
 . If   satisfies the following conditions: 

i.   
       

ii.     –         –     (that is   –    has the property  ), 

Then   has the property  . 

Proof. 

    
     

          
    

     , and     –         –    . If       
    

    , then     
       

     and 

    
       

      . Moreover, for       
       

    
     , we have:     

       
     and     

       
    . 

But in   –   , through each vertex       
    

     there pass              
        elementary paths of origin   

which belong to a path partition   of the arcs of the digraph, the cardinal of   being     –    . Among those paths of 

origin  , consider the path        . Since         , the path   allows the construction in   of the path    

         of origin  . Thus the number of paths of origin   in   becomes   
       

     . Moreover, for each   

  
          

    
     , we construct the path       of origin   in  . Let    be the set of elementary paths obtained 

from   by cancelling those paths   which have been used to define the path   of origin   in  . Let   be the following set 

of elementary paths: 

                          
    

                   
          

    
       

It is obvious that the set   partitions the arcs of  , and we have              . 

Therefore          . 

Remark. If we replace the condition     of the Theorem by condition     ,   
      , we get a similar result. Moreover 

the preceding Theorem allows us the construct from a digraph of order    –     satisfying  , another digraph of order   

still satisfying  . 

From this theorem, we deduce the following results: 

Property 2 

Let         be a directed acyclic graph, then: 

          

Proof. 

By recurrence on the number   of vertices, for         the property is true. Assume that it is true for any acyclic 

graph with   –    vertices and prove it for any acyclic graph having   vertices. In   there exists a vertex   such that 

  
      . The sub graph    of   induced by   –    is an acyclic graph with   –    vertices, then from our assumption 

    –         –    . Thus from theorem 7 we have          . 

Remark: If     is the transitive tournament then the vertices of     can be arrayed as: 

               where:     

        –                . 

Property 3 

If    , is the transitive tournament of order  , then                . 

    is an acyclic tournament then from Property 2 we have: 

                 –        –                 



81 
 

This result prove that the upper bound of      is the best possible. 

The following algorithm allows finding a path partition in directed acyclic graph        . 

Algorithm 2. Path Partition     

1 Call Topological ordering     

2 Determine the set   of sinks of graph   

3         

4 Initialize                      

5 While     

6     

7 While     
      

8 If             then 

9              

10      –          

11 Else               

12 End if 

13       

14     –    

15 end while 

Theorem 8. 

The path partition in directed acyclic graph can be computed in       time. 

Proof. 

We not by    the cost of the statement   for       . The statement 1 can be executed in                time 

but the maximal value of     is around           . Then         
 . The algorithm 2 is based on 2 nested While 

Loops. In the worst case the internal While Loops has a running time of               . Since the running time 

of algorithm 2 is the sum of the running time of each statement executed; from the external While Loop of algorithm 2, 

the worst running time      can be expressed as: 

        
                                

        
          

Thus            

Application 2 

Consider the following acyclic graph         
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Figure 2. Acyclic Graph         

The topological ordering of graph   is                  

Let                                         be a set of arc-disjoint paths partitioning      –   . From    we 

have: 

                                               

2.3. Computer Representation 

The particular implementation for the graph  , can have a profound effect on the complexity of algorithm. In the 

following we give the most useful representation, for more details we refer to: [3], [14], [18]. 

2.3.1. Vertex Query Representation 

The first representation use the Adjacency matrix             of graph   is define as follows: 

                                                 

The adjacency matrix requires       storage locations while retaining      time access to its elements. 

We note that the form of adjacency matrix     , depends on the order in which the vertices of   can be arrayed. Then 

we have the following result: 

Theorem 9. 

Two graphs   and    are isomorphic if and only if           . 

Proof. 

If   and    are isomorphic then           if and only if                          if and only if          and 

         . Then            

If             , it is obvious that   and    are isomorphic. 

We deduce then that the order in which the adjacency matrix is written does not have any influence on the result of 

computation. 

2.3.2. Adjacency list representations 

The adjacency list of graph         consists of an array Adj of     lists, one of each vertex    . Adj     contains 

all the vertices     such that:        . We note that in Adj     the vertices are stored in any arbitrary order and are 

usually a more compact representation that the adjacency matrix. The sum of the length of the entire adjacency list is 

   . The adjacency list representation requires          storage locations. 
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The simplicity of a adjacency matrix may make it preferable when graphs are reasonable small. 

If   has a particular representation, it may well be exploited to give a suitable representation in computer storage 

([18]). For example if the graph         is acyclic, from the above theorem the nodes of   can be arrayed in such a 

way that all arc run strictly from left to right; we obtain then the topological ordering of graph  . 

Conclusion 

There exists theoretical and practical reasons for studying special classes of directed graph, and it can be very 

interesting and worthwhile to explore a graph – algorithm problem for special types of graphs. This leads to study the 

very important class, we mean the networks, related to important problems in several field such as: Science, Economic, 

Management, Wireless network etc….. Many real problems can be modeled as path partition problems in directed graph 

especially in the case of network. The problem of constructing of arc-disjoint paths is a hard problem and has been 

studied by several authors. 

In this paper, we give some properties concerning the number      of arc-disjoint paths partitioning the arcs of a 

given graph  , also certain properties characterizing the directed acyclic graph, that allow to give a structural 

representation of such class of graph. The result obtained facilitates the implementation of the given algorithms, so the 

problem of finding minimum arc-disjoint paths is of obvious interest in many network problems. 

For future, research, we plan to study the most important areas related to the problem of arc-disjoint paths such as: 

schedule problems, network etc… especially the wireless sensor network. 

In sensor network, to manage how a sensor node uses its power, we need a power management plan that allows the 

sensor nodes to work together in a power efficiency way, to transfer data in wireless network. In other words the goal is 

to extend the life time of the network by reducing the every use in the routing phase while maintaining a similar level of 

resilience to node failures. To achieve this objective, we need a routing protocol for energy efficiency in real-time 

communication over sensor network, avoiding then each sensor to work on its own. 

The result obtained from these algorithms can be used to provide a reliable transmission of the entire data sent from 

the source to the sink over the available disjoint paths, which will be split into sub-packets corresponding to the number 

of available paths to ensure efficient energy consumption. Actually we work in the implementation of a new method to 

resolve such kind of problems. 

We propose the following conjecture: 

For any strongly connected graph   of order         
  

 
 . 
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1. Introduction 

A Weingarten (or W-) surface is a surface on which there exists a relationship between the principal curvatures. Let   

and   be smooth functions on a surface   in Minkowski 3-space. The Jacobi function        formed with     is 

defined by            
    
    

  where    
  

  
 and    

  

  
. In particular, a surface satisfying the Jacobi condition 

         with respect to the Gaussian curvature   and the mean curvature   is called a Weingarten surface or W-

surface. All developable surfaces         and minimal surfaces         are Weingarten surfaces. Some geometers 

have studied Weingarten surfaces and obtained many interesting results in both Euclidean and Minkowskian spaces 

[1,2,3,4,5,6,7,11,12,13,19,20]. 

A surface    whose points are at a constant distance along the normal from another surface   is said to be parallel to 

 . So, there are infinite number of surfaces because we choose the constant distance along the normal, arbitrarily. From 

the definition, it follows that a parallel surface can be regarded as the locus of point which are on the normals to   at a 

non-zero constant distance   from  .  

In this paper, we study on parallel surfaces of spacelike surfaces which become both ruled and Weingarten surfaces. 

We show that parallel surface of a ruled Weingarten surface is again a Weingarten surface in Minkowski 3-space. Also, 

some properties of that kind parallel surfaces are given in Minkowski 3-space. 

2. Preliminaries 

Let   
  be the three-dimensional Minkowski space, that is, the three-dimensional real vector space     with the metric 

           
     

     
  

where            denotes the canonical coordinates in   . An arbitrary vector   of   
  is said to be spacelike if 

          or      , timelike if           and lightlike or null if           and      . A timelike or light-like 

vector in   
  is said to be causal. For     

  the norm is defined by           , then the vector   is called a 

spacelike unit vector if          and a timelike unit vector if         . Similarly, a regular curve in   
  can locally 

http://www.ntmsci.com/
mailto:cekici@ogu.edu.tr


86 
 
be spacelike, timelike or null (lightlike), if all of its velocity vectors are spacelike, timelike or null (lightlike), 

respectively [15]. For any two vectors              and              of    
 , the inner product is the real number 

                     and the vector product is defined by                                      

       [14]. 

A surface in the Minkowski 3-space   
  is called a spacelike surface if the induced metric on the surface is a positive 

definite Riemannian metric. This is equivalent to saying that the normal vector on the spacelike surface is a timelike 

vector [16]. 

A (differentiable) one-parameter family of (straight) lines             is a correspondence that assigns each     to 

a point        
  and a vector        

        , so that both       and      depend differentiable on  . For each 

     the line    which passes through      and parallel to      is called the line of the family at  . 

Given a one-parameter family of lines              the parametrized surface 

                                     (2.1) 
 

is called the ruled surface generated by the family              The lines    are called the rulings and the curve      

is called a directrix of the surface     The normal vector of surface is denoted by      [16]. 

Theorem 2.1. Using standard parameters, a ruled surface in Minkowski 3-space is up to Lorentzian motions, uniquely 

determined by the following quantities: 

                                  (2.2) 
 

each of which is a function of  . Conversely, every choice of these three quantities uniquely determines a ruled surface 

[13]. 

Theorem 2.2. The Gauss and mean curvatures of spacelike ruled surface   in terms of the parameters         in    
  

are obtained as follows: 

  
  

  
       

 

   
                  (2.3) 

 

where             [4]. 

Definition 2.3. A surface is called a Weingarten surface or W-surface in   
  if there is a nontrivial relation          

or equivalently if the gradients of   and   are linearly dependent. In terms of the partial derivatives with respect to   

and  , this is the equation 

              (2.4) 
 

where   and   are Gaussian and mean curvatures of surface, respectively [4]. 

Theorem 2.4. The ruled surface   is a Weingarten surface if and only if the invariants     and   are constant in   
   

[4]. 

Theorem 2.5. Parameter curves are lines of curvature if and only if           in   
  [14]. 

Lemma 2.6. A point   on a surface   in   
   is an umbilical point if and only if 

 

 
 

 

 
 

 

 
 (2.5) 

[10]. 

Definition 2.7. Let   and    be two surfaces in Minkowski 3-space. The function 
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is called the parallelization function between   and    and furthermore    is called parallel surface to   in   
   where 

  is a given positive real number and   is the unit normal vector field on   [8]. 

The representation of points on    can be obtained by using the representations of points on   in Minkowski 3-

space. Let   be the position vector of a point   on   and    be the position vector of a point      on the parallel 

surface   . Then      is at a constant distance   from   along the normal to the surface  . Therefore the 

parametrization for    is given by 

                       (2.6) 
 

where   is a constant scalar and   is the unit normal vector field on   [17]. 

Theorem 2.8. Let   be a surface and    be a parallel surface of   in Minkowski 3-space.  Let         be the 

parallelization function. Then for         

1.               

2.                

3.   preserves principal directions of curvature, that is 

          
 

    
      

where     is the shape operator on     and   is a principal curvature of   at   in direction   [8]. 

Theorem 2.9. Let   be a surface and    be a parallel surface of   in Minkowski 3-space. Let         be the 

parallelization function. Then   preserves becoming umbilical point on the surface    in Minkowski 3-space [18]. 

Theorem 2.10. Let   be a spacelike surface and    be a parallel surface of   in   
    Then we have 

   
 

         
        

    

         
 (2.7) 

 

where Gaussian and mean curvatures of   and    be denoted by  ,   and   ,    respectively [17]. 

Corollary 2.11. Let   be a spacelike surface and    be a parallel surface of   in   
 . Then we have 

  
  

           
         

      

           
 (2.8) 

 

where Gaussian and mean curvatures of   and    be denoted by     and   ,    respectively [17]. 

Theorem 2.12. . Let   be a spacelike surface and    be a parallel surface of   in   
 . Parallel surface of a spacelike 

developable ruled surface is again a spacelike ruled surface [17]. 

Theorem 2.13. Let        be a spacelike surface in   
  with          . Then the parallel surface 

                       

is a developable ruled surface while one of the parameters of parallel surface is constant and the other is variable [17]. 

Corollary 2.14. Let   be a spacelike ruled surface and    be a spacelike parallel surface of   in   
 . The Gaussian and 

mean curvatures, respectively,    and    are as follows: 

   
  

                              
 (2.9) 
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 (2.10) 

 

in terms of the parameters         [17]. 

3. Parallel surfaces of spacelike ruled Weingarten surfaces in   
  

Let    be a parallel surface to a surface   in Minkowski 3-space. If there is a nontrivial relation as 

           (3.1) 
 

between the Gaussian curvature    and the mean curvature    of the parallel surface   , the parallel surface    is said 

to be Weingarten surface as in analog to the original surface. In other words, if jacobi determinant as a relation between 

the Gaussian curvature    and the mean curvature    of the parallel surface    vanishes, the following condition for 

parallel Weingarten surfaces 

             
  

   
 

  
   

     
   

    
   

    (3.2) 
 

is obtained. 

Theorem 3.1. Let   be a developable spacelike ruled surface in   
 , then parallel surface    of   is a spacelike 

parallel ruled Weingarten surface. 

Proof. From Theorem 2.11, Parallel surface of developable spacelike ruled surface   is again a developable spacelike 

ruled surface. Therefore, Gaussian curvature of parallel surface    vanishes since       for  . It means that the 

surface is a Weingarten surface. 

Theorem 3.2. Let        be a spacelike surface in   
  with          . Then the parallel surface 

                        

is a ruled Weingarten surface while one of the parameters of parallel surface is constant and the other is variable. 

Proof. The surface         is a developable spacelike ruled surface from Theorem 2.12, hence    vanishes by putting 

      in Theorem 2.10. Consequently, the surface is also Weingarten surface. 

Theorem 3.3. Let    be a parallel surface of a spacelike ruled surface   in Minkowski 3-space. If   is a Weingarten 

surface if and only if    is a Weingarten surface. 

Proof.    : If   is a spacelike ruled surface in   
 , then we have to show the equation (3.2) by using the equation 

(2.4). First, using the expressions of (2.7) in (3.2), we have 

  
   

    
   

   
 

         
 
 
 

    

         
 
 
  

 

         
 
 
 

    

         
 
 

                                        
                                        (3.3) 

 

where    
 

            
. If we make computations in (3.3), we get  

 

  
   

    
   

                                                 
2 3     2−2 3      +2      +2 2     −2 3      +2 3 2    +2      + 2
     − 2     −    −2 3 2    +2 2     −2 3 2    +2 3      −2      − 
2     +2 3      −     .  

(3.4) 
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After making arrangements in (3.4), the equation becomes as 

  
   

    
   

  
 

            
                                            (3.5) 

 

Later, using (2.4) in (3.5), 

  
   

    
   

    (3.6) 
 

is found. Parallel surface    is a Weingarten surface since (3.6). 

   : Conversely, let     be a Weingarten surface which is parallel to a spacelike ruled surface, then it satisfies (3.2). 

Hence, the equation (2.4) has to be shown. First, using the expressions of (2.8) in (2.4), we have 

           
  

            
 
 

      

            
 
  

  

            
 
 

      

            
 
      

  

2      −2      .   −    − 2     + 2     −   +2      −2      .   −    − 2
     + 2       

(3.7) 

 

where    
 

              
  If we make computations in (3.6), we get 

               
   

     
   

        
   

        
   

        
   

         
   

  
2 3  2      +2 3          −2         +2 2        +2 3          −2 3  2 
     −      +       + 2        − 2        −2         +2 2        +2 3  
2      −2 3          +2         −2 2        −2 3          +2 3  2      .   

(3.8) 

 

Making arrangements in (3.8), we get the following equation: 

          
 

              
    

   
    

   
          

   
    

   
          

   
    

   
   

2 2  (      −      ).  
(3.9) 

 

By using (3.2) in (3.9) 

            (3.10) 
 

is found. Since (3.6), spacelike ruled surface   is a Weingarten surface. 

Corollary 3.4. The surface    which is parallel to spacelike ruled surface   is aWeingarten surface if and only if the 

invariants       which determine spacelike ruled surface   are constant. 

Proof.    : Let parallel surface    be a Weingarten surface. Then from Theorem 3.3, spacelike ruled surface   is also 

a Weingarten surface. Hence, the invariants       are constants from Theorem 2.4. 

   : Let the invariants       be constants, then spacelike ruled surface   is a Weingarten surface from Theorem 

2.4. The parallel surface    is also a Weingrten surface from Theorem 3.3. 

Corollary 3.5. Let the surfaces   and    be, respectively, spacelike ruled Weingarten surface and its parallel surface in 

  
 . Then, there is the relation 

      
 

 
    (3.11) 

 

among Gauss    and mean    curvatures of spacelike parallel Weingarten surface    and Gauss   and mean   

curvatures of spacelike ruled Weingarten surface  . 

Proof. We will use the values of the curvatures    and    given in (2.9) and (2.10). Let 

                                  (3.12) 
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By using (3.12) in (2.9), we get 

  
  

  
 (3.13) 

 

or 

  
                       

   
 (3.14) 

 

is found. From (3.13) and (3.14), 

                                (3.15) 
 

is obtained. By using the expressions of Theorem 2.2 in (3.15), we have 

   
         

   
   (3.16) 

 

By using the expressions of Theorem 2.2 in (3.16), we get 

      
 

 
     

Lemma 3.6. Let   be a non-developable spacelike ruled surface and    be parallel surface of   in   
 . Then there is no 

umbilical point on spacelike parallel Weingarten surface   .  

Proof. Let spacelike ruled Weingarten surface   be given as the following parameterization: 

                                                 (3.17) 
 

where      in   
  . From Theorem 2.4, the invariants       have to be constant for ruled surface to become 

Weingarten surface. If there is a umbilical point on spacelike ruled Weingarten surface, from Lemma 2.6, it has to be  

 

 
 

 

 
 

 

 
  (3.18) 

 

Coefficients of first fundamental   for the surface   are as follows: 

                                                (3.19) 
 

Thereby normal vector of the surface   is             . Coefficients of second fundamental    for the 

surface   are obtained as 

                                                         

                   
 (3.20) 

 

and 

            (3.21) 
 

By using (3.19), (3.20) and (3.21) in (2.5), we have 

                       (3.22) 
 

The equation (3.22) means that there is no umbilical point on a non-developable spacelike ruled surface  . Hence 

there is also no umbilical point on parallel surface    of    from Theorem 2.9. 

Example 3.7. Let’s take helicoidal surface given as the following parameterization: 
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                          (3.23) 
 

This surface is a spacelike surface for the interval           . If we compute the values of     and   in Theorem 

2.2 for that surface, then 

                 (3.24) 
 

are obtained. The invariants     and   in (3.23) are constant therefore, from Corollary 3.5, parallel surface     is a 

Weingarten surface. The parametric equation of      which is parallel to spacelike ruled Weingarten surface    given in 

(3.23) is obtained as follows 

                
      

     
        

      

     
   

  

     
   (3.25) 

 

The figures 3.1 and 3.2 show, respectively, spacelike ruled Weingarten surface   given in (3.23) and its parallel 

together with the original surface. The blue surface in Figure 3.2 show parallel surface, and the red one is for the 

original surface.  
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1. Introduction 

A dynamical system determines the present state in terms of past states and is described by equations representing the 

evolution of a solution with time, initial conditions and control signals [1]. The Intersections of parabolic orbits play an 

important role in analysis, design and synthesis of control laws in dynamical systems. In an elliptical or circular orbit, 

the planet is moving slower than the escape velocity. One focus of the ellipse is on or near the primary and the second 

focus is on an unoccupied point in space. A planet in this type of orbit will continue to orbit the primary unless another 

force alters its path. All planets and moons in solar system follow this type of orbit. In a parabolic orbit, the planet has 

reached escape velocity. A planet with this type of orbit will never return to orbit the primary again. Also in a 

hyperbolic orbit, which is somewhat more flattened than a parabolic orbit, the planet is moving faster than escape 

velocity. A satellite leaving earth’s orbit will follow parabolic or hyperbolic path [2-8].  

The interactions points on intersection from a parabola orbit to other will be computed in this study. A parabola is 

quadratic function. If the quadratic equations are the solutions of the same differential equation with variable 

coefficients, the points of intersection between orbits give knowledge about the interactions and transitions. 

Furthermore, these equations have two distinct real roots. Hence, the chaotic behaviour of the transition between the 

points of parabolic intersections will be studied by using the methods of Schwarzian Derivative,  Lyapunov Exponent 

and Bifurcation Diagram [9-16]. 

2. The parabolas which are the solutions of differential equation with variable coefficients 

A quadratic function is 2( ) =f x ax bx c  , where x  is path-dependent variable and , , anda b c  are constants. In this 

study, we assume that, > 0a , c  only changes the vertical position. The quadratic equations which have distinct real 

roots, open upward and downward structure are given (1) and (2).  

2

1( ) = ( )f x ax a c x c    (1)  

2

2 ( ) = ( )f x ax a c x c     (2) 

http://www.ntmsci.com/
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 We assume that (1) and (2) are the solutions of second order differential equation with variable coefficients as given 

below,  

'' ( ) ( ) ( ) ( ) = 0f x p x f x q x   (3) 

 We have to verify that if 
1( )f x  and 

2 ( )f x  are the solutions of equation in (3). Further, to determine the coefficients of 

( )p x and ( )q x , we substitute 
1( )f x , 

2 ( )f x , ''

1 ( )f x and ''

2 ( )f x  into the differential equations in (3), and eventually 

obtain (4) and (5)  

''

1 1( ) ( ) ( ) ( ) = 0f x p x f x q x   (4) 

 and  

''

2 2( ) ( ) ( ) ( ) = 0f x p x f x q x   (5) 

 Where ''

1 ( )f x and ''

2 ( )f x  are the second order derivatives of the 
1( )f x  and 

2 ( )f x  respectively. ''

1 ( ) = 2f x a , 
1( )f x , 

quadratic function opens upward and ''

2 ( ) = 2f x a , 
2 ( )f x , quadratic function opens downward (a>0). Variable 

coefficients ( )p x  and ( )q x  are obtained from (4) and (5),  

2

2
( ) = ,p x

x x



 (6) 

2
( ) = ,

c
q x

x
  (7) 

=1.c  (8) 

 If we substitute ( )p x , ( )q x  and c  in to the differential equation with variable coefficients as given (3), the differantial 

equation is therefore,  

2

2 2

( ) 2 2
( )

d f x
f x

xdx x x
 


 (9) 

The solutions of the differential equation in (9) are found as (10) and (11).  

2

1( ) = ( 1) 1f x ax a x    (10)  

2

2 ( ) = ( 1) 1f x ax a x      (11) 

The roots of the parabola equation 1( )f x  are 
1

1 ,
a

 
 
 

, and the roots of the parabola equation 2 ( )f x  are
1

1 ,
a

 
 

 
, where 

a>0.  As shown in Fig.1, the transition points of parabolas affect each other. 

3. Chaotic behaviour on the transition points of parabolas 

3.1. Schwarzian derivative 

Schwarzian derivative is an important criterion for the chaotic behaviour of discrete dynamic systems [9,10]. 

Schwarzian Derivative give some useful information about the behaviour on the transition points of parabolas, 

particularly at their critical points. Negativeness of Schwarzian Derivative is a sufficient condition for it to be chaotic. 

The Schwarzian derivative is given by,  
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2
''' ''

' '

( ) 3 )
( ) =

2( ) ( )

f x f x
Sf x

f x f x

 
  

 
       (12)     

 where ' ( )f x , '' ( )f x , ''' ( )f x  denote the first, second and third order derivatives of the ( )f x  at x , respectively. If 

( ) < 0, ( )Sf x f x  will have a chaotic behaviour on x  and a values. Schwarzian Derivatives (13), (14) of functions, 

1( )f x  and 
2 ( )f x  as given (10) and (11) that are solutions of the differantial equation (9) are calculated bu using (12). 2-

dimensional shapes are given in Fig. 2 and Fig. 3.  

2

1 2

6
( ) =

(2 1)

a
Sf x

ax a


 
 (13) 

 
2

2 2

6
( ) =

(2 1)

a
Sf x

ax a


 
 (14) 

Schwarzian Derivatives 
1( )Sf x  and 2 ( )Sf x  of 

1( )f x , and 
2 ( )f x  approach to highly chaos, between 0x   and 1x   in 

x-axis while a  is getting greater.  

3.2.  Sensitive dependence on initial conditions 

Lyapunov exponents of a dynamical system provide a quantitative measure of its sensitivity to initial conditions. The 

average rate of convergence or divergence of the system along the axes in phase space gives Lyapunov Spectrum of the 

map. We focus on the calculation of Lyapunov exponents in the current context of one-dimensional discrete maps. The 

Lyapunov exponent measures the exponential rate at which neighboring orbits are moving apart. It is determined by 

averaging the natural logarithm of the derivative evaluated along an orbit.  If a dynamical system has sensitive 

dependence on initial conditions that is a typical 
0x  is a sensitive point, then it cannot be used to predict for large time, 

because there are errors in numerical calculations. Hence this is an important concept for chaos. More precisely, let 

( )f x  be a map on R , a point 
0x  has sensitive dependence on initial conditions, if there is a constant > 0d , such that 

for any ( ) > 0n , there is an x  satisfying 
0| |< ( )x x n  and an integer k , such that 

0| ( ) ( ) |k kf x f x d . Let kf  

denotes the k th iterate of ( )f x  . For simplicity, we call such a point 
0x  a sensitive point. If the initial condition is 

unstable, small errors or perturbations in the state would cause the orbit to move away from the fixed point.  

We focus on the calculation of Lyapunov exponents in the current context of one-dimensional discrete maps [11-15]. 

Lyapunov exponents measure the rate of divergence of orbits originating from arbitrarily close initial conditions. That 

is, they measure a system’s sensitivity to its initial conditions. A positive Lyapunov exponent indicates that the system 

is chaotic. 1( )f x  and 2 ( )f x , which are the solutions of the same non-linear dynamic system by given in (9) with initial 

condition 
0x . Examine a small perturbation of this starting point, defined by 

0 0x  , where the initial separation 
0  is 

assumed to be very small. Suppose n  is the separation after n  iterations of the system. If 
0| | | | n

n e   , then   is 

called a Lyapunov exponent. Lyapunov exponents can be found, for a trajectory starting at 
0x , from the limit. The 

exponents are described as [15],  

1

=0

1
= [ | ( ) |]lim

n

i
n i

ln f x
n






  (15) 

 n is the number of iteration of the dynamical system and 
0x  is the initial condition. Further details can be found in [15]. 

It is clear from (15) that ìs depends on the starting point 0x . In practice, the value of   converges after a few hundreds 

iterations:  

1

=0

1
| ( ) |

N

i

i

ln f x
N




   (16) 
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 < 0 , the system attracts to a fixed point or stable periodic orbit. These systems are non conservative (dissipative) and 

exhibit asymptotic stability. = 0 , the system is neutrally stable. Such systems are conservative and in a steady state 

mode. They exhibit Lyapunov stability. > 0 , the system is chaotic and unstable. The exponents of
1( )f x  and 

2 ( )f x  

are given by (16), 

1

1

=0

1
( ) | 2 ( 1) |

N

i

i

a ln ax a
N




    (17) 

1

2

=0

1
( ) | 2 ( 1) |

N

i

i

a ln ax a
N




     (18) 

 Fig. 4 shows the Lyapunov exponent computed for the map with a  ranging from 0 to 2. For each value of a , (17) and 

(18) is estimated using =1000N , with an initial starting point of 
0 = 0.5x . This spectrum is invariant in a basin of 

attraction, and so will only vary in different regions of stability. In the current case, the signal is entirely chaotic, and 

then undergoes periodic transitions from chaos to stability, as a  increases. Fig.4 shows the Lyapunov exponent 

computed for the 
1( )f x  and 

2 ( )f x , for 0 < < 2a . We notice that   remains negative for <1.6a , and approaches 0 at 

the period doubling bifurcation.  

A bifurcation diagram gives the value and stability of the steady state and periodic orbits. In bifurcation diagram, for 

each value of a  is reported the local maximum of values of 
nx . The transition from one regime to another is called a 

bifurcation [16]. A point in a bifurcation diagram where stability changes from stable to unstable is called a bifurcation 

point. A bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a 

system causes a sudden qualitative or topological change in its behaviour.A bifurcation is a sudden change in the 

number or nature of the fixed and periodic points of the system[17].  Fig.5 shows the stability of the solution as a 

function of a , and then its transition to unstable and chaotic behaviour. One way of summarizing the range of 

behaviours encountered when a increases is to construct a bifurcation diagram. Such a diagram gives the value and 

stability of the steady state and periodic orbits (Fig.5). In this diagram, for each value of a  is reported the local 

maximum of values of 
nx . The transition from one regime to another is called a bifurcation. Further system parameter 

changes are shown to result in even more extreme changes in behaviour, including higher periodicity, quasiperiodicity 

and chaos. Let 
1 1( ) = ( , )f x f x a  and 

2 2( ) = ( , )f x f x a , where a is a scalar parameter. The variable x  is on the vertical 

axis, and the bifurcation parameter a  is on the horizontal axis. As shown in Fig.5, transitions start between parabolas 

which is given (10) and (11) that are different solutions of one differential equation (9) with variable coefficients, when

x  goes to 0.5 and  a  is greater than 1.6. 

4. Conclusion 

In this paper, we present a approach for the characterization of the points on parabolic intersection seams as either 

local minimum or saddle points using same second order differential equation. The curvilinear coordinates are 

conceptually important, they also give rise to additional practical applications; electromagnetic coupling, vibration, 

turbulence, absorption, molecular motions. The parabolic intersections are not isolated points but rather are part of an 

extended seam of geometries where the energy of two states varies while preserving their degeneracy. Finally, the 

chaotic behaviour of strong interactions of parabolic intersections can be determined by using the methods of 

Schwarzian Derivative, Lyapunov Exponent, Bifuracation Diagram and these methods show good results. 
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Figure  1: The Interactions Between Surfaces of Parabolic Intersections,
1 2( ), ( )f x f x , for various a  
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Figure  2: Schwarzian Derivative of 
1( )f x  for various a  

  

   

Figure  3:  Schwarzian Derivative of 
2 ( )f x  for various a  

  

   

 

   

Figure  4:  The Lyapunov Exponent for 1 20 < < 2, ( ) ( )a f x and f x  for 0 = 0.5x  
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Figure  5:  Bifurcation Diagram for 
1( )f x  and 

2 ( )f x  for 0 = 0.5x  
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1.  Introduction  

A non-flat n -dimensional Riemannian or a semi-Riemannian manifold ( , )M g ( 2)n   is said to be an Einstein 

manifold if the condition 

( , ) ( , )
r

S X Y g X Y
n

                                                                                              (1.1)       

holds on M , where S and r  denote the Ricci tensor and the scalar curvature of ( , )M g , respectively. 

Einstein manifolds play an important role in Riemannian Geometry, as well as in general theory of relativity. For this 

reason, these manifolds have been studied by many authors. 

A non-flat n -dimensional Riemannian manifold ( , )M g  ( 2)n   is defined to be a quasi-Einstein manifold if its 

Ricci tensor S of type (0, 2) is not identically zero and satisfies the following condition 

( , ) ( , ) ( ) ( )S X Y ag X Y bA X A Y                                                                                        (1.2) 

where ,a b  and A  is a non-zero 1-form such that 

( , ) ( )g X U A X                                                                                                                     (1.3) 

for all vector fields X on M , [4]. Then A  is called the associated 1-form and U  is called the generator of the 

manifold. 

Also M.C. Chaki and R.K. Maity [1] studied the quasi-Einstein manifolds by considering a  and b as scalars such 

that 0b   and U  as a unit vector field. 

In 2008, U.C. De and A.K. Gazi [2] introduced the notion of nearly quasi-Einstein manifold. A non-flat n -

dimensional Riemannian manifold  ( , )M g ( 2)n   is called a nearly quasi-Einstein manifold if its Ricci tensor S of 

type (0,2) is not identically zero and satisfies the following condition 

http://www.ntmsci.com/
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( , ) ( , ) ( , )S X Y ag X Y bE X Y                                                                                            (1.4) 

where a  and b are non-zero scalars and E  is a non-zero symmetric tensor of type (0,2). 

Then E is called the associated tensor and a  and b are called the associated scalars of M . An n -dimensional nearly 

quasi-Einstein manifold is denoted by (QE)nN . An example of 
4( )N QE  has been given in [2]. 

The nearly quasi-Einstein manifolds have also studied by A.K. Gazi, U.C. De [5], D.G. Prakasha, C.S. Bagewadi [7] 

and R.N. Singh, M.K. Pandey, D. Gautam [8]. 

In [8], R.N. Singh, M.K. Pandey, D. Gautam consider a type of nearly quasi-Einstein manifold whose associated 

tensor E of type (0,2) is in the form  

( , ) ( ) ( ) ( ) ( )E X Y A X B Y B X A Y                                                                                       (1.5) 

where A  and B  are non-zero 1-forms associated with orthogonal unit vector fields V and U , i.e.,  

( , ) 1, ( , ) 1 and ( , ) 0.g U U g V V g U V                                                                    (1.6) 

These vector fields are defined by 

   ( , ) ( ), ( , ) ( )g X U A X g X V B X   

for every vector field X . 

In the present paper, we consider a special type of nearly quasi-Einstein manifold, (QE)nN , whose associated tensor 

E  is of the form (1.5) with the condition (1.6). Some theorems about this manifold are proved and some properties are 

obtained. 

2. A Special Type Nearly Quasi-Einstein Manifold 

In this section, we consider a special type of (QE)nN  whose Ricci tensor satisfies the conditions (1.5) and (1.6), i.e., 

it satisfies the following condition 

( , ) ( , ) [ ( ) ( ) ( ) ( )]S X Y ag X Y b A X B Y B X A Y                                                                      (2.1) 

where A  and B  are non-zero 1-forms, a  and b  are non-zero scalars. 

Definition 1.  A vector field   in a Riemannian manifold M  is called torse-forming if it satisfies the following 

condition 

( )X X X                                                                                                                    (2.2) 

where X TM ,   is a linear form and   is a function, [10]. 

In the local transcription, this reads 

h h h

i i i                                                                                                                        (2.3) 

where 
h  and 

i  are the components of   and  , and h

i  is the Kronecker symbol. 

A torse-forming vector field   is called  

i)  recurrent, if 0  , 
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ii)  concircular, if the form 
i  is a gradient covector, i.e., there is a function ( )x  such that ( )d x  , 

iii) convergent, if it is concircular and . ( ).const exp   

Therefore, recurrent vector fields are characterized by the following equation 

( ) .X X                                                                                                                            (2.4) 

Also, from the Definition 1, for a concircular vector field  , we get 

( ) ( , )Y X g X Y                                                                                                                (2.5) 

for all , .X Y TM  

Theorem 2.1. Let 
nV   be a  

n
N QE  satisfying the condition (2.1) and let U  and V  be the vector fields corresponding 

to the associated 1-forms A  and B , respectively. Thus, the vector fields U  and V cannot be concircular vector fields. 

Proof. We consider a special type  
n

N QE satisfying the condition (2.1).  Let U  and V  corresponding to the 

associated 1-forms A  and B be concircular vector fields, respectively. In local coordinates, thus we have 

i j ijA g                                                                                                                               (2.6) 

and 

i j ijB g      (2.7) 

where   and   are non-zero scalar functions. 

Taking the covariant derivative of the condition ( , ) 1g U U  , it is found that 

( ) 0i

j iA A                                                                                                                            (2.8) 

where i ih

hA g A  and h  is the arbitrary choice for indexing and the summation runs from 1 to n. 

Multiplying (2.6) by jA  and using the equation (2.8), we get 

0iA   

which contradicts to the fact that   is a non-zero scalar function and A  is a non-zero 1-form. Similarly, it can be 

shown that the generator V cannot be a concircular vector field. In this case,  
n

N QE  satisfying the condition (2.1) 

does not admit concircular vector fields U  and V  corresponding to the associated 1-forms A and B , respectively. 

Hence, the proof is completed. 

Definition 2.  A quadratic conformal Killing tensor is defined as a second order symmetric tensor T  satisfying the 

condition 

( )( , ) ( )( , ) ( )( , ) ( ) ( , )

( ) ( , ) ( ) ( , )

X Y ZT Y Z T Z X T X Y X g Y Z

Y g Z X Z g X Y



 

     

 
                                        (2.9)                

where  is a 1-form, [9]. 

Now, we consider a  
n

N QE  admitting a generator vector as a torse-forming vector field and the other be not. If we 

assume that the generator U  is a torse-forming vector field, then we have from (1.6) and (2.3) 
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( )j i ij i jA g A A                                                                                                              (2.10) 

where   is a scalar function. 

Taking the covariant derivative of the condition ( , ) 0g U V   and using the equation (2.10), it can be seen that 

( ) .i

k i kA B B                                                                                                                   (2.11) 

By the aid of (2.9), (2.10) and (2.11), we prove the following theorem. 

Theorem 2.2. Let 
nV  be a  

n
N QE  satisfying the condition (2.1) and admitting the Ricci tensor as a quadratic 

conformal Killing tensor. If the vector field U  generated by the 1-form A is a torse-forming vector field and the other 

vector field V  generated by the 1-form B is not, then the vector field V  is divergence-free. 

Proof. Suppose that the Ricci tensor of a  
n

N QE  satisfying the condition (2.1) is a quadratic conformal Killing tensor. 

In this case, in local coordinates, we have from (2.9) 

k ij i jk j ki k ij i jk j kiS S S g g g                                                                           (2.12) 

where  is a 1-form. 

Taking the covariant derivative of (2.1), we get 

( )

(( ) ( ) ( ) ( ))

k ij k ij k i j j i

k i j i k j k j i j k i

S a g b A B A B

b A B A B A B A B

   

       
                                             (2.13) 

where a  and b  are the associated scalars of this manifold and k ka a  , k kb b  . 

If the vector field U  generated by the 1-form A  is a torse-forming vector field, then we have the relation (2.10). 

Changing the indices by cyclic in (2.13), using (2.10) and (2.12), it can be obtained that 

( 2 ) ( 2 ) ( 2 )

( ) ( ) ( )

( ( ) ( ) ( ) ( ) ( ) ( ))

2 ( ) 0.

k k k ij i i i jk j j j ik

k i j j i i j k k j j k i i k

i k j j k i j i k k j i k i j i j k

i k j j k i i j k

a b B g a b B g a b B g

b A B A B b A B A B b A B A B

b A B A B A B A B A B A B

b A A B A A B A A B

     



       

     

           

   

                 (2.14)  

Multiplying (2.14) by 
ijg and considering (2.11), we get 

( 2)( 2 ) 2 ( )

4 2 ( ( ) ( )) 0.

i i

k k k i k k

i i

k i k k i

n a b B b A B A B

b B b A B A B

 



    

     
                                                                  (2.15) 

Moreover, multiplying (2.15) by kA  and kB , respectively, and using the condition (1.6), we obtain the following 

equations 

( 2)( ) 2 2 0k k k

k k k kn a A b B b B                                                                              (2.16) 

( 2)( ) 2 2 0.k k

k k kn a B nb b A                                                                                 (2.17) 

On the other hand, multiplying (2.14) by i j kA A A  and using (2.11), it is found that 

( ) 0.k

k ka A                                                                                                                     (2.18)  
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Multiplying (2.14) by i j kB B A , we find 

( ) 2 0.k k

k k ka A b B                                                                                                       (2.19) 

Since b  is a non-zero scalar function,  from (2.16), (2.18) and (2.19), it can be seen that 

0.k

k B   

Thus, the vector field V  generated by the 1-form B  is divergence-free. This completes the proof. 

Definition 3.  A non-flat n -dimensional Riemannian manifold ( , )M g ( 2)n   is called a generalized Ricci-recurrent 

manifold if its Ricci tensor S  of type (0,2) satisfies the condition 

( )( , ) ( ) ( , ) ( ) ( , )X S Y Z X S Y Z X g Y Z                                                                       (2.20) 

where   and   are non-zero 1-forms, [3]. If 0  , then the manifold reduces to a Ricci-recurrent manifold, [6]. 

Theorem 2.3. Let  
n

N QE  be a generalized Ricci-recurrent manifold. Thus, the vector fields U  and V  generated by 

the 1-forms A  and B  cannot be torse-forming vector fields. 

Proof.  We consider that 
nV  is a  

n
N QE  satisfying the condition (2.1). In this case, in local coordinates, we have the 

equation (2.13) by Theorem 2.2. Let the vector field U  generated by the 1-form A  be a torse-forming vector field and 

the other be not. Then the relation (2.10) is satisfied. If we suppose that 
nV  is a generalized Ricci-recurrent manifold, by 

the aid of (2.10), (2.13) and (2.20), we obtain 

( ) ( )( ) [ ( )

( ) ( ) ( )] 0

k k k ij k k i j j i ik i k j

i k j jk j k i j k i

a a g b b A B A B b g A A B

A B g A A B A B

   



      

      
                                  (2.21) 

where 
k and 

k denote the components of the 1-forms   and  . 

Multiplying (2.21) by 
ijg  and using the condition (2.11), it can be seen that 

.k k ka a                                                                                                                          (2.22) 

Moreover, multiplying (2.21) by i jA A  and using (1.6), we get 

2 ( ) 0.i

k k k k ia a bA B                                                                                               (2.23) 

By the aid of (2.11), (2.22) and (2.23), it is found that 

0kb B   

which contradicts to the fact that b  and  are non-zero scalar functions and B  is a non-zero 1-form. Therefore, the 

vector field U  of this manifold cannot be a torse-forming vector field. By similar calculations it can be easily obtained 

that the vector field V of this manifold also cannot be a torse-forming vector field. Thus, the proof is completed. 

3. A Special Type  
n

N QE Spacetime 

In this section, we will examine 4( )N QE  spacetime which will be denoted by 
4( )N QES satisfying the condition (2.1). 

The Einstein field equations (EFE) without cosmological constant is written as the following form 
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( , ) ( , ) ( , )
2

r
kT X Y S X Y g X Y                                                                                                 (3.1) 

where S is the Ricci tensor, r  is the scalar curvature, g  is the metric tensor, k  is a constant and T  is the energy-

momentum tensor. 

Theorem 3.1.  In a 
4( )N QES  satisfying the condition (2.1), the trace of the energy-momentum tensor is constant if and 

only if the associated scalar a  is constant. 

Proof. Let us consider a 
4( )N QES  satisfying the condition (2.1). From (3.1) and (2.1), it is obtained that 

( , ) ( ) ( , ) ( ( ) ( ) ( ) ( )).
2

r
kT X Y a g X Y b A X B Y A Y B X                                                  (3.2)  

Moreover, using (2.1), the scalar curvature of a 
4( )N QES  is found as 

4 .r a                                                                                                                                      (3.3) 

From (3.2) and (3.3), we have 

( , ) ( , ) ( ( ) ( ) ( ) ( )).kT X Y ag X Y b A X B Y A Y B X                                                          (3.4) 

Contracting (3.4) over X  and Y , we obtain 

4
T a

k
                                                                                                                                   (3.5) 

where T  denotes the trace of the energy-momentum tensor. 

It follows from (3.5) that if the associated scalar a  is constant, then the trace of the energy-momentum tensor is 

constant. The converse is also true. Hence, the proof is completed. 

Theorem 3.2. In a perfect fluid 
4( )N QES  spacetime satisfying the condition (2.1) with the constant associated scalar a , 

the change of the isotropic pressure is proportional to the change of the energy density. 

Proof. In a perfect fluid spacetime, the energy-momentum tensor is in the form 

( , ) ( ) ( ) ( ) ( , )T X Y p X Y pg X Y                                                                                (3.6) 

where   is the energy density, p  is the isotropic pressure and   is a non-zero 1-form such that ( , ) ( )g X V X  for 

all X , V  being the velocity vector field of the flow, that is,  , 1g V V   . Also, 0.p    

Using (3.6) in (3.1) and contracting the resulting equation over X  and Y , and considering the condition  , 1g V V    

and (3.3), it can be seen that 

4
3p a

k
                                                                                                                           (3.7) 

where a  is the associated scalar of the manifold and k  is a constant. 

If the associated scalar a  of 4( )N QES  is constant, then taking the covariant derivative of the equation (3.7) yields 

3 Z Zp                                                                                                                             (3.8) 
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for all vector fields Z . 

Thus, the change of the isotropic pressure is proportional to the change of the energy density. This completes the proof. 
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Abstract: In this paper, numerical solution of Fractional Differential–Algebraic Equations (FDAEs) is studied. Firstly Fractional 

Differential–Algebraic Equations (FDAEs) have been converted to power series and then numerical solution of Fractional 
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1.  Introduction  

Fractional d ifferential equations have gained importance and popularity during the past three decades because of its 

powerful potential applications. The applications of ordinary fractional d ifferential equations or fractional d ifferential -

algebraic equations (FDAE) used in many fields such as electrical networks, control theo ry of dynamical systems, 

probability and statistics, chemical physics, electrochemistry, optics, polymer physics and signal processing can be 

successfully modelled by linear or nonlinear fractional d ifferential equations. Meanwhile, some rich fractional 

dynamical motion which reflect the inherent nature of realistic physical systems are observed. In short, fractional 

calculus and fractional differential equations have played more and more important role in almost all the scientific fields. 

[1,4,5,8,12,13] 

In this paper, the method is applied to solve FDAEs of the form with the initial conditions [11] 

   

 

 

* 1 2 1 2

1 2

, , , ... , , , , ... , , 1, 2, 3, ... , 1, 0, 0 1

, , , ... , 0

0 , 1, 2, 3, ... ,

i

i i n n i

n

i i

D x t f t x x x x x x i n t

g t x x x

x a i n

        



 

 (1.1) 

 

2. Basic definitions 

There are several definit ions of a fract ional derivative of order α > 0 [6], for example. Riemann-Liouville, Grunwald-

Letnikow, Caputo and the generalized functions approach. The most commonly used definitions are those of Riemann -

Liouville and Caputo. We give some basic definitions and properties of fractional calculus theory used in this paper.  

Definition 2.1. A real function 𝑓(𝑥), 𝑥 < 0. is said to be in the space 𝐶𝜇 , 𝜇 ∈ 𝑅 if there exists a real number 𝑝 > 𝜇 such 

that 𝑓(𝑥) = 𝑥𝑃𝑓𝐼
(𝑥) , where 𝑓𝐼

(𝑥) ∈ 𝐶[0,∞). Clearly, 𝐶𝜇 ⊂ 𝐶𝛽 if 𝛽 < 𝜇. 

Definition 2.2. A function 𝑓(𝑥) , 𝑥 < 0. is said to be in the space 𝐶𝜇
𝑚,𝑚 ∈ 𝑁 ∪ {0} if 𝑓(𝑚) ∈ 𝐶𝜇 . 
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Definition 2.3. The Riemann-Liouville fractional integral operator of o rder 𝛼 ≥ 0 of a function, 𝑓 ∈ 𝐶𝜇 ,𝜇 ≥ −1,  is 

defined as [4]. 

𝐽𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡

𝑥

0

, 𝛼 > 0, 𝑥 > 0   (2.1) 

 

𝐽0𝑓(𝑥) = 𝑓(𝑥) (2.2) 
 

The properties of the operator 𝑓𝛼  can be found in [6, 7]: we mention only the following. 

For 𝑓 ∈ 𝐶𝜇 ,𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0 and 𝛾 > −1: 

𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥) (2.3) 
 

𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥) (2.4) 
 

𝐽𝛼𝑥𝛾 =
𝛤(𝛾 + 1)

𝛤(𝛼 + 𝛾 + 1)
𝑥𝛼+𝛾 (2.5) 

 

The Riemann- Liouville derivative has certain disadvantages when trying to model real -word phenomena using 

fractional d ifferential equations. Therefore, we will introduce a modified fractional differential operato r 𝐷∗
𝛼r  proposed 

by Caputo’s work on the theory of viscoelasticity [10]. 

Definition 2.4. The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as  

𝐷∗
𝛼𝑓(𝑥) = 𝐽𝑚−𝛼𝐷𝑚𝑓(𝑥) =

1

𝛤(𝑚 − 𝛼)
∫ (𝑥 − 𝑡)𝑚−𝛼 −1𝑓(𝑚) (𝑡)𝑑𝑡

𝑥

0

, (2.6) 

 

for 𝑚 − 1 < 𝛼 ≤ 𝑚,    𝑚 ∈ 𝑁,   𝑥 > 0,    𝑓 ∈ 𝐶−1
𝑚 . 

Also, we give two basic properties of its in here. [4]. 

Lemma 2.1. If 𝑚 − 1 < 𝑚, 𝑚 ∈ 𝑁  and 𝑓 ∈ 𝐶𝜇
𝑚, 𝑚 ≥ −1, then  

𝐷∗
𝛼𝐽𝛼𝑓(𝑥) = 𝑓(𝑥) (2.7) 

 

𝐽𝛼𝐷∗
𝛼𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓

(𝑘) (0+ )
𝑥𝑘

𝑘!
,      𝑥 > 0

𝑚 −1

𝑘 =0
.   (2.8) 

 

3. Our Method 

Consider the differential-algebraic equations (DAEs) 

( , , ) 0F t x x   
(3.1) ( 

with the initial condition 

0 0( )x t x  
 

where F  and x  are vector functions. The solutions of (3.1) can be assumed that  

0x x et   
(3.2) ( 

where e  is a vector function. Substitute (3.2) into (3.1) and neglect bigger order term. We have the linear equation of  

e  in the form 
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Ae B  
(3.3) ( 

where A  and B  are constant matrices. Solv ing this (3.3), the coefficients of e  in (3.2) can be found. Repeating the 

above procedure for bigger terms, we can obtain the arbitrary order power series of the solutions for (3.1) [1,2,3,9].  

4. Power series of solution for DAEs 

We determine another type of power series in the form 

2

0 1 2 1 1( ) ( ) n

n m mf t f f t f t f p e p e t         (4.1) ( 

where 
1 2, , , mp p p  are constants. 

1 2, , , me e e  are bases of vector e , m  is the size of vector e .  x  is a vector with  

m  elements in (3.2). Every element can be written by the power series in (4.1). 

2

,0 ,1 ,2

n

i i i i ix x x t x t e t      (4.2) ( 

where 
ix  is the i th  element of x . Substituting (4.2) into (3.1), we can get the following expression: 

1

, ,1 1 ,( ) ( )n j n j

i i n i i m mf f p e p e t O t        
(4.3) ( 

where 
if  is  the i th element of ( , , )f t x x in (3.1) and j  is 0  if  ( , , )f t x x  have x , 1 if do not. From (4.3) and (3.3), 

we can determine the linear equation in (3.3) as follows: 

, ,i j i jA P  
(4.4a) 

 

,i i nB f   
(4.4b) 

solving this linear equation, we have  ( 1, , )ie i m . Substituting 
ie  into (4.2), we have  ( 1, , )ix i m  polynomials 

of degree n . Repeating this procedure from (4.4), we can get the arbitrary order power series of the solution for FDAEs 

in (1.1). If we repeat the above procedure, we have numerical solution of FDAEs in (1.1). 

5. Numerical Examples 

To express the effectiveness of the method, we consider the following fractional d ifferential-algebraic equations. All the 

results were calculated by using the Maple software. 

Example 5.1. We consider the following fractional differential-algebraic equation. 

* ( ) ( ) ( ) (1 ) ( ) 0, 0 1,

( ) sin 0

D x t ty t x t t y t

y t t

       

 
 

(5.1) ( 

with initial conditions (0) 1 , (0) 0x y   and exact solutions ( ) sin , ( ) sintx t e t t y t t   when 1.    

From initial condition, the solutions of (5.1) can be supposed as  

0 1 1

0 2 2

( ) ( ) 1

( ) ( )

x t x e t x t e t

y t y e t y t e t

    

   
 

(5.2) ( 

Substituting (5.2) into (5.1) and neglecting higher order terms, we have 
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1

2

2

1 ( ) 0

( 1 ) ( ) 0

e O t

e t O t

  

   
 

(5.3) ( 

These formulae correspond to (4.3). The linear equation that corresponds (4.4) can be given in the following: 

,Ae B  
(5.4) ( 

Where; 

1

2

1 0 1

0 1 1

e
A B e

e

     
       
     

 
 

From Eq. (5.4) we have linear equation 

1

2

1 0 1

0 1 1

e

e

    
    

    
 

 

Solving this linear equation, we have 

1

1
e

 
  
 

 
 

and  

( ) 1

( )

x t t

y t t

 


 

(5.5) ( 

from (5.5) the solutions of (5.1) can be supposed as  

2

1

2

2

( ) 1

( )

x t t e t

y t t e t

  

 
 

(5.6) ( 

In like manner substituting (5.6) into (5.1) and neglecting higher order terms, we have 

2

1

2 3

2

( 3 2 ) ( ) 0

( ) 0

e t O t

e t O t

   

  
 

(5.7) ( 

where 

1

2

2 0 3

0 1 0

e
A B e

e

    
       

     
 

 

From Eq. (5.7) we have linear equation 

1

2

2 0 3

0 1 0

e

e

    
    

    
 

 

By solving this linear equation, we have 

3 / 2

0
e

 
  
 

 
 

Therefore 
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2( ) 1 3 / 2

( )

x t t t

y t t

  


 

 

Repeating the above procedure, we have 

2 3 4 5

6 7

8 5 9

* 1 1.500000000 0.1666666667 0.1250000000 0.0083333333333

0.009722222222 0.00001984126984

            0.0001736111111 0.2755731922 10

( ) t t t t t

t t

t t

x t



     

 

 

 

 

 

3 5 7 5 9* 0.1666666667 0.0083333333333 0.00001984126984 0.2755731922 10( )y t t t t tt    

  

Table 1. Numerical results of the solution in Example 5.1 

 0.5   0.75   1   

t  * ( )x t  * ( )x t  * ( )x t  ( )exactx t  

0.0 1.00000000 1.00000000 1.00000000 1.00000000 

0.1 0.76429238 0.84929941 0.91482085 0.91482076 

0.2 0.75450959 0.80166956 0.85846473 0.85846462 

0.3 0.79031612 0.79789989 0.82947437 0.82947428 

0.4 0.85249500 0.82508727 0.82608746 0.82608739 

0.5 0.93232467 0.87601449 0.84624350 0.84624343 

0.6 1.02420517 0.94545816 0.88759718 0.88759712 

0.7 1.12379061 1.02907565 0.94753775 0.94753768 

0.8 1.22732913 1.12295936 1.02321382 1.02321384 

0.9 1.33139163 1.22343656 1.11156381 1.11156388 

1.0 1.43275528 1.32697596 1.20935035 1.20935043 

 

Table 1 shows the approximate solutions for Eq. (5.1) obtained for different values of  using our method. The results 

are in good agreement with the results of the exact solutions. 

Example 5.2: Consider the following fractional differential-algebraic equation. 

*

( ) ( ) sin

( ) ( ) ( ) sin , 0 1,

tx t y t e t

D x t x t y t t 

  

     
 

(5.8) ( 

with initial conditions (0) 1 , (0) 0x y   and exact solutions in this case  ( ) , ( ) sintx t e y t t  when 1.   

Repeating the above procedure, we have obtained the numerical results shown in Table 2 by using Maple 15 software.  
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Table 2. Numerical results of the solution in Example 5.2 

 0.5   0.75   1   

t  * ( )x t  * ( )x t  * ( )x t  ( )exactx t  

0.0 1.00000000 1.00000000 1.00000000 1.00000000 

0.1 0.76089099 0.83739311 0.90483738 0.90483741 

0.2 0.69092614 0.74943903 0.81873062 0.81873075 

0.3 0.63965013 0.68161285 0.74081815 0.74081822 

0.4 0.59708770 0.62503221 0.67031998 0.67032004 

0.5 0.55999258 0.57601215 0.60653064 0.60653065 

0.6 0.52688938 0.53262381 0.54881712 0.54881163 

0.7 0.49696401 0.49371280 0.49658769 0.49658530 

0.8 0.46970221 0.45851976 0.44932904 0.44932896 

0.9 0.44474480 0.42650762 0.40656968 0.40656965 

1.0 0.42182078 0.39727365 0.36787945 0.36787944 

 

Table 2 shows the approximate solutions for Eq. (5.2) obtained for different values of  using our method. The results 

are in good agreement with the results of the exact solutions. 

6. Conclusion 

In this study, the present method has been extended to solve fractional differential-algebraic equations (FDAEs). Two 

examples are given to demonstrate to powerfulness of the method. The results obtained by the method are in good -

agreement with the exact solutions. The study shows that the method is a reliable technique to solve fractional 

differential–algebraic equations, and offer notable advantages from the points of applicability, computational costs, and 

accuracy. 
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Abstract: The data of real world applications generally cannot be expressed strictly. An efficient way of handling this situation 

is expressing the data as intervals. Thus, this paper focus on the Indefinite Quadratic Interval Transportation Problem (IQITP) in 

which all the parameters i.e. cost and risk coefficients of the objective function, supply and demand quantities are expressed as 

intervals.  A Taylor series approach is presented for the solution of IQITP by means of the expression of intervals with its left and 

right limits. Also a numerical example is executed to illustrate the procedure. 

 Keywords: Quadratic Interval Transportation Problem, Interval coefficients, Taylor Series. 

 

1.  Introduction  

Transportation Problem (TP) has wide practical applications in logistic systems, manpower planning, personnel 

allocation, inventory control, production planning, etc. and aims to find the best way to fulfill the demand of n 

demand points using the capacities of m supply points. The parameters of the transportation problem are unit costs 

(or profits), supply and demand quantities. The unit cost is the coefficient of the objective function and it could 

represent transportation cost, average delivery time of the commodities, number of goods transported unfulfilled 

demand, product deterioration, preference coefficient, and many others. The linear functions are the most useful and 

widely used in operational research. Also quadratic functions and quadratic problems are the least difficult ones to 

handle out of all nonlinear programming problems. A fair number of functional relationships occurring in the real 

world are truly quadratic. For example kinetic energy carried by a rocket or an atomic particle is proportional to the 

square of its velocity, in statistics, the variance of a given sample of observations is a quadratic function of the values 

that constitute the sample. So there are countless other non-linear relationships occurring in nature, capable of being 

approximated by quadratic functions. 

Indefinite quadratic programming problems and Interval Transportation Problem have been extensively studied for 

several decades. A bibliography of Quadratic programming problems can be found in [11]. Using fuzzy triangular 

technique, [1] proposed a fuzzy method to solve interval transportation problems. Interval Fractional Transportation 

Problem (IFTP) in which all the parameters i.e. cost and preference coefficients of the objective function, supply and 

demand quantities are expressed as intervals.  A Taylor series approach is presented for IFTP by means of the 

expression of intervals with its left and right limits in [2]. Sivri et al. [3] proposed a Taylor series based method to 

IFTP whose objective function coefficients are assumed as intervals. Also in [4], a new approach is proposed by the 

variable transformation for a linear fractional programming problem with interval coefficients in the objective 

function. In [5], a fuzzy multi objective linear fractional programming problem is reduced to a single objective 

problem using the Taylor series and an approximate solution is obtained. In [6,9,10,12], the authors studied fixed 

charge indefinite quadratic transportation problems and fixed charge bi-criterion quadratic transportation problems. 

Guzel and Sivri [8] concerned with the multi objective version of transportation problem, and proposed a solution 

procedure based on Taylor series expansion. In [13], using fuzzy technique, a new method is proposed for interval 

transportation problems by considering the right bound and midpoint of interval. Also in [14], fuzzy and interval 

programming technique is presented to deal with inexact coefficient in multi objective programming problem. 

This paper dealt with the IQITP in which all the parameters are expressed as intervals. Expressing the parameters 

as interval makes Decision Maker (DM) more comfortable and this enables to consider tolerances for the model 

parameters in a more natural and direct way. Therefore, IQITP seems to be more realistic and reliable according to 

crisp values. In this paper, we present an iterative procedure based on the Taylor series expansion. Firstly, a feasible 

initial point is determined within the Northwest Corner method by means of expressing all the interval parameters as 

left and right limits. Then the objective function is linearized by using first order Taylor series expansion about the 

feasible initial point. Thus IQITP is transformed a traditional linear programming problem. And then an iterative 

procedure is presented in such a way that the optimal solution of lastly constructed linear programming problem is 

selected as the point where about the objective will be expanded to its first order Taylor series in the next iteration 

http://www.ntmsci.com/
mailto:hsandalman@gmail.com
mailto:halegk@gmail.com
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step. The stopping criterion of the proposed procedure is obtaining the same point for the last two iteration steps. A 

numerical example supports the proposed procedure. 

2. Indefinite Quadratic Interval Transportation Problem 

The mathematical formulation of IQITP can be stated as follows:  

 
1 1 1 1

min , ,
m n m n

L R L R

ij ij ij ij ij ij

i j i j

Z c c x d d x
   

   
          

   
 x       (P1) 

 s.t.        
1

,
n

L R

ij i i

j

x a a


       1, 2, , ,i m         

1

,
m

L R

ij j j

i

x b b


        1, 2, , ,j n  

0ijx     1, 2, , ,i m    1, 2, ,j n .      

ijx  is decision variable which refers to product quantity that transported from supply point i to demand point j. The 

closed interval ,L R

ij ijc c    denotes that the unit transportation cost from i th supply point to j th demand point lies 

between L

ijc  and R

ijc . The closed interval ,L R

ij ijd d    denotes that the depreciation (risk) by transport from i th supply 

point to j th demand point lies between L

ijd  and R

ijd . The closed interval ,L R

i ia a    represent that i th supply quantity 

lies between L

ia  and R

ia . Similarly, the closed interval ,L R

j jb b    represent that j th demand quantity lies between L

jb  

and R

jb  

In the above problem the cost of transporting one unit from i th origin to j th destination is 
1 1

,
m n

L R

ij ij ij

i j

c c x
 

   , but 

while transporting goods can get damaged so the total cost of damaged good is 
1 1

,
m n

L R

ij ij ij

i j

d d x
 

   . Our aim is to 

minimize the two cost simultaneously: therefore we consider the product of two cost. 

We note that the objective function being the product of two affine function is a quasi concave function will have 

its optimal solution at an extreme point. 

Correspondingly to the literature, the model in this paper has the following assumptions: 

 
1 1

m n
L L

i j

i j

a b
 

   and 
1 1

m n
R R

i j

i j

a b
 

   (Balance condition) 

 The parameters , , , , , , ,L L L L R R R R

i j ij ij i j ij ija b c d a b c d  are all nonnegative.  

3. A Taylor Series Approach for IQITP 

To apply the Taylor series approach, we need to specify an initial single point from the feasible region of (P1). 

First interval supply-demand quantities and interval quadratic objective function coefficients are converted into 

deterministic ones by means of the combination of their’s left and right limit in the following way: 

   , 1L R R L L R L

i i i i i i i i i i ia a a a a a a a                1, 2, ,i m .   (1) 

   , 1L R R L L R L

j j j j j j j j j j jb b b b b b b b                 1, 2, ,j n .         (2)   

   , 1L R R L L R L

ij ij ij ij ij ij ij ij ij ij ijc c c c c c c c                 1, 2, , 1, 2, ,i m j n   (3) 

   , 1L R R L L R L

ij ij ij ij ij ij ij ij ij ij ijd d d d d d d d                 1, 2, , 1, 2, ,i m j n   (4) 

where  , , , 0,1i j ij ij     . With these equivalent expression of the interval parameters, (P1) is converted to the 

following IQITP: 

           

1 2

1 1 1 1

1 1 1 1

min ( ). ( )

( ) ( )
m n m n

L R L L R L

ij ij ij ij ij ij ij ij ij ij

i j i j

m n m n

ij ij ij ij

i j i j

Z Z x Z x

c c c x d d d x

c x d x

 
   

   



   
       
   

   
    
   

 

 

                               (P2)     

s.t.        
1

n
L R L

ij i i i i

j

x a a a 


      1, 2, , ,i m   
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    
1

m
L R L

ij j j j j

i

x b b b 


       1, 2, , ,j n   

   0ijx  ,  , , , 0,1i j ij ij     .   1, 2, , ,i m    1, 2, ,j n . 

The main purpose here is to specify an initial feasible point, not an optimal one. Thus, the value of the combination 

parameters , ,i j ij    and ij  ( 1, 2, , ,i m   1, 2, ,j n ) can be chosen arbitrarily from the interval  0,1 . After 

substituting these arbitrary values in (P2), a traditional TP is obtained and then an initial basic feasible solution can 

be determined by Northwest Corner Method which ignores the objective function coefficients and compute a basic 

feasible solution of  TP, where the basic variables are selected from the North – West corner (i.e. top left corner). Let 

denote the initial feasible solution as  (0) (0) (0) (0) (0)(0) , , , ,X x θ λ δ μ . 

Using the first order Taylor series at the feasible point (0)
X ,  the objective function of (P2) can be constructed 

approximately as follows: 

       
(0) (0) (0)

(0) (0) (0)(0)

1 1 1 1 1 1

m n m n m n

ij ij ijij ij ij
ij ij iji j i j i j

Z Z Z
Z Z x x

x
   

 
     

  
      

  
  

X X X

X  

Hence the terms  (0)Z X ,  
(0)

(0)

1 1

m n

ij
iji j X

Z
x

x
 




 ,  

(0)

(0)

1 1

m n

ij
iji j X

Z



 




  and  

(0)

(0)

1 1

m n

ij
iji j X

Z



 




  are 

constant value, all of these do not change the direction of minimization and can be eliminated. The first partial 

derivatives with respect to the variables ijx , ij , ij  in the Taylor series expansion are: 

1 2
2 1 2 1ij ij

ij ij ij

Z ZZ
Z Z c Z d Z

x x x

 
   

  
, 

 1 2
2 1 2

R L
ij ij ij

ij ij ij

Z ZZ
Z Z c c x Z

  

 
   

  
, 

 1 2
2 1 1

R L
ij ij ij

ij ij ij

Z ZZ
Z Z d d x Z

  

 
   

  
. 

Thus, an equivalent form of (P2) can be constructed as follows: 

    

  

(0) (0)

(0)

2 1 2

1 1 1 1

1

1 1

min
m n m n

R L

ij ij ij ij ij ij ij

i j i j

m n
R L

ij ij ij ij

i j

Z c Z d Z x c c x Z

d d x Z





   

 

   

 

 



X X

X

            (0)P3
X

 

s.t.  
1

n
L R L

ij i i i i

j

x a a a 


      1, 2, , ,i m   

  
1

m
L R L

ij j j j j

i

x b b b 


       1, 2, , ,j n   

 0ijx   ,  , , , 0,1i j ij ij     ,  1, 2, , ,i m    1, 2, ,j n , 

 
1 1

m n

i j

i j

a b
 

  .  

We note here that since the objective function does not depend on the variables i  and j , The partial derivatives 

with respect to these variables are equal to zero and so it is not necessary to add these to the objective function. 

The last constraint of equation  (0)P3
X

 guarantees that total demand is certainly met. Thus, IQITP is converted to 

a linear programming problem  (0)P3
X

 which can be easily solve with any computer packages. Let denote the 

optimal solution of equation  (0)P3
X

 as (1)
X . If the objective function of (P2) is expanded to its first Taylor 

polynomial at the new point 
(1)

X , the problem  (1)P3
X

 can be constructed, similarly. Let denote the optimal 

solution of  (1)P3
X

 by (2)
X . The objective value at the point (2)

X  is better than the value at (1)
X . Hence the last 

obtained point is a closer extreme point to the optimal solution of (P2), this procedure can be continued until the last 

point is repeated. So the optimal solution of (P2) is obtained by repeating the given procedure. 

The Taylor series approach can be summarized with the following algorithm: 
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Step 0: (Initialization) After constructing (P2), obtain a feasible initial point (0)
X  with the Northwest Corner Method 

for any value of  , 0,1i j   , 1, 2, , ,i m    1, 2, ,j n . Set 0k  . 

Step 1: (Generating a new point) With the aim of linearizing the indefinite quadratic objective, use first order Taylor 

Series Expansion about the point ( )k
X ,  build and solve the corresponding  ( )P3 k

X
 and obtained its optimal 

solution set ( 1)k
X . 

Step 2: (Stopping criterion) If ( ) ( 1)k kX X  then stop. Otherwise, set 1k k   and go to Step 1. 

4. A numerical example 

Let us consider the following interval objective functions: 

 1 11 12 13 14 21 22 23 24

31 32 33 34

[1, 2] [2, 4] [1,3] [3,5] [0, 2] [2,5] [1, 4] [3, 4]

[0,3] [1, 2] [3,5] [2, 4]

Z x x x x x x x x

x x x x

       

   

x

  2 11 12 13 14 21 22 23 24

31 32 33 34

[2,3] [1, 2] [3,5] [1,3] [0, 4] [1,5] [2,3] [3,5]

[0,5] [0,1] [1,3] [2, 4]

Z x x x x x x x x

x x x x

       

   

x
 

 
4

1

1

18, 24j

j

x



 

,   
4

2

1

10,17j

j

x



 

,

 

 
4

3

1

20, 26j

j

x


  , 

 
3

1

1

10,19i

i

x


  ,   
3

2

1

7,12i

i

x



 

,   
3

3

1

16, 20i

i

x



 

,  
3

4

1

15,19i

i

x


  

0ijx     1, 2, 3i    1, 2,3, 4.j   

After expressing all interval parameters in the form of (1)-(4), corresponding problem (P2) is constructed as 

follows:  

               

       

1 11 11 12 12 13 13 14 14 21 21 22 22 23 23 24 24

31 31 32 32 33 33 34 34

( ) 1 2 2 1 2 3 2 2 2 3 1 3 3

3 1 3 2 2 2

Z x x x x x x x x x

x x x x

       

   

              

      
 

               

       

2 11 11 12 12 13 13 14 14 21 21 22 22 23 23 24 24

31 31 32 32 33 33 34 34

( ) 2 1 3 2 1 2 4 1 4 2 3 2

5 1 2 2 2

Z x x x x x x x x x

x x x x

       

   

              

     
 

 

       

       

       

       

       
11 11 12 12 13 13 14 14 11 11 12 12 13 13 14 14

21 21 22 22 23 23 24 24 21 21 22 22 23 23 24

31 31 32 32 33 33 34 34

1 2 2 1 2 3 2 2 1 3 2 1 2

min 2 2 3 1 3 3 4 1 4 2 3 2

3 1 3 2 2 2

x x x x x x x x

Z x x x x x x x

x x x x

       

       

   

              
 

                
 
       

x

       
24

31 31 32 32 33 33 34 345 1 2 2 2

x

x x x x   

 
 
 
 
      

s.t.

 
4

1 1

1

18 6j

j

x 


 
 

,  
4

2 2

1

10 7j

j

x 


 
 

,    
4

3 3

1

20 6j

j

x 


 
 

            

3

1 1

1

10 9i

i

x 


   ,  
3

2 2

1

7 5i

i

x 


 
 

,  
3

3 3

1

16 4i

i

x 


 
 

,    
3

4 4

1

15 4i

i

x 


   

 0ijx  ,  , , , 0,1i j ij ij     .   1, 2,i     1,2,3j   

Assuming the arbitrary value of i , j  as one for   ,i j  , the following initial feasible solution set (0)
X  is 

determined by Northwest Corner Method:  

(0)

10 7 1 0

0 0 10 0

0 0 5 15

 
 


 
  

x , (0)

0 0 0 0

0 0 0 0

0 0 0 0

 
 


 
  

θ , (0)

0 0 0 0

0 0 0 0

0 0 0 0

 
 


 
  

λ ,  (0) 0 0 0δ ,  (0) 0 0 0μ . 

For the point (0)
X , the values of objective is calculated as (0)1 80Z 

X
, (0)2 85Z 

X
 and so 

   (0) (0) (0)1 2 6800Z Z Z 
X X X

. The corresponding problem  (0)P3
X

 can be written as follows:  
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         

         

         

         

 

(0) (0)

(0) (0)

(0) (0)

(0) (0)

11 2 11 1 11 12 2 12 1 12

13 2 13 1 13 14 2 14 1 14

21 2 21 1 21 22 2 22 1 22

23 2 23 1 23 24 2 24 1 24

31

min 1 2 2 2 1

1 2 3 2 3 2 1 2

2 4 2 3 1 4

1 3 2 3 3 2

3

Z Z Z x Z Z x

Z Z x Z Z x

Z Z x Z Z x

Z Z x Z Z x

   

   

   

   



       

       

     

       



X X

X X

X X

X X

       

         

       

       

(0) (0)

(0) (0)

(0) (0) (0) (0)

(0) (0) (0) (0)

2 31 1 31 32 2 32 1 32

33 2 33 1 33 34 2 34 1 34

11 2 11 12 2 12 13 2 13 23 2 23

33 2 33 34 2 34 11 1 11 12 1 12

1

5 1

3 2 1 2 2 2 2 2

2 2 3

2 2

2

Z Z x Z Z x

Z Z x Z Z x

x Z x Z x Z x Z

x Z x Z x Z x Z

x

  

   

   

   

   

       

   

   



X X

X X

X X X X

X X X X

       (0) (0) (0) (0)3 1 31 23 1 23 33 1 33 34 1 342 2Z x Z x Z x Z     
X X X X

 s.t.

 
4

1 1

1

18 6j

j

x 


 
 

,  
4

2 2

1

10 7j

j

x 


 
 

,    
4

3 3

1

20 6j

j

x 


   

3

1 1

1

10 9i

i

x 


   ,  
3

2 2

1

7 5i

i

x 


 
 

,  
3

3 3

1

16 4i

i

x 


 
 

,    
3

4 4

1

15 4i

i

x 


      

 0ijx  ,  , , , 0,1i j ij ij     .   1, 2,i     1,2,3j  , 

              1 2 3 1 2 3 318 6 10 7 20 6 10 9 7 5 16 4 15 4                   .  

The optimal solution set (1)
X  of the problem  (0)P3

X
 is: 

(1)

0 0 3 15

0 0 13 10

13 7 0 0

 
 


 
  

x , (1)

0 0 0 0

0 0 0 0

0 0 0 0

 
 


 
  

θ , (1)

0 0 0 0

0 0 0 0

0 0 0 0

 
 


 
  

λ ,  (1) 0 0.4286 0δ , 

 (1) 0.3333 0 0 0μ .  

For the point (1)
X , the values of objective  is calculated as (1)1 68Z 

X
, (1)2 50Z 

X
 and so 

   (1) (1) (1)1 2 3400Z Z Z 
X X X

. The next optimal solution set (2)
X  is the same with the previous solution set 

(1)
X , i.e . therefore (2) (1)X X . Thus algorithm ends.The last solution implies following interval values for the two 

objective functions: 

 ( 2)1 68,80Z 
X  

 ( 2)2 50,85Z 
X

. 

5. Conclusion 

In this paper, we deal with IQITP whose objective coefficients and supply-demand quantities are given as 

intervals. In real life applications, this version of indefinite quadratic transportation problem is more realistic and 

reliable according to crisp ones. For the proposed solution procedure, all the interval parameters are handled by 

means of combination of left and right limits. And after determining a feasible initial point with the Northwest 

Corner method, then the indefinite quadratic objective is linearized by using first order Taylor series expansion about 

the feasible initial point. Thus IQITP is transformed a traditional linear programming problem. And then an iterative 

procedure is executed in such a way that the optimal solution of lastly constructed linear programming problem is 

selected as the point where about the nonlinear objective will be expanded to its first order Taylor series in the next 

iteration step. The stopping criterion of the proposed procedure is obtaining the same point for the last two iteration 

step. Finally, a numerical example is provided to illustrate the proposed procedure.  
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The Jacobsthal Sequences in The Groups ,  and 
22n mQ   

Ömür DEVECİ
1
, Gencay SAĞLAM

2 

 1,2Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, TURKEY 
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Abstract: In [8], Deveci et.al defined the generalized order-k Jacobsthal orbit  k

AJ G  of a finitely generated group G A , where 

 1 2, , , kA a a a  to be the sequence  ix  of the elements of G  such that  

       1i ix a   for 0 1,i k    
   

     

2

1

2

2 1

, 2,

, 3

i i

i k

i i k i k

x x k
x

x x x k





   

 
 



 for 0i  .   

The length of the period of the generalized order-k Jacobsthal orbit  k

AJ G  is denoted by  k

ALJ G  and is called the generalized 

order-k Jacobsthal length of G  [8].   

In this study, we obtain the generalized order-k Jacobsthal lengths of the quarternion group 
2nQ , the semidirect product 22n mQ   

and the direct product 22n mQ   for , 3m n  . 

2000 Mathematics Subject Classification: 11B50, 20F05, 20D60, 15A36 

Keywords: Group, Sequence, Length. 

1 Introduction and Preliminaries 

The well-known Jacobsthal sequence  nJ  is defined by the following recurrence relation:  

for 2n   

1 22n n nJ J J                                                                (1.1) 

where 0 10 and 1J J  .  

In [13], Koken and Bozkurt showed that the Jacobsthal numbers are also generated by a matrix 

1 2
= ,

1 0
F

 
 
 

  
1

1

2
= .

2

n nn

n n

J J
F

J J





 
 
 

 

Kalman [11] mentioned that these sequences are special cases of a sequence which is defined recursively as a linear 

combination of the preceding k terms: 

2nQ 22n mQ 

http://www.ntmsci.com/
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0 1 1 1 1n k n n k n ka c a c a c a        , 

where 0 1 1, , , kc c c   are real constants. In [11], Kalman derived a number of closed-form formulas for the generalized 

sequence by companion matrix method as follows: 

0 1 2 2 1

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

k

k k

A

c c c c c 

 
 
 
 

  
 
 
 
  

. 

Then by an inductive argument he obtained that 

0

1 1

1 1

n

nn

k

k n k

a a

a a
A

a a



  

   
   
   
   
   
   

. 

In [15], Yilmaz and Bozkurt defined the k  sequences of the generalized order-k Jacobsthal numbers as follows:  

for 0n   and 1 i k   

1 22 ...i i i i

n n n n kJ J J J      ,                                                 (1.2) 

with initial conditions 

1 if 1- ,
for1 0,

0 otherwise,

i

n

n i
J k n


   


 

where i

nJ  is the thn term of the thi  sequence. If 2k   and 1i   the generalized order-k Jacobsthal sequence is 

reduced to the conventional Jacobsthal sequence. 

In [15], Yilmaz and Bozkurt showed that 

1

1

1 2

2 1

i i

n n

i i

n n

i i

n n

i i

n k n k

J J

J J

CJ J

J J





 

   

   
   
   
    
   
   
   
   

                                                    (1.3) 

where C  is called the generalized order-k Jacobsthal matrix and C  is a k-square matrix as following: 

1 2 1 1

1 0 0 0

0 1 0 0

0 0 1 0

C

 
 
 
 
 
 
 
 

.                                              (1.4) 
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Also, it was obtained that 

1n nB C B    where 

1 2

1 2

1 1 1

1 2

1 1 1

k

n n n

k

n n n

n

k

n k n k n k

J J J

J J J
B

J J J

  

     

 
 
 
 
 
  

.                                       (1.5) 

 
Lemma 1.1 (Yilmaz and Bozkurt [15]). Let C  and 

nB  be as (1.4) and (1.5), respectively. Then, for all integers 0n   

n

nB C . 

Reducing the generalized order-k Jacobsthal sequence  2k   by a modulus m , we can get the repeating sequences, 

denoted by 

   , , , , , ,

1 2 0 1, , , , , , ,k m k m k m k m k m k m

n k k iJ J J J J J   

where  , mod k m k

i iJ J m . It has the same recurrence relation as in (1.2) [8]. 

Theorem 1.1 (Deveci et al [8]). The sequence  ,k m

nJ   2k   is periodic. 

The notation 
,k mhJ  denotes the smallest period of  ,k m

nJ   2k   [8]. 

Theorem 1.2 (Deveci et.al [8]). If p  is a prime such that 2p  , then , a

a

k p

p
hJ C . 

The usual notation  is used for the semidirect product of the group   by   , where  is a 

homomorphism such that and  is an element of .  

The quaternion group 
2nQ ,  3n   are defined by presentation 

1 22 2 2 1 1

2
, : , ,

n n

nQ x y x e y x y xy x
       . 

Let , 3m n   be integers. By the definitions of the direct and semidirect products, we get the following presentations: 

 
1 22 2 2 1 2

22
, , : , , [ , ] [ , ]

n n

n

m

mQ x y z x e y x y xyx z x z y z e
          , 

, 

where if , then  is a homomorphism such that is defined by 

  and  

For more information see [9,10]. 

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. 

The number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence 

, , , , , , , , , , , , ,a b c d e b c d e b c d e  is periodic after the initial element a  and has period 4. A sequence of group elements 

1 2G G  2 1: AutG G 

bb  1 1:b G G   1Aut G

1 22 2 2 1 2 1 1

22
, , : , , , ,

n n

n

m

mQ x y z x e y x y xyx z e z xzx e z yzy e

           

2m z  2 2
: Aut nm Q  ;zz 

2 2
: n nz Q Q 

zx x  1

zy y 
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is simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the 

sequence , , , , , , , , , , , , , , , , , ,a b c d e f a b c d e f a b c d e f  is simply periodic with period 6.  

Many references may be given for some special linear recurrence sequences in groups and related issues; see for 

example, [1-7,9,12,14,16]. Deveci et.al [8] expanded the theory to the Jacobsthal sequence. In this study, we obtain the 

generalized order-k Jacobsthal lengths of the quarternion group 
2nQ , the semidirect product 

22n mQ   and the direct 

product 
22n mQ    , 3m n   for initial (seeds) sets ,y x  and , ,y x z . 

2 Main Results and Proofs 

Definition 2.1. Let 
 1 2

,

, , k

k m

a a a
hJ  denote the smallest period of the integer-valued recurrence relation 

1 22n n n n ku u u u      , 
1 1 2 2, , , k ku a u a u a    when each entry is reduced modulo m .  

Theorem 2.1. Let   and let p  be a prime with 2p  ,  1 2gcd , , , , 1ka a a p   and 

 1 2gcd , , , , 1kx x x p  . Then we have 

   1 2 1 2

, ,

, , , ,k k

k p k p

a a a x x x
hJ hJ . 

Proof. Let ,k p

p
hJ C r  . From (1.3), we can write 

1 1

1 1

n r n

n r n rr

n r k n k

u u

u u
C

u u



   

    

   
   
    
   
   
      

. So, we get 

1 1

1 1

mod

n r n

n r n

n r k n k

u u

u u
p

u u



  

    

   
   
   
   
   
      

, in the natural way. Thus the proof is completes.   

Theorem 2.2.    
12 2,2

, 2

n

ny x
LJ Q hJ



 . 

Proof. The orbit 
   2

, 2ny x
J Q  is 

22 1, , , .
n

y x x
   

It is clear from Theorem 2.1 that this sequence has period 
12,2n

hJ


. 

Theorem 2.3. 
     3 2 3,2

2, , 2
lcm 2 7,n

n m

my x z
LJ Q hJ

   . 

Proof. The orbit 
   3

2, , 2n my x z
J Q   is 

2

2 1

2 3 1 1 6 2 1 13 2 28 60 2 129

2 277 595 3 1 1278 2 1 2745 5896 2 3 12664

, , , , , , , , , ,

, , , , , , .

n

n n

y x z yx z yxz x y z x z yx z xz x z

yx z yxz x y z x z yz x z



 

   

    
 

Using the above information, the orbit 
   3

2, , 2n my x z
J Q   becomes: 

2 1

3 3 3 32 1
14. 3 14 2 14 1 14

0 1 2

2 1 2745 5896 2 3 12664 27201

13 14 15 15

2 1 2 4 1

14 1 14 14 1 14 2

, , , ,

, , , ,

, , , , .

n n

n n
i i i iJ J J Ji

i i i i

x y x x x z

x x z x yz x x z x z

x x z x z y x x z x z

 

 
  

  

   

  

  

   

   

 

1 2 1 2, , , , , , ,k ka a a x x x 
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So we need an i  such that 
14 14 1 14 2, ,i i ix y x x x z    . if we choose 

32ni  , then we obtain 

3 3 3
2 2 22 7 2 2 7 1 2 7

2 2 22 7 2 7 1 2 7 2
, , , ,

n n n

n n n

J J J
x z y x xz x z

      
      

    

where 3

22 7 1n k
J    

 and 3

22 7 2n k
J    

 are even integers and 3

22 7 3n k
J    

 is an odd integer. So, the orbit 
   3

2, , 2n my x z
J Q   can be 

said to form layers of length 
22 7n  . It is easy to see that the orbit has period  2 3,2lcm 2 7,n mhJ  .    

Theorem 2.4. 
     3 3,2

2, , 2
lcm 7,n

m

my x z
LJ Q hJ  . 

Proof. The orbit 
   3

2, , 2n my x z
J Q   is 

2 1

2 1

2 3 2 1 6 2 13 28 60 129

2 277 595 2 1 1278 2 2745 5896 12664

, , , , , , , , , ,

, , , , , , .

n n

n n

y x z yx z yxz yx z x z yz xz z

yx z yxz yx z x z yz xz

 

 




 

Using the above information, the orbit 
   3

2, , 2n my x z
J Q   becomes: 

33 3
01 1

3 3 3
6 7 8

3 33
13 1514

3 3 3
7 1 7 7 1

0 1 2

7 8 9

14 15 15

7 7 1 7 2

, , , ,

, , ,

, , ,

, , , .i i i

JJ J

J J J

J JJ

J J J

i i i

x yz x xz x z

x yz x yz x z

x yz x xz x z

x yz x xz y x z



   

   

  

  

  

  

 

The sequence can be said to form layers of length 42. So we need an i  such that 7 7 1 7 2, ,i i ix y x x x z       . It is easy 

to see that the orbit 
   3

2, , 2n my x z
J Q   has period  3,2lcm 7, mhJ .    

Acknowledgment 

The authors thank the referees for their valuable suggestions which improved the presentation of the paper. This Project 

was supported by the Commission for the Scientific Research Projects of Kafkas University. The Project number. 2011-

FEF-26. 

References 

[1]. C. M. Campbell, H. Doostie and E. F. Robertson, Fibonacci length of generating pairs in groups in Applications of Fibonacci Numbers, Vol. 

3 Eds. G. E.  Bergum et al. Kluwer Academic Publishers, (1990), 27-35. 

[2]. O. Deveci, The Pell-Padovan sequences and the Jacobsthal-Padovan sequences in finite groups, Utilitas Mathematica, in press. 
[3]. O. Deveci, The polytopic-k-step Fibonacci sequences in finite groups, Discrete Dynamics in Nature and Society, 431840-1-431840-12 

(2011). 

[4]. O. Deveci, The k-nacci sequences and the generalized order-k Pell sequences in the semi-direct product of finite cyclic groups, Chiang Mai 
Journal of Science, 40(1) (2013), 89-98. 

[5]. O. Deveci and E. Karaduman, The generalized order-k Lucas sequences in Finite groups, Journal of Applied Mathematics, 464580-1-

464580-15 (2012). 
[6]. O. Deveci and E. Karaduman, Recurrence sequences in groups, LAMBERT Acedemic Publishing, Germany, 2013. 

[7]. O. Deveci and E. Karaduman, The Pell sequences in finite groups, Utilitas Mathematica, in press. 

[8]. O. Deveci, E. Karaduman and G. Saglam, The Jacobsthal sequences in finite groups, Bulletin of Iranian Mathematical Society, is submitted 
in 2012-06-24. 

[9]. H. Doostie and P. P. Campbell, On the commutator lengths of certain classes of finitely presented groups, International Journal of 
Mathematics and Mathematical Sciences, Volume 2006, Article ID 74981, Pages 1-9, DOI 10.1155/IJMMS/2006/74981. 

[10]. D.L. Johnson, Presentations of Groups, 2nd edition, London Math. Soc. Student Texts 15, Cambridge University Press, Cambridge 1997. 

[11]. D. Kalman, Generalized Fibonacci numbers by matrix methods, The Fibonacci Quarterly, 20(1) (1982), 73-76.  

[12]. S.W. Knox, Fibonacci sequences in finite groups, The Fibonacci Quarterly, 30(2) (1992), 116-120. 

[13]. F. Koken and D. Bozkurt, On the Jacobsthal numbers by matrix methods, International Journal of Contemporary Mathematical Sciences, 

3(13) (2008), 605-614. 
[14]. K. Lü and J. Wang, k-step Fibonacci sequence modulo m, Utilitas Mathematica, 71 (2007), 169-178. 

[15]. F. Yilmaz and D. Bozkurt, The generalized order-k Jacobsthal numbers, International Journal of Contemporary Mathematical Sciences, 4(34) 

(2009), 1685-1694.   

[16]. D.D. Wall, Fibonacci series modulo m , The American Mathematical Monthly, 67 (1960), 525-532.  



 
 

*Corresponding author.  
  E- mail address: kfpawar@nmu.ac.in 

 

 

 

 

 
NEW TRENDS IN MATHEMATICAL SCIENCES 
Vol. 1, No. 2, 2013,p. 18-21  -- 
ISSN 2147-5520 - www.ntmsci.com  

 

 

 

A Note on Essential Subsemimodules 

Kishor Pawar 

Department of Mathematics, School of Mathematical Sciences, 

North Maharashtra University, Jalgaon – 425 001 (M.S.) India 

Abstract: Let 𝑀 be an 𝑅-semimodule and 𝑁 non-zero subsemimodule of 𝑀. We say that 𝑁 is an essential subsemimodule of 𝑀, if 𝑁 ∩

 𝐾 ≠  (0) for every nonzero subsemimodule 𝐾 of 𝑀. In this paper we study some useful results on essential subsemimodules and singular 

semimodule of semiring. 

AMS 2000 Subject Classification: Primary 16Y60. 

Keywords: Semirings, Ideals, Semimodules, Essential subsemimodule, Singular subsemimodule etc.  

1 Introduction 

The paper is concerned with generalizing some results in ring theory and module theory. In this paper we will discuss about 

an extension of the notion of an essential subsemimodules of semimodules. The semiring and semimodule are important 

structures that have achieved an importance in recent development of theory as their usefulness to many disciplines has 

been discovered and exploited. Subsemimodules in semimodules are different from submodules in modules in that there are 

several kinds of submodules. In this paper we study some useful results on essential subsemimodules and singular 

semimodule of semiring. There are many different definitions of a semiring appearing in the literature. For definitions and 

properties of semirings, ideals, the reader is referred to [2]. 

Definition 1.1: A semiring is a set 𝑅 together with two binary operations called addition (+) and multiplication (∙) such 

that (𝑅, +) is a commutative monoid with identity element 0𝑅; (𝑅, ∙) is a monoid with identity element 1; multiplication 

distributes over addition from either side and 0 is multiplicative absorbing, that is, 𝑎 ∙ 0 =  0 ∙ 𝑎 =  0 for each 𝑎 ∈ 𝑅 [2]. 

Definition 1.2: A semiring 𝑅 is said to have a unity if there exists 1𝑅  ∈ 𝑅 such that 1 𝑅 ∙  𝑎 =  𝑎 ∙  1 𝑅  =  𝑎 for each 𝑎 ∈ 𝑅 

[2]. 

Definition 1.3: An ideal 𝐼 of a semiring 𝑅 will be called subtractive (𝑘-ideal) if for 𝑎 ∈ 𝐼, 𝑎 +  𝑏 ∈ 𝐼, 𝑏 ∈ 𝑅 imply 𝑏 ∈ 𝐼 [2]. 

For e.g.: The set ℕof non-negative integers with the usual operations of addition and multiplication of integers is a semiring 

with 1ℕ. 

Definition 1.4: Let 𝑅 be a semiring. A left 𝑅-semimodule is a commutative monoid (𝑀, +) with additive identity 0𝑀 for 

which we have a function 𝑅 × 𝑀 → 𝑀  defined by (𝑟, 𝑚)  ↪  𝑟 ∙ 𝑚  and called scalar multiplication which satisfies the 

following conditions for all 𝑟 and 𝑟′ of 𝑅 and all elements 𝑚 and 𝑚′ of 𝑀, 

1. (𝑟 ∙ 𝑟′)𝑚 =  𝑟(𝑟′ ∙ 𝑚) 

http://www.ntmsci.com/
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2. 𝑟 ∙ (𝑚 +  𝑚′)  =  𝑟 ∙ 𝑚 +  𝑟 ∙ 𝑚′ 

3. (𝑟 +  𝑟′) ∙ 𝑚 =  𝑟 ∙ 𝑚 +  𝑟′ ∙ 𝑚 

4. 1𝑅 ∙ 𝑚 =  𝑚 (If exists) 

5. 𝑟 ∙ 0𝑀  =  0𝑀  =  0𝑅  ∙ 𝑚. 

Convention: In this paper all semirings considered will be assumed to be commutative semirings with unity [2]. 

1 Essential Ideal 

Definition 2.1: An ideal 𝐼 of a semiring 𝑅 is said to be an essential ideal of 𝑅 if 𝐼 ∩ 𝐾 ≠ 0 for every nonzero ideal 𝐾of 𝑅 

[1]. 

Notation: We shall denote an essential ideal 𝐼 of a semiring 𝑅 by 𝐼 ⊲∙ 𝑅. 

Proposition 2.2:  If 0 ≠ 𝐾 ⊲∙ 𝐼 ⊲∙ 𝑅 and 𝐾 is the ideal of 𝑅 generated by 𝐾, then 𝐾 is essential ideal of 𝑅 [3]. 

Proof: Let 𝐿 be any nonzero ideal of 𝑅. Since 𝐼 is essential ideal in 𝑅, we have 𝐼 ∩ 𝐿 ≠ 0. Since 𝐾 is essential ideal in 𝐼, we 

must have 0 ≠ 𝐾 ∩ (𝐼 ∩ 𝐿) ⊆ 𝐾 ∩ 𝐿 ⊆ 𝐾 ∩ 𝐿. Thus 𝐾 is essential ideal in 𝑅. 

2 Essential Subsemimodules 

Definition 3.1: Let 𝑀  be an 𝑅 -semimodule and 𝑁  a non-zero subsemimodule of  𝑀 . We say that 𝑁  is an essential 

subsemimodule of 𝑀, if 𝑁 ∩ 𝐾 ≠ (0) for every nonzero subsemimodule 𝐾 of 𝑀. 

Notation We shall denote an essential subsemimodule 𝑁 of an 𝑅-semimodule 𝑀 by 𝑁 ⊆𝑒 𝑀. 

Clearly, that is equivalent to say 𝑁 ∩ 𝑅𝑥 ≠ (0) for any nonzero element 𝑥 ∈ 𝑀. So in particular, a nonzero left ideal 𝐼 of 𝑅 

is an essential left ideal of 𝑅 if 𝐼 ∩ 𝐽 ≠ (0) for any nonzero left ideal 𝐽 of 𝑅, which is equivalent to the condition 𝐼 ∩ 𝑅𝑥 ≠

(0) for any nonzero element 𝑟 ∈ 𝑅. 

Proposition 3.2: Let 𝑀 be a left 𝑅-semimodule. Any subsemimodule of 𝑀 which contains an essential subsemimodule of 

𝑀 is itself essential in 𝑀. 

Proposition 3.3: Let 𝑀  be a left 𝑅 -semimodule. If 𝐾  is an essential subsemimodules of 𝐿  and 𝐿  is an essential 

subsemimodule of 𝑀 then 𝐾 is essential in 𝑀. 

Proposition 3.4: Let 𝑀  be a left 𝑅 -semimodule. Let 𝑎  be a non-zero element of 𝑀  and let 𝐾  be an essential 

subsemimodules of 𝑀 then there is essential left ideal 𝐿 of 𝑅 such that 𝑎𝐿 ≠ 0 and 𝑎𝐿 ⊆ 𝐾. 

Proposition 3.5: Let𝑀an𝑅-semimodule and suppose that 𝑁1, 𝑁2,⋅⋅⋅, 𝑁𝑘 are subsemimodules of 𝑀.then ⋂ 𝑁𝑖
𝑘
𝑖=1 ⊆𝑒 𝑀 if and 

only if 𝑁 ⊆𝑒 𝑀 for all 𝑖. 

Proof: We only need to prove the proposition for 𝑘 = 2. If 𝑁1, 𝑁2  ⊆𝑒 𝑀, then 𝑁1 ⊆𝑒 𝑀 and 𝑁2 ⊆𝑒 𝑀 because both 𝑁1 and 

𝑁2 contain 𝑁1⋂𝑁2.  

Conversely, let 𝑃 be a nonzero subsemimodule of 𝑀. Then 𝑁1 ∩ 𝑃 ≠ 0 because 𝑁1 ⊆𝑒 𝑀  and therefore (𝑁1 ∩ 𝑁2) ∩ 𝑃 =

 𝑁2  ∩ (𝑁1 ∩ 𝑃)  ≠ 0 because 𝑁2 ⊆𝑒 𝑀. Hence the proof. 

3 Main Result 

Definition 4.1: Let 𝑀  be an 𝑅 -semimodule and  𝑥 ∈ 𝑀 . The left annihilator of 𝑥  in 𝑅  is defined by  𝑎𝑛𝑛(𝑥) =

{ 𝑟 ∈ 𝑅 | 𝑟𝑥 = 0}. Which is obviously a left ideal of 𝑅.Now, consider the set 𝑍(𝑀) = {𝑥 ∈ 𝑀 | 𝑎𝑛𝑛(𝑥) ⊆𝑒 𝑅}. It is easy to 

see that 𝑍(𝑀) is a subsemimodule of 𝑀 and we will call it the singular subsemimodule of 𝑀. If 𝑍(𝑀) = 𝑀, then 𝑀 is 

called singular. If 𝑍(𝑀) = 0, then 𝑀 is called nonsingular [2]. 
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Proposition 4.2: If 𝑀 = 𝐾/𝐿 for some 𝑅-semimodule 𝐾 and some subsemimodule𝐿 ⊆𝑒 𝐾. Then an 𝑅-semimodule 𝑀 is 

singular. Anticipation 

Proof: Suppose first that 𝑀 =  𝐾/𝐿 where 𝐾 is an 𝑅-semimodule and𝐿 ⊆𝑒 𝐾. Let 𝑥 =  𝑎 +  𝐿 ∈ 𝑀 and let 𝐽 be a nonzero 

left ideal of 𝑅. If  𝐽𝑎 =  (0), then 𝐽𝑎 ⊆ 𝐿 and so 𝑎𝑛𝑛(𝑥) ∩ 𝐽 =  𝐽 ≠ (0). If 𝐽𝑎 ≠ (0), then 𝐿 ∩ 𝐽𝑎 ≠ (0)  because 𝐿 ⊆𝑒 𝐾. 

So there exists 𝑟 ∈ 𝐽 such that 0 ≠ 𝑟𝑎 ∈ 𝐿. That means 0 ≠ 𝑟 ∈ 𝑎𝑛𝑛(𝑥) ∩ 𝐽. So we have proved that 𝑥 ∈ 𝑍(𝑀) and hence 

𝑍(𝑀) = 𝑀 i.e. 𝑀 is singular. 
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Abstract: In the paper "Exact solutions for nonlinear integral equations by a modified homotopy perturbation method" by A. 

Ghorbani and J. Saberi-Nadjafi, Computers and Mathematics with Applications, 56, (2008) 1032-1039, the authors introduced a new 

modification of the homotopy perturbation method to solve nonlinear integral equations.We discuss here the restrictions on their 

method for solving nonlinear integral equations. We also prove analytically that the method given by Ghorbani and Saberi-Nadjafi is 

equivalent to the series solution method when selective functions are polynomials. 
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1 Introduction 

Recently in [1], Ghorbani and Saberi-Nadjafi proposed a new modification of the homotopy perturbation method for 

solving nonlinear integral equations. 

In this note, we show by an example that this method is not true generally. The purpose of this paper to show that, the 

new modification of the homotopy perturbation method is applicable for special case of nonlinear integral equations 

when the exact solution must appear as part of given function in integral equation otherwise this method is equivalence 

of the series solution method. This paper is organized as follow: The principle of the new modification of the homotopy 

perturbation method is described in Section 2. Two examples are studied in Section 3. The general remarks are given in 

Section 4. 

2 The Principle of the New Modification of the Homotopy Perturbation Method 

In [1], Ghorbani and Saberi-Nadjafi consider the following type of nonlinear integral equations: 

𝑦(𝑥) = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑡)
𝑥

𝑎
[𝑦(𝑡)]𝑟𝑑𝑡,         𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏, 𝑟 ≥ 2                                                                               (2.1) 

 

𝑦(𝑥) = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑡)
𝑏

𝑎
[𝑦(𝑡)]𝑟𝑑𝑡,         𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏                                                                                     (2.2) 

Based on the Homotopy perturbation method (HPM) [4,5], they presented a method which called, modified HPM by 

them. In this regards, they rewrite (2.1) as: 

𝑦(𝑥) = ∑ 𝛼𝑚
𝑁
𝑚=0 𝑣𝑚(𝑥) − ∑ 𝛼𝑚

𝑁
𝑚=0 𝑣𝑚(𝑥) + 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑡)

𝑥

𝑎
[𝑦(𝑡)]𝑟𝑑𝑡                                                     (2.3) 

where 𝛼𝑚  and 𝑣𝑚(𝑥) , 𝑚 = 0,1,2,⋯ ,𝑁 are called by them as the accelerating components of the parameter and 

selective functions, respectively. 

http://www.ntmsci.com/
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Based on the HPM, by selecting 𝐹(𝑢) = 𝑢 − ∑ 𝛼𝑚
𝑁
𝑚=0 𝑣𝑚(𝑥)  they defined the following convex homotopy: 

𝐻𝛼(𝑢, 𝑝) = 𝑢(𝑥) − 𝑝𝑔(𝑥) − (𝑝 − 1)∑ 𝛼𝑚
𝑁
𝑚=0 𝑣𝑚(𝑥) − 𝑝 ∫ 𝑘(𝑥, 𝑡)

𝑥

𝑎
[𝑦(𝑡)]𝑟𝑑𝑡 = 0                                     (2.4) 

where the embedding parameter 𝑝 ∈ (0,1] can be considered as an expanding parameter. The HPM uses the embedding 

parameter 𝑝 as a ”small parameter”, and writes the solution of (2.4) as a power series of 𝑝, i.e., 

𝑢 = 𝑢0 + 𝑢1𝑝 + 𝑢2𝑝
2 +⋯,                                                                                                                                   (2.5) 

Setting 𝑝 = 1 results in the approximate solution of (2.4):  

𝑦 = 𝑙𝑖𝑚𝑝→1𝑢 = 𝑢0 + 𝑢1 + 𝑢2 +⋯,                                                                                                                          (2.6) 

Substituting Eq. (2.5) into (2.4) and equating the terms with identical powers of 𝑝, we can obtain a series of equations 

of the following form: 

𝑝0:   𝑢0 − ∑ 𝛼𝑚

𝑁

𝑚=0

𝑣𝑚(𝑥) = 0,                                                             

𝑝1:     𝑢1 − 𝑔(𝑥) − ∑ 𝛼𝑚

𝑁

𝑚=0

𝑣𝑚(𝑥) − ∫ 𝑘(𝑥, 𝑡)
𝑥

𝑎

[ 𝑢0(𝑡)]
𝑟𝑑𝑡 = 0,

𝑝2:     𝑢2 −∫ 𝑘(𝑥, 𝑡)
𝑥

𝑎

𝐻( 𝑢0, 𝑢1)𝑑𝑡 = 0,                                           

𝑝3:     𝑢3 −∫ 𝑘(𝑥, 𝑡)
𝑥

𝑎

𝐻( 𝑢0, 𝑢1, 𝑢2)𝑑𝑡 = 0,

⋮                                                                                    

                            

                                                                            (2.7) 

where 𝐻( 𝑢0, 𝑢1, ⋯ , 𝑢𝑗) depend upon 𝑢0, 𝑢1, ⋯ , 𝑢𝑗.The 𝐻( 𝑢0, 𝑢1, ⋯ , 𝑢𝑗), calculate using Adomian formula [2,6]  

𝐻( 𝑢0, 𝑢1, ⋯ , 𝑢𝑗) =
1

𝑗!

𝜕𝑗

𝜕𝑝𝑗
(∑ 𝑢𝑖

𝑗
𝑖=0 𝑝𝑖)

𝑟
|𝑝=0.                                                                                                       (2.8) 

Which is called first time by Ghorbani as He polynomials [3].  However this formula has been used before Ghorbani’s 

definition by first author and others in HPM [6] as Adomian polynomials  (For more detail see [7]). It is obvious that 

the system of nonlinear equations in (2.7) is easy to solve and the components 𝑢𝑖 , 𝑖 ≥ 0 of the homotopy perturbation 

method can be completely determined and the series solutions are thus entirely determined. 

  Remark. We get 𝛼𝑚, 𝑚 = 0,1,2,⋯ ,𝑁, and 𝜈𝑚(𝑥),𝑚 = 0,1,2,⋯ ,𝑁 where 𝜈𝑚(𝑥) is form of function 𝑔(𝑥) accordingly 

we will obtain the exact solution, if we could not find  𝛼𝑚, 𝑚 = 0,1,2,⋯ ,𝑁  with 𝜈𝑚(𝑥),𝑚 = 0,1,2,⋯ ,𝑁  so this 

method is not effective and this is a weakness in [1]. But if we increased 𝑁,𝑁 ⟶ ∞, we will obtain exact solution by 

Taylor series method. We discussed an example (2.2) about this case. 

3 Examples 

Example 1: [1,8] Consider the following nonlinear Volterra integral equation 

𝑦(𝑥) = 1 −
3

2
𝑥2 − 𝑥3 −

1

4
𝑥4 + ∫ 𝑦3

𝑥

0
(𝑡)𝑑𝑡,                                                                                                     (3.1) 

with the exact solution  𝑦(𝑥) = 1 + 𝑥.  

We apply this new modified HPM. We get 𝑣0(𝑥) = 1, 𝑣1(𝑥) = 𝑥 then  

𝐻𝛼(𝑢, 𝑝) = 𝑢(𝑥) − 𝑝 (1 −
3

2
𝑥2 − 𝑥3 −

1

4
𝑥4) + (𝑝 − 1)(𝛼0 + 𝛼1𝑥) − 𝑝 ∫ [𝑦(𝑡)]

3𝑥

0
𝑑𝑡 = 0                           (3.2) 

In view of Eq. (2.7) we have  
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𝑝0:         𝑢0(𝑥) − 𝛼0 − 𝛼1𝑥 = 0 →     𝑢0(𝑥) = 𝛼0 + 𝛼1𝑥,                                    

𝑝1:         𝑢1(𝑥) − 𝑝 (1 −
3

2
𝑥2 − 𝑥3 −

1

4
𝑥4) + 𝛼0 + 𝛼1𝑥 − ∫ [𝑢0(𝑡)]

3𝑥

0
𝑑𝑡 = 0,

                             

→    𝑢1(𝑥) = 1 − 𝛼0 + (𝛼0
3 + 𝛼1)𝑥 + (

3

2
𝛼0

2𝛼1 −
3

2
) 𝑥2 + (𝛼0𝛼1

2 − 1)𝑥3 + (
1

4
𝛼1

3 −
1

4
) 𝑥4,

𝑝𝑛+1:              𝑢𝑛+1(𝑥) − ∫ 𝐻𝑛(𝑡)
𝑥

0
𝑑𝑡 = 0           →            𝑢𝑛+1(𝑥) = ∫ 𝐻𝑛(𝑡)

𝑥

0
𝑑𝑡         𝑛 ≥ 1.

                       (3.3) 

To find 𝛼𝑚, 𝑚 = 0,1  in such a way that 𝑢1 = 0. If 𝑢1 = 0 then 𝑢2 = 𝑢3 = ⋯ = 0, and the exact solution will be 

obtained as 𝑦(𝑥) = 𝑢0(𝑥). hence for all values of 𝑥 we have  

{
 
 
 

 
 
 

1 − 𝛼0 = 0,

𝛼0
3 + 𝛼1 = 0,

3

2
𝛼0

2𝛼1 −
3

2
= 0,

𝛼0𝛼1
2 − 1 = 0,

1

4
𝛼1

3 −
1

4
= 0.

 

Solving the above algebraic equations, we have 𝛼0 = 𝛼1 = 1. Therefore the solution will be  

𝑦(𝑥) = 𝑢0(𝑥) = 𝛼0 + 𝛼1𝑥 = 1 + 𝑥 

which is the same as the exact solution. 

Example 2:  [9] Consider the following nonlinear Volterra integral equation  

𝑦(𝑥) = 𝑥 + ∫ 𝑦2(𝑡)
𝑥

0
𝑑𝑡 = 0                                                                                                                                (3.3) 

with the exact solution 𝑦(𝑥) = 𝑡𝑎𝑛(𝑥) .  

We apply this new modified HPM [1] and get 𝑣0 = 1 and 𝑣1(𝑥) = 𝑥 . Then  

𝐻𝛼(𝑢, 𝑝) = 𝑢(𝑥) − 𝑝𝑥 + (𝑝 − 1)(𝛼0 + 𝛼1𝑥) − 𝑝∫ [𝑦(𝑡)]
2𝑥

0
𝑑𝑡 = 0,                                                             (3.4) 

In view of Eq. (2.7) we have  

𝑢0(𝑥) = 𝛼0 + 𝛼1𝑥, 

𝑢1(𝑥) = −𝛼0 − 𝛼1𝑥 + 𝑥 + ∫ (𝛼0 + 𝛼1𝑥)
2𝑥

0
𝑑𝑡 = 0,                                                                                           (3.5) 

𝑢𝑛+1(𝑥) = ∫ ∑𝑢𝑗

𝑛

𝑗=0

𝑥

0

𝑢𝑛−𝑗𝑑𝑡            𝑛 ≥ 1.   

Now we find 𝛼𝑚, 𝑚 = 0,1  in such a way that 𝑢1 = 0. If 𝑢1 = 0 then 𝑢2 = 𝑢3 = ⋯ = 0, and the exact solution will be 

obtained as 𝑦(𝑥) = 𝑢0(𝑥). hence for all values of 𝑥 we have 

{
 
 

 
 

−𝛼0 = 0,

−𝛼1 + 1 + 𝛼0
2 = 0,

𝛼0𝛼1 = 0,

𝛼1
2

3
= 0.

 

From these algebraic equations we cannot get the value of 𝛼1 because of made a counteraction. In fact for this type of 

nonlinear integral equation this method be failed. 
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Now, if we increase N and let 𝑣𝑚(𝑥) = 𝑥𝑚 for 𝑚 = 0,1,2,⋯ then in view of Eq. (2.7) we have  

𝑢0(𝑥) = ∑ 𝛼𝑚
∞
𝑚=0  𝑥𝑚,                                                          

𝑢1(𝑥) = −∑ 𝛼𝑚
∞
𝑚=0  𝑥𝑚 + 𝑥 + ∫ (∑ 𝛼𝑚

∞
𝑚=0  𝑡𝑚)2

𝑥

0
𝑑𝑡 ,

                                                                                    (3.6) 

Consequently, we have series solution of the form  

𝑦(𝑥) = ∑ 𝛼𝑚

∞

𝑚=0

 𝑥𝑚 = 𝑥 +
1

3
𝑥3 +

2

15
𝑥5 +⋯ = tan(𝑥), 

which is the same as the exact solution. 

Remark 

We note that in this modified homotopy perturbation method, when algebraic equations cannot be solved and N is taken 

to be infinity, we obtain the series solution method for solving integral equations.  

Theorem 1 

 The new modified homotopy perturbation [1 method] for solving integral equation is the series solution method when 

𝑁 ⟶ ∞ and 𝑣𝑚(𝑥) = 𝑥𝑚 for 𝑚 = 0,1,2,⋯.  

Proof. If 𝑁 ⟶ ∞ and 𝑣𝑚(𝑥) = 𝑥𝑚 for 𝑚 = 0,1,2,⋯, then in view of Eq. (2.7) we have  

 𝑝0:              𝑢0(𝑥) = ∑ 𝛼𝑚
∞
𝑚=0  𝑥𝑚,                                                      

𝑝1:    𝑢1(𝑥) = −∑ 𝛼𝑚
∞
𝑚=0  𝑥𝑚 + 𝑔(𝑥) + ∫ (∑ 𝛼𝑚

∞
𝑚=0  𝑡𝑚)𝑟

𝑥

0
 𝑑𝑡
                                                                     (3.7) 

According to the modified homotopy perturbation method, we must consider 𝑢1(𝑥) = 0 then other components of 

𝑢(𝑥), 𝑢2 = 𝑢3 = ⋯ = 0, and the exact solution will be obtained as 𝑦(𝑥) = 𝑢0(𝑥). So, if we get 𝑢1(𝑥) = 0 then from 

(16) we have: 

𝑢1(𝑥) = 0 → ∑ 𝛼𝑚
∞
𝑚=0  𝑥𝑚 = 𝑔(𝑥) + ∫ (∑ 𝛼𝑚

∞
𝑚=0  𝑡𝑚)𝑟

𝑥

0
 𝑑𝑡.                                                                        (3.8)  

In view of  (3.8), it is easy to see this is well known the series solution method. Hence the proof is completed. 

4 Discussion 

In this note, by an example we have shown the new modified HPM presented by Ghorbani and Saberi-Nadjafi for 

solving nonlinear integral equations is not useful. In fact, when exact solution of integral equation is not appearing as 

part or a type of given function 𝑔(𝑥) this method is failed. In this case 𝑁 is taken to be infinity, we obtain the series 

solution method for solving nonlinear integral equations. Another important result, if we select all selective function as 

xm then this method is equivalence the series solution method. 
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