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Participant Statistics

112 participants from 31 different countries attended the conference, 20 of them
from Turkey and the others from abroad, so 82% participants are foreigners and
18% participants are Turkish.

Figure 1: 1. Foreign participants, 2. Turkish participants
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MESSAGE FROM CHAIRMAN
The "10th (Online) International Conference on Applied Analysis and Math-
ematical Modeling, 2022" organized by Biruni University will be held on
1-3 July 2022 in Istanbul, Turkey. Due to the Covid-19 Pandemic, we
could not meet face to face. For this reason, we decided to make it on-
line by technology. The aim of this conference is to bring the Mathemat-
ics & Engineering Sciences community working in the new trends of ap-
plications of Mathematics together in a wonderful city of the world, Istan-
bul.

There have been quite a big number of applications from different part of the world
and as you know when the number increase task of the organizing committee will
increase. Thus it was a very difficult task to select and classify the abstracts for all
the participants. We tried to do our best to accommodate many speakers in order to
have a better and enjoyable research session which will provide more interactions,
exchanges among the participants.

Besides the scientific program, we had some social activities (excursion boat trip, city tour, etc.) where we could
continue some informal discussions that would serve the purpose of our meeting in such a short time. We had to
cancel due to the pandemic. As we can see from the list of participants, many speeches by young researchers will
also serve the purpose of this conference.

The talks will cover a wide range of mathematics and its applications such as analysis, algebra, statistics, computer
mathematics, discrete mathematics, geometry, engineering, etc. as well as their use in modeling. We believe that
this richness will provide the basis for interdisciplinary collaborations.

We also would very much thank to all presenters and participants for their interests in the conference and be-
lieve and hope that each of them will get the maximum benefit in terms of networking and interaction from this
meeting.

We would like to thank Dumitru Baleanu, Aydin Secer, Tuğçem Partal, Neslihan Ozdemir, Melih Cinar, Han-
denur Esen and Ismail Onder all our colleagues who worked for the organization of the conference.

Finally, we also would to thank to chairman of the board of trustees of Biruni University and Prof. Dr. Ad-
nan Yüksel the Rector of Biruni University which is Host University.

Further we thank to all the plenary speakers that kindly accepted our invitation and spend their precious time
by sharing their ideas during the conference. We also thank to all members of organizing committee.

We apologize for any shortcomings or might not be mentioned unintentionally or may have been forgotten to
be mentioned explicitly here. We really hope their kind understanding, we thank all and each individual that have
put their effort to make this occasion possible.

We welcome each and every one of you again to this conference; we wish a enjoyable and productive confer-
ence and hope to meet again in future occasions.

Sincerely Yours,
Prof. Dr. Mustafa Bayram,
Conference Chair
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Hom type generalization of cohomology and deformation of n Lie algebras
morphisms
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Abstract: The main purpose of this paper is to define cohomology complex of n-Hom-Lie algebra morphisms and
consider their deformation theory. In particular, we discuss infinitesimal deformations, equivalent deformations
and obstructions. Moreover, we study Morphism of 3-Hom-Lie algebra induced by morphism of Hom-Lie algebra
and provide example.
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A New Method for Solving the Conformable Fractional Nonlinear Partial
Differential Equations with Proportional Delay

Halil Anac
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Abstract: The conformable fractional nonlinear partial differential equations with proportional by a new method,
called conformable q-homotopy analysis transform method are analyzed. The suggested method is the combina-
tion of q-homotopy analysis transform method and conformable fractional derivative. We have observed that the
numerical simulations verify the proposed method is efficient and reliable.

Keywords: Conformable q-homotopy analysis transform method, conformable fractional nonlinear partial dif-
ferential equation, conformable Laplace transform
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To investigate numerically a multi term q-differential equations of
arbitrary fractional order
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Abstract: In this research, we investigate a fractional boundary value problem of nonlinear q-differential equations
with arbitrary orders. New existence and uniqueness results are established using Banach contraction principle,
Schaefer and Krasnoselskii fixed point theorems. In order to clarify our results, some illustrative examples are also
presented with numerical technique.
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An antiplane frictional contact problems with viscosity

Megrous Amar
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Abstract: We study a mathematical model which describes the antiplane shear deformation of a cylinder in fric-
tionless contact with a rigid foundation. First we derive the classical variational formulation of the model with
viscosity term, then the problem is a system coupling an evolutionary variational equality for the displacement
field with a time-dependent variational equation for the potential field. Then we prove the existence of a unique
weak solution to the model.

Keywords: Restriction, Interpolation, error estimate, contacts problem, weak solution, formulation variational.
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Mathematical Modeling of Tumor Growth and the Application of
Chemo-immunotherapy and Radiotherapy Treatments
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Abstract: In this research, we proposed the following: a model that represents tumor growth caused by carcino-
genic substances from an initially diagnosed level; secondly, we further proposed an expanded tumor growth model
with several other therapeutic models such as chemotherapy, immunotherapy, and radiotherapy in an attempt to
reduce the growing tumor with a steady supply of dosage. The objectives are to solve the proposed models an-
alytically where independent solutions were obtained for chemotherapy, immunotherapy, and radiotherapy with
some pertinent parameters depicting the interaction of the tumor and various treatments. We developed numerical
simulation codes using Wolfram Mathematica software, version 12, to simulate and study the various interactions
by varying the pertinent parameters’ effects on tumor growth and on the therapeutic treatment solutions. The nu-
merical simulation revealed that continuous exposure to radiation could cause pain and normal cell death, thereby
supporting the tumor cell proliferation, but the chemotherapeutic and immunotherapeutic drugs help in shrinking
the tumor and reducing cell proliferation. The simulated results for the mixed treatment application for all thera-
pies indicate that there is a successful and faster decrease in tumor size by combining the treatment regimes. In
conclusion, we have successively proposed and solved mathematical models that represent tumor growth without
treatment and with the application of treatment. The models in this article can be used by scientists and oncologists
in studying tumor cell proliferation.

Keywords: Modeling, Carcinogenic, Treatment, Cancer, Tumor, Proliferation, Radiotherapy, Chemotherapy, Im-
munotherapy, Growth
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On a time-dependent second-order sweeping process

Fatine Aliouane1, Dalila azzam-Laouir2

Université Mohammed Seddik Benyahia, Jijel, Algérie
E-mail: faliouane@gmail.com1, Laouir.dalila@gmail.com2

Abstract: In my presentation, I will aim to highlight the existence of solutions of a second-order sweeping process
with a single-valued Lipschitz. I proceed without any compactness assumption in the moving set, which is required
to be crucial in the proof of the existence of solution for the time and state-dependent first or second-order sweep-
ing processes (see [1,2,3,4,6] and references therein). Actually, dealing without compacity in infinite dimentional
space seems to be an open problem. One will be probably need at some point to an alternative way. In such a
view setting, following the work of Bounkhel and al [5], dealing with the absolutely continuous solutions for a
second-order state-dependent sweeping process, to compensate the lack of compacity, the only outlet was the use
of anti-monotonicity of the set in normal cone. Likewise, for the first-order case, Adly-Haddad-Le [1] argue by the
property of hypomonotony-like of the normal cone. Recently, Nacry-Sofonea [7], used arguments of monotonicity,
convexity and fixed point to get the existence of solution for a first-order type sweeping process.

Keywords: Cauchy criterion, Lipschitz perturbation, normal cone, prox-regularity, sweeping process

Mathematics Subject Classification: 40A30, 34A60, 49J40, 49J52, 49J53.

References
[1] S. Adly, T. Haddad, B.K. Le, State-dependent implicit sweeping process in the framework of quasistatic

evolution quasi-variational inequalities. J Optimiz Theory App. 182, 473-493 (2019).

[2] F. Aliouane, D. Azzam-Laouir, A second order differential inclusion with proximal normal cone in Banach
spaces, Topol Methods Nonlinear Anal. 44(1) 143-160 (2014).

[3] F. Aliouane, D. Azzam-Laouir, Second-order sweeping process with a lipschitz perturbation. J. Math. Anal.
Appl. 452, 729-746 (2017).

[4] F. Aliouane, D. Azzam-Laouir, C. Castaing and M.D.P. Monteiro Marques, Second-order time and state
sweeping process in Hilbert space, J Optimiz Theory App. 182, 153-188 (2019).

[5] M. Bounkhel, D. Laouir-Azzam, Existence results for second-order nonconvex sweeping processes. Set-
Valued Var Anal. 12(3), 291-318 (2004).

[6] F. Nacry, J. Noel and L. Thibaut, On first and second order state-dependent prox-regular sweeping processes,
to appear in Pure Appl. Funct. Anal.

[7] F. Nacry, M, Sofonea, A class of nonlinear inclusions and sweeping processes in solid mechanics, Acta Appl.
Math. volume 171, Article number: 16, 1-26 (2021).

19



10th (Online) International Conference on Applied Analysis andMathematicalModeling-Abstracts and Proceeding Book
(ICAAMM22,) July 1-3, 2022, Istanbul-Turkey

An Extension of Functional Projection Pursuit Regression to the
Generalized Partially Linear Single Index Models (EFPPR-GPLSIM)
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Abstract: In this paper, we introduce a functional approach to approximate the non-parametric function in the case
of multivariate predictors, the single-index coefficient, the non-linear regression function in the case of functional
predictors and a scalar response. Following the Fisher-scoring algorithm and the principle of projection pursuit
regression, we derive an additive decomposition that exploits the most predictive direction, the most predictive
additive component of the functional predictor variable and the single-index component to explain the scalar re-
sponse. On the one hand, this approach allows us to avoid the well-known problem of the curse of dimensionality
in the non-parametric case with the notion of single index and the projection pursuit regression in the functional
case, on the other hand, it can be used as an explonatory tool for the analysis of a multivariate and functional
random variable belonging to a separable Hilbert space H. The terms of this decomposition are estimated with an
iterative Fisher scoring procedure that uses the Quasi-Likelihood function and an approximation of the non para-
metric function by normalized B-splines. The good behaviour of our procedure is illustrated from a theoretical and
practical point of view. Asymptotic results indicate that the nonparametric function, the single index coefficient
and the terms of the additive decomposition can be estimated without suffering from curse of dimensionality ,
while some applications to real and simulated data show the high predictive performance of our method.

Keywords: Additive decomposition, Asymptotic normality, Fisher scoring algorithm, Functional Data analysis
(FDA), Polynomial Splines, Predictive directions, Projection pursuit regression, Quasi-likelihood, Single-index
model.

References
[1] Alahiane, M.; Ouassou, I.; Rachdi, M.; Vieu, P. Partially Linear Generalized Single Index Models for Func-

tional Data (PLGSIMF). Stats. 2021, 4(4), 793-813. https://doi.org/10.3390/stats4040047

[2] Alahiane, M., Ouassou, I. , Rachdi,M. and Vieu, P. (2022). On the Non-Parametric Generalized Partial Linear
Functional Single Index Models.
Communication in Statistics- Theory and Methods. October 2021. Submitted for publication.

[3] Aneiros-Perez, G.; Vieu, P. Semi functional partial linear regression. Stat. Probab. Lett. 2006, 76, 1102–1110.
http://dx.doi.org/10.1016/j.spl.2005.12.007

[4] Ferraty, F. ; Goia, A. ;Salinelli, E. and Vieu, P.Functional projection pursuit regression. TEST., 2013. 61, 22,
293–320. https://doi.org/10.1007/s11749-012-0306-2

[5] Cao, R; Du, J.; Zhou, J. & Xie, T.; FPCA-based estimation for generalized functional partially linear models.
Statistical Papers., volume 61, pages2715–2735 2020 https://doi.org/10.1007/s00362-018-01066-8

[6] Chin-Shang, L.; Lu, M. A lack-of-fit test for generalized linear models via single-index techniques. Comput.
Stat. 2018, 33, 731–756. http://dx.doi.org/10.1007/s00180-018-0802-2

[7] De Boor, C. A Practical Guide to Splines; Revised Edition of Applied Mathematical Sciences; 2001,
Springer: Berlin, Germany; Volume 27.

20



10th (Online) International Conference on Applied Analysis andMathematicalModeling-Abstracts and Proceeding Book
(ICAAMM22,) July 1-3, 2022, Istanbul-Turkey

[8] Ferraty, F.; Peu, A.; Vieu, P. Modèle à indice fonctionnel simpleSingle Functional Index Model Comptes Ren-
dus Mathematique ; Volume 336, Issue 12, 15 June 2003. Pages 1025-1028. https://doi.org/10.1016/S1631-
073X(03)00239-5

[9] Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice; 2006. Springer Series in
Statistics; Springer: New York, NY, USA.

[10] Jiang, F.; Baek Seungchul, S.; Cao, J. and Ma, Y. A functional single-index model. Statistica sinica. 2020.
30(1), 303-324. https://doi.org/10.5705/ss.202018.0013

[11] Härdle , W.; Hall, P. & Ichimura, H. Optimal smoothing in single-index models. Ann. Statist. 1993, 21(1):
157-178. https://doi.org/10.1214/aos/1176349020

[12] Härdle, W.; Liang, H.& Gao, J. Partially Linear Models. Physica-Verlag Heidelberg 2000.
https://doi.org/10.1007/978-3-642-57700-0

[13] Horváth, L.; Kokoszka, P. Inference for Functional Data with Applications. Comput. Sci. Springer Series in
Statistics. 2012. http://dx.doi.org/10.1007/978-1-4614-3655-3

[14] Huang, J. Efficient estimation of the partly linear additive Cox model. Ann. Stat. 1999, 27, 1536–1563.
http://dx.doi.org/10.1214/aos/1017939141

[15] Kong, E.; Xia, Y. Variable selection for the single-index model. Biometrika, March 2007, 94(1), 217–229.
https://doi.org/10.1093/biomet/asm008

[16] Li, W.; Yang, L. Spline estimation of single-index models. Statistica Sinica. 2009, 19(2), 765–783.

[17] Peng, Q.; Zhou, J.; Tang, N. Varying coefficient partially functional linear regression models. Stat. Pap. 2015,
57, 827–841. http://dx.doi.org/10.1007/s00362-015-0681-3

21



10th (Online) International Conference on Applied Analysis andMathematicalModeling-Abstracts and Proceeding Book
(ICAAMM22,) July 1-3, 2022, Istanbul-Turkey

Rbf-Pum solution of magnetoconvection in a triangular cavity exposed to
a uniform magnetic field
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Abstract: Numerical simulation of Al2O3-Cu/water hybrid nanofluid flow in an isosceles right triangular cavity
exposed to either vertical or horizontal uniform magnetic field is numerically investigated. A local method, radial
basis function based partition of unity method (Rbf-Pum), is performed to solve steady dimensionless governing
equations in stream function-vorticity form numerically. Vertical magnetic field suppresses the fluid flow and heat
transfer more than the horizontal one. The rise in magnitude of uniform magnetic field suppresses fluid flow and
heat transfer. The dominance of convection is pronounced at large Rayleigh numbers.

Keywords: hybrid nanofluid, uniform magnetic field, Rbf-Pum, triangular cavity.
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Boundedness in generalized topological groups
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Abstract: The notions of generalized neighborhood systems and generalized topological space were given by
Csaszar in 2002 [1]. Later, Hussain and et.al defined the notion of generalized topological group and studied some
properties of the generalized topological groups [2]. In this study, we define the concept of bounded subset in a
generalized topological group. Also, we obtain some characterizations about the bounded subsets in generalized
topological groups.
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Some topological properties on Orlicz generalized difference sequence
spaces
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Abstract: The main purpose of this work is to generalize the Orlicz sequence space by using generaized difference
operators and a sequence of non-zero scalars and investigate some topological structure relevant to this generalized
space.
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Some results of the generalized difference sequence space lp(T̂ q)r
s
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Abstract: In this work, we introduce a new matrix T̂ q(r, s) =
(̂
tq
nk(r, s)

)
in which tk > 0 for all k ∈ IN, (tk) ∈ c\c0

and r, s ∈ IR − {0}. By using the matrix, we introduce a new sequence space lp(T̂ q)r
s for 1 ≤ p < ∞. Moreover,

we obtain some theorems on inclusion relations associated with newly defined space and calculate the α−, β− and
γ−duals of this space.
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On numerical solutions of nonlinear differential equations with initial
conditions by Hermite collocation method
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Abstract: In this study, Hermite collocation method is used for solving a class of nonlinear differential equations
with initial conditions. The problem is reduced into a nonlinear algebraic system, later the unknown coefficients of
the approximate solution function are calculated. A test problem is presented to show the performance of the pro-
posed method. Additionally, the obtained numerical results are compared with exact solution of the test problem.

Keywords: Hermite collocation method, Nonlinear differential equations, Initial value problems.
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Approximation of Kantorovich-type generalization of (p, q)−Bernstein
type Rational Functions Via statistical convergence
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Abstract: Recently, different q−generalizations of Balázs-Szabados operators have been studied by several re-
searchers. İn [1], The Kantorovich type q−analogue of the Balázs-Szabados operators is defined by Hamal and
Sabancigil as follows:

R∗n,q ( f , x) =

n∑
k=0

rn,k (q, x)
∫ 1

0
f
 [k]q + qkt

bn

 dqt, (1)

where f : [0,∞)→ R, q ∈ (0, 1) ,an = [n]β−1
q , bn = [n]βq , 0 < β ≤ 2

3 , n ∈ N, x ≥ 0,

and rn,k (q, x) = 1
(1+an x)n

[
n
k

]
q

(anx)k ∏n−k−1
s=0

(
1 + (1 − q) [s]q anx

)
.

Latterly, Hamal and Sabancigil introduced a new Kantorovich-type (p, q)−analogue of the Balázs–Szabados op-
erators by generalizing the new Kantorovich-type q−analogue of Balázs–Szabados operators, given by (1), as
follows:

R∗n,p,q ( f , x) =

n∑
k=0

r∗n,k (p, q, x)
∫ 1

0
f

 pn−k
(
[k]p,q + qkt

)
bn

 dp,q t , (2)

where r∗n,k (p, q, x) = 1
pn(n−1)/2

[
n
k

]
p,q

pk(k−1)/2
(

an x
1+an x

)k ∏n−k−1
j=0

(
p j − q j an x

1+an x

)
and 0 < q < p ≤ 1, an = [n]β−1

p,q , bn = [n]βp,q , 0 <β ≤ 2
3 , n ∈ N, x ≥ 0, f : [0,∞) → R. Fast [4] and Fridy [5]

provided the following notions.
Suppose that E ⊆ N = {1, 2, ...} and En = {k ≤ n : k ∈ E} . Then δ (E) = lim

n→∞
1
n |En| is called natural density of E

provided that the limit exists.
Definition 1. A sequence x = (xn) is statistically convergent to the number L if for every ε > 0, we have
δ {k ∈ N : |xk − L| ≥ ε} = 0 is denoted by stA − lim

n→∞
xn = L. Because all finite subsets of the natural numbers

have density zero, any convergent sequence is statistically convergent, but not contrariwise.
In [6], Bohman –Korovkin type statistical approximation theorem was proved by Gadjiev and Orhan.
Now, the main result of this research is to use modulus of continuity to study the rate of A-statistical convergence
of Kantorovich type (p, q)−analogue of the Balázs–Szabados operators R∗n,p,q ( f , x).
Theorem 1. Let q = (qn) , p = (pn) , 0 < qn < pn ≤ 1 such that stA − lim

n
qn = 1, stA − lim

n
pn = 1. Then for each

compact interval [0, b] ⊂ [0,∞), we have stA − lim
n

∥∥∥R∗n,p,q ( f , x) − f (x)
∥∥∥ = 0 , ∀ f ∈ C ([0, b]).
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Abstract: The problem considered here is a class of semi-linear viscoelastic heat equations in bi-Laplacian type.
We introduce a weighted space to overcome the difficulties in the non-compactness of some operators and some
useful Sobolev embedding inequalities. Under certain conditions on the parameters p, ρ, η, we prove that the local
solutions grow as an exponential function in the Lp

ρ (Rn)-norm, i.e. ‖u‖p
Lp
ρ (Rn)
−→ ∞ as t tends to +∞.

Keywords: Generalized Sobolev spaces, heat equation, weighted spaces, exponential growth of solution, ini-
tial condition.
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Abstract: In this article, we proposed predicting the Algerian stock market index using LSTM model (Long Short
Term Memory), a sub-class of RNN (Recurrent Neural Network). In order to test the universality of the LSTM
model. We have tried different experiments on the parameters of the model: the number of epochs, layers and units.
Until we get the optimal ones with a result of loss equal to 1.6704e-04. Then results of our LSTM model were
compared to three similar randomly selected projects gets from Kaggle. As a result, the selected projects: Istanbul
Stock prediction LSTM by STPETE_ISHII, DJIA Stocks by STPETE_ISHII, Stock Market Analysis + Prediction
using LSTM by FARES SAYAH. The LSTM model achieved respectively 0.0165, 0.0352, 7.0498e-04 prediction
loss of all three projects, where is clear that the last one was better than our research and that could be due to lack
of data. During the process of our research, we found that exists a GRU (Gated Recurrent Units) model which is on
trial, GRUs are a little speedier to train than LSTMs. There is not a clear winner which one is better. Researchers
and engineers usually try both to determine which one works better for their use case. We decide to try it in our
case where we find that GRU uses less training parameter and therefore uses less memory and executes faster than
LSTM. The results get from GRU, made us try it on Bitcoin cryptocurrency chares where we got a better result,
which conforms to us that our model needs more data to be more accurate. Finally, we concluded that the perfor-
mance of LSTM is highly dependent on the choice of several parameters that need to be experimented with to get
the right ones for optimal values. We optimize the LSTM model by testing different configurations, i.e., the num-
ber of epochs, layers and units. The GRU model gives better results but it is still in a trial from the researcher’s side.
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Abstract:In this work, we examine some properties of solutions to an integro-differential equation by using a
Lyapunov-Krasovkii functional. We prove four theorems about asymptotically stability, exponentially stability,
integrability and instability of solutions of considered equation. An example is given to demonstrate the accuracy
of the conditions of our main results.
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Abstract: We study the antiplane frictional contact models for electro-elastic materials. The material is assumed
to be electro-elastic and the friction is modeled with Tresca’s law and the foundation is assumed to be electrically
conductive. First we establish the existence of a unique weak solution for the model. Moreover, the Proof is based
on arguments of evolutionary inequalities. Some numerical results are presented at the end of this work.
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Abstract: It is not just colloquial language that gives rise to misunderstandings and different interpretations. Also,
highly formalized languages used by scientists, including mathematicians, can be based on misinterpretations. It
was noticed that the antinomian self-referential formulations are accompanied by additional ambiguous formula-
tions, which allowed for a re-examination of Cantor’s diagonal method. The conclusions are revolutionary! The
problems I have presented concern the foundations of one of the most sophisticated fields of science, which is set
theory, and the revealed contradictions should be discussed on a basic, i.e. philosophical, level.
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Abstract: Nonlinear wave problems in optical fibers have a special field of study and importance among nonlinear
evolution equations (NLEs). In this respect, recently, a new research area has emerged in this field and new mod-
els and solution techniques are currently being studied. This study deals with the chromatic dispersion problem,
which is one of the main problems encountered in soliton transmission in optical fibers. Definitions of this kind
of problem and its solution are limited in number, and they have been put forward with some models developed in
recent years, and current studies in this area continue. The Schrödinger-Hirota equation, which will be examined
within the scope of the article. This is one of the important model among the models such as Sasa-Satsuma, Chen-
Lee-Liu, Fokas-Lenells that have been developed recently in the field of optics. The review in the article deals with
a current and important issue and also supports and interprets optical soliton solutions with graphic presentations.

Keywords: Group velocity dispersion, Optical soliton solution, Schrödinger-Hirota, Higher order nonlinear equa-
tion
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Abstract: In this paper, we introduce a functional approach to approximate the non-parametric function in the case
of multivariate predictors, the single-index coefficient, the non-linear regression function in the case of functional
predictors and a scalar response. Following the Fisher-scoring algorithm and the principle of projection pursuit
regression, we derive an additive decomposition that exploits the most predictive direction, the most predictive
additive component of the functional predictor variable and the single-index component to explain the scalar re-
sponse. On the one hand, this approach allows us to avoid the well-known problem of the curse of dimensionality
in the non-parametric case with the notion of single index and the projection pursuit regression in the functional
case, on the other hand, it can be used as an explonatory tool for the analysis of a multivariate and functional
random variable belonging to a separable Hilbert space H. The terms of this decomposition are estimated with an
iterative Fisher scoring procedure that uses the Quasi-Likelihood function and an approximation of the non para-
metric function by normalized B-splines. The good behaviour of our procedure is illustrated from a theoretical and
practical point of view. Asymptotic results indicate that the nonparametric function, the single index coefficient
and the terms of the additive decomposition can be estimated without suffering from curse of dimensionality ,
while some applications to real and simulated data show the high predictive performance of our method.

Keywords: Additive decomposition, Asymptotic normality, Fisher scoring algorithm, Functional Data analysis
(FDA), Polynomial Splines, Predictive directions, Projection pursuit regression, Quasi-likelihood, Single-index
model..
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Numerical Solution of Generalized Fractional Differential Equations
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Abstract: .Most of the analytical methods used to solve fractional differential equations, which are based on
truncated series solutions, provide an approximation to the real solution in a very small region. Compared with
integer-order differential equations, the multi-step process of such analytical methods is not appropriate for frac-
tional differential equations due to the non-local property of fractional differentiation operators. Therefore, it
has become important to expand, develop, and improve stable and robust methods for numerical treatment of
fractional differential equations. The predictor-corrector method, which is an extension of the Adams-Bashforth-
Moulton method, is one of the most effective and powerful methods that are extensively used for the numerical
simulation of IVPs equipped with fractional derivatives of Caputo type. Furthermore, some predictor-corrector
techniques have been proposed to numerically solve generalized Caputo-type fractional differential equations. We,
mainly, discussed the formulation of the predictor-corrector algorithm for the numerical simulation of IVPs in-
volving generalized Caputo-type fractional derivatives with respect to another function. Numerical solutions of
some generalized Caputo-type fractional derivative models have been introduced to demonstrate the applicability
and efficiency of the presented algorithm. The proposed algorithm is expected to be widely used and utilized in
the field of simulating fractional-order models.

Keywords: Fractional differential equation; generalized fractional derivative; Caputo derivative; predictor-corrector
algorithm; numerical solution.
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How can cell-to-cell transmission and HIV viral load drive the HIV/HCV
coinfection dynamics?
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Abstract: We study the role of cell-to-cell transmission and HIV viremia in driving the dynamics of HIV/HCV
coinfection. We derive the model, study its theoretical properties and perform epidemiological relevant simula-
tions. We will detail useful conclusions for clinical practice.
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On Λ-Fractional Peridynamic Mechanics
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Abstract: Applying a new Fractional derivative, the Λ- Fractional Derivative, with the corresponding Λ-Fractional
space, Λ-Fractional Mechanics has already been established. The introduced mechanics is a non-local mechanics
not conforming with Noll’s local action postulate. Peridynamic mechanics is a non-local mechanics with interact-
ing points inside a distance called horizon. That Λ-fractional mechanics with horizon is applied in the Λ-fractional
space. Transferring the results into the initial space, the non-homogeneous peridynamic mechanics is established.
The Λ-fractional peridynamic mechanics is applied to a Cantor rod, where the displacement and stress fields are
defined in the initial space. Further, the proposed theory is applied to the deformation of the composite materials.
Stresses and displacements as well are defined for non-constant distribution of the fillers into the composite mate-
rials.

Keywords: Λ- Fractional Derivative, Λ-Fractional space, Λ-Fractional stress, Λ-fractional strain,Cantor rod, peri-
dynamics, horizon, composite material.
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Abstract: A mathematical model of Zika virus transmission incorporating human movement between rural areas
and nearby forests is presented to investigate the role of human movement in the spread of Zika virus infections
in human and mosquito populations. Proportions of both susceptible and infected humans living in rural areas
are assumed to move to nearby forest areas. Direct, indirect and vertical transmission routes are incorporated for
all populations. Mathematical analysis of the proposed model has been presented. The analysis starts with nor-
malizing the proposed model. Positivity and boundedness of solutions to the normalized model have been then
addressed. The basic reproduction number has been calculated using the next generation matrix method and its
relation to the three routes of disease transmission has been presented. The sensitivity analysis of the basic repro-
duction number to all model parameters has been investigated. The analysis also includes existence and stability
of disease free and endemic equilibrium points. Bifurcation analysis has been also carried out. Finally, numerical
solutions to the normalized model have been obtained to confirm the theoretical results and to demonstrate the
impact of human movement in the disease transmission in human and mosquito populations.

Keywords: Zika; vertical transmission; Basic Reproduction Number; Stability Analysis;Sensitivity Analysis; Bi-
furcation analysis.
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Analytical solutions to nonhomogeneous fractional differential equations
and their applications
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Abstract: Non-homogeneous fractional differential equations containing variable coefficients with Caputo frac-
tional derivative and hyper-Bessel operator, respectively, are considered. General solutions to these equations are
obtained using the successive approximation method and are expressed in the integral form. Example solutions
with particular choices of the non-homogeneous term are presented.
Direct and inverse source problems of a fractional diffusion equation with these operators are presented. Solutions
to these problems are constructed based on appropriate eigenfunction expansions and results on existence are es-
tablished.
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Abstract: Piecewise fractional differential equation (deterministic-stochastic differential equations or vice versa)
has been introduced recently in literature. The purpose of this piecewise approach is to study effectively the model
with real data. In this talk, we extended the Coronavirus (2019-nCov) mathematical model by applying the piece-
wise differential equation system. The new hybrid fractional order operator can be written as a linear combination
of the fractional order integral of Riemann-Liouville and the fractional order derivative Caputo is applied to extend
the deterministic model and the fractional Brownian motion is applied to extend the stochastic differential equa-
tions. A new parameter ξ is presented in order to be consistent with the physical model problem. The positivity,
boundedness, existence of the solutions for the model are discussed. New numerical algorithms are improved to
solving the proposed model. These method are Nonstandard fractional Euler Maruyama technique to solve the
fractional stochastic model and Grünwald-Letnikov nonstandard finite difference to solving the hybrid fractional
order deterministic models. We consider the real cases of COVID-19 in Spain.

Keywords: Stochastic-deterministic models, Piecewise numerical method; Hybrid fractional Coronavirus (2019-
nCov) mathematical model, Grünwald-Letnikov nonstandard finite difference method; Nonstandard fractional Eu-
ler Maruyama technique.
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Abstract: Nonlinear partial differential equations (NLPDEs) are widely used in understanding and modeling many
physical phenomena in real life, and many models and solution methods have been developed in the last 30 years,
especially depending on the development of symbolic programs such as Mathematica, Matlab and Maple. Most
of the modeling and solution techniques developed for NLPDE equations are based on soliton solutions, and there
are hundreds of NLPDEs defined in this way in the literature. The contribution of each equation to the under-
standing of many physical phenomena in real life is of particular importance. In this study, it is aimed to obtain
soliton solutions by using two different efficient methods for analytical soliton solutions of the (2 + 1)-dimensional
Kadomtsev-Petviashvili-Joseph-Egri equation, and to make physical interpretations of the obtained solutions by
supporting them with graphics.

Keywords: New Kudryashov scheme; Unified Riccati equation expansion method; Bell-shape; Soliton.
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Investigation of Hirota’s equation under the influence of model parameter
in single-mode fiber
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Abstract: This study, investigates one of the nonlinear partial differential equation namely, the (1+1)−dimensional
Hirota equation by using the two efficient methods, the new Kudryasov and an auxiliary equation. The Hirota equa-
tion is an important equation which is generally used to model the optical wave propagation of the femto-second
(fs) soliton pulse propagation in the single-mode fibers. By applying both proposed methods effectively, soliton so-
lutions, 3-dimensional, 2-dimensional and contour graphical representations of solutions and necessary comments
were made on these representations. In addition, the effect of the model parameter on the soliton behavior was also
examined and the obtained results were interpreted by supporting them with graphic presentations.

Keywords: Higher-order nonlinear Schrödinger; Strongly dispersive; Nonlinear wave train; Single-mode fiber;
Femto-second pulse; Soliton.
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Abstract: In this paper, the DNA dynamic equation appearing in the oscillator-chain defined as Peyrard–Bishop
model is examined to acquire soliton solutions utilizing an efficient analytical technique. The resulted solutions
are verified through symbolic soft computations. Necessary comments are made by presenting the obtained results
graphically. Some results are also explained that express the novelty of our work as compared to the existing liter-
ature about the classical Peyrard–Bishop model.
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Abstract: The knapsack problem is basic in combinatorial optimization and has many variants and expansions.
We focus on the quadratic stochastic multi-objective knapsack problem with random weights. We propose a
Multi-Objective Memory Algorithm with Local Pareto Neighborhood Selection Search. At each iteration of our
algorithm, a crossover, a mutation, and a local search are applied to a population of solutions to generate new
solutions that will constitute an offspring population.
Then, we apply, on the combined population of parents and offspring, the best solution selection operator based on
the termination of the non-domination rank and the crowding distance obtained respectively by the non-domination
sorting algorithm and the crowding distance computation algorithm. To prove the performance of our algorithm,
we compare it with both an exact algorithm and the NSGAII algorithm. Our experimental results show that the
MASNPL algorithm leads to significant efficiency.

Keywords: Non-dominated Sort Algorithm, Crowding-Distance, Gradient Algorithm, Memetic Algorithm With
Selection Neighborhood Pareto Local Search.
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from Chemical Kinetics : Non-linear parabolic systems
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Abstract: In this work, we define a diffusion reaction system resulting from the modeling of certain chemical
reactions coming from quantitative or formal chemical kinetics. The key amount is that of the reaction rate. The
objective of this work is to prove the local, global existence, uniqueness and positivity for these reaction-diffusion
systems.

Keywords: chemical kinetics, mathematical modelisation, the reaction rate, diffusion reaction system, global
existence and et positivity.
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Prony’s series and modern fractional calculus

Jordan Hristov
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Abstract: The talk addresses Prony’s series approximation of monotonically responses in material viscoelastic
rheology and possibilities to implement on this basis modern fractional operator with non-singular kernels, pre-
cisely the Caputo-Fabrizio operator. The origins of the Prony’s series in time and frequency domains are outlined
together with relevant approximation and calculation techniques. Examples in the field of linear viscoelasticity
are developed. In general, the content of this chapter expresses the author’s work on implementation of new frac-
tional operators with non-singular kernels as well as other published results thus allowing the amalgamated text
to be as much as possible well done explanation of Prony’s series application to modelling problems emerging in
mechanical and chemical engineering, and related disciplines.
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Mathematical study of initial flow past a circular cylinder with combined
streamwise and transverse oscillations
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Abstract: A numerical investigation of the initial flow past an oscillating circular cylinder with combined stream-
wise and transverse oscillations. The motion is governed by the two-dimensional unsteady Navier–Stokes equa-
tions in non-primitive variables. The perturbation theory is strongly used to find the explicit solutions for stream
function and vorticity. The well-known collocation method is implemented to solve certain part of the equations.
The development of the physical properties of the flow such as the first time separation, drag and lift forces at early
times are captured. Comparisons with existing results verify the accuracy of the present results.

Keywords: Combined streamwise and transverse oscillation, Initial flow, Perturbation theory, Collocation method.
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Mild Solutions of Stochastic integro-differential equations in Hilbert
spaces
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Abstract: The main purpose of this is paper to study the existence of mild solutions for a class of fractional neutral
stochastic integrodifferential equations with infinite delay in Hilbert spaces. Using fractional calculus, Schaefer
fixed point theorem and stochastic analysis techniques, under non-Lipschitz conditions, we obtain a sufficient con-
dition for the existence result. An example is provided to illustrate the application of this result.

Keywords: Infinite Delay, Stochastic Fractional Integrodifferential Equations, Mild Solution, Fixed Point The-
orem Method.
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Some fixed points results for (λ,Ψ)- partial hybrid functions in CAT(0)
spaces
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Abstract: In this paper is defined a new class of contractions, (λ,Ψ)- partial hybrid functions in CAT(0) space. The
goal of this paper is to present a new convergent fixed point result based on a (λ,Ψ)- partial hybrid contraction on
CAT(0) space. We have assured the set of the fixed points for a (λ,Ψ)- partial hybrid on CAT(0) space is nonempty.
Furthermore, a ∆-convergent theorem on CAT(0) space is proved.

Introduction: M. Gromov [1], studied for the first time CAT(0) space in 1987. The study of CAT(0) spaces
have many applications in Graph Theory, Fixed Point Theory, etc. W. Kirk [2], [3] defined and proved many fixed
point results for nonexpansive functions. Dhompongsa and Panyanak[4] studied ∆-convergence in CAT(0) space.
Many authors have worked on Theory of Fixed Point in CAT(0) space by assuring the existence of fixed point
for various class of functions[5], [6], [7] or by presenting new iterations which obtain approximating fixed point
[8], [9]. Inspired by above, we propose a new class of contractions in CAT(0) space called (λ,Ψ)- partial hybrid
functions. Related to them, some fixed point theorems and some convergent results are obtained.

Keywords: Fixed point, (λ,Ψ)- partial hybrid contraction, CAT(0) space, ∆-convergence, Mann Iteration.
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Mixtures models for clustering: review and comparison
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Abstract: The concepts of machine learning and artificial intelligence were first mentioned in 1956. Since then,
artificial intelligence has constantly been evolving but has only reached its peak in the last decade. Machine learn-
ing is applied in medicine, online technology, marketing, sales, logistics, and many others. In clustering, the aim
is to find hidden relationships in the data. This type of machine learning can be divided into many different groups
of methods. This work aims to briefly discuss the methods of clustering mixtures, compare these methods using
different data, and compare them with the currently most popular clustering methods. We present k-means, Gaus-
sian Mixture Model, Bayesian Gaussian Mixture Model, and Modified Inversion Formula clustering in work. In
this work, the different clustering methods were briefly reviewed, and a modified inversion formula based on the
new clustering method currently being developed was mentioned. The results showed that the best methods are
also different for different data sets. Therefore, neither method is universal and unsuitable for all data sets. These
results also showed that the newly developed data clustering method has relatively good clustering results. For
this reason, the results of this method continue to be validated, and new modifications of this method are being
developed.

Keywords: machine learning, artificial intelligence, clustering, mixture models, inversion formula.
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Global Existence and decay estimates for a Coupled System of Wave
Equations with nonlinear Dampings
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Abstract: Our interest in this paper is to analyse the asymptotic behaviour of a coupled system of wave equations
with non-linear dampings. We show that the system is well-posed using the semigroup theory. Furthermore, under
suitable conditions on functions g(.), we estimate the energy decay rate by using the multiplier method.
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Soliton collision in the coupled nonlinear Schrödinger equations
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Abstract: In this work, we have studied the dynamics of soliton collision in the coupled nonlinear Schrödinger
equations. We have demonstrated the collision in contour, two and three dimensional plots using Matlab. All
computations have been fulfilled via Mathematica. The obtained results and analysis might aid in enhancing the
capacity of optical fiber communication.
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Abstract: In this study, the highly dispersive optical solitons of the nonlinear Schrödinger equation have been
investigated. We have applied the new Kudryashov method to the considered equation and successfully derived
some types of the soliton. Two and three-dimensional plots of the solutions have been demonstrated. The method
is an efficient technique that can be applied to nonlinear physical models for extracting highly dispersive solitons.
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An investigation on nonlinear higher order Schrödinger equation having
refractive indices and chromatic dispersion
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Abstract: With the widespread use of fiber technology in the fields of communication, data transfer, optics and
optoelectronics, research in these fields has gained importance and has become the area of interest of many re-
searchers. Although the problems in this field belong to the nonlinear partial differential equations (NLPDEs) class
like many nonlinear evolution equations (NLEs), related to optics and optoelectronics have their own importance,
some complex difficulties and solution techniques. In this respect, it would not be a wrong approach to consider
the equations of optics and optoelectronics as a separate class from other NLEs. In recent years, data transmission
in fiber optics, soliton behavior and related refractive indices have been defined and many studies have been car-
ried out and these studies still maintain their importance and continue. Refractive index is an important topic in
these research areas. In this study, analytical soliton solution based study was carried out on the higher order non-
linear Schrödinger equation regarding the refractive index and the obtained results were also supported graphically.

Keywords:Optical solution; Nonlinear refractive index; Auxiliary method; Group velocity dispersion.
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Soliton solutions of Fokas system in monomode optical media
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Abstract: With the developing technology, the use of communication and tools in the world is increasing, so the
importance of data transfer is also high. With these developments, there has been a huge increase in the number
of studies in the optical subfield of physics in recent years. In fiber optic cables, many events such as data trans-
mission, non-linear throw, refractive index of light are modeled with NLPDEs. In this study, analytical solutions
of the Fokas system were obtained. The Fokas system models nonlinear pulse transmission in monomode optical
fibers. Unified Riccati equation expansion method (UREEM) was used to obtain optical soliton solutions. We have
obtained various solitons for the model. Results are depicted via 3D, 2D and contour plots.

Keywords: Optical solution; Nonlinear refractive index; Auxiliary method; Group velocity dispersion.
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Two new insights in fractional calculus that have the potential to make
significant changes
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Abstract: Fortunately, many researchers are working on a variety of topics of fractional calculus. Although there
are always exceptions, but most works have no basic novelties. This area needs fundamental changes. If we want
to guarantee the future of this field, we have no choice but to introduce completely new and creative approaches to
this field. In this talk, we wanna to provide two insights for helping future of the field.

Keywords:Continuity, Discontinuity, Discrete fractional differential equation, Estimates, Inclusion modeling,
Mathematical softwares.
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Existence and uniqueness results for a nonlinear integral equation related
to infectious disease
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Abstract: A nonlinear integral equation related to infectious disease is investigated. Using a fixed-point theorem
for convex-concave and nondecreasing operators defined in a Banach space with a normal solid cone, we derive
some existence and uniqueness results of positive solutions to the considered equation. Moreover, an iterative
algorithm that converges to the unique solution is provided. Our results are supported by examples.

Keywords:Integral equation; convex–concave nonlinearities; positive solution
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An Application of Fuzzyfied Environment for SAIR Model Using
COVID-19 Data in Turkey
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Abstract: In this talk we propose a mathematical model in a Fuzzy environment for COVID-19 in Turkey [1]
during two periods, P1 and P2. In our model we extend the SAIR model [2] to the fuzzyfied form [3]. Supposing
the vaccination is the highest effect of treating/curing COVID-19, here we fuzzyfy the SAIR model by taking the
vaccination parameter in a fuzzy environment. Also in our model asymptomatic individuals [4], or silent spreaders,
have dominant roles spreading the disease.

Keywords:COVID-19, SAIR model, Fuzzyfied environment, Vaccination parameter.
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Hidden attractors: new horizons in exploring dynamical systems
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Abstract: Hidden attractors have been known since the 1960s when they were discovered and observed in various
nonlinear control systems[1]. It is the last decade where several scientists have intensively studied hidden attrac-
tors. Hidden are called the attractors whose basin of attraction does not intersect with small neighborhoods of the
unstable equilibrium point, i.e., their basins of attraction do not touch unstable equilibrium points and are located
far away from them[2]. They can be found in systems with no equilibrium points[3], with one stable equilib-
rium[4], or in systems with lines of equilibrium points[5]. Hidden attractors often have small basins of attractions,
are strongly chaotic, and have complex dynamics. This property can be helpful or catastrophic, especially in tech-
nological applications. In this talk, we will make a short review on this topic and present different systems with
Hidden Attractors [6-7].
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The applied mathematics and modelling in the path from physics to
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Abstract: We present a panoramic view of the evolution associated to the different emerged methods and applied
to the different conceptual steps of the Physics in the confluence paths with the Biology. In this context, we have
the basic computational methods up to the Data Analysis and related issues. The different kinds of differential
equations are a basic stone together with the dynamical competition of scales either in space or time.

A Qualitative Study on Fractional Differential Equations

Mustafa Bayram1, Engin Can2, Hakan Adiguzel2
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2 Dept. of Basic Sciences of Engineering, Sakarya University of Applied Sciences, Sakarya, Turkey.
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Abstract: In this study, we have investigated the oscillatory solutions of fractional differential equations. Using
the pointwise comparison principle, we have presented some oscillation criteria which is based on constructing a
lower (also upper) solution of a Riccati type equation. Consequently, it can be seen that this approach can also be
applied to the oscillation investigation of other fractional differential equations.
Keywords:Oscillation, Riccati transformation, Fractional derivative.
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Abstract multivariate algebraic function activated neural network
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Abstract: Here we exhibit multivariate quantitative approximations of Banach space valued continuous multi-
variate functions on a box or R2N, by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We study also the case of approximation by iterated operators of the
last four types. These approximations are achieved by establishing multidimensional Jackson type inequalities
involving the multivariate modulus of continuity of the engaged function or its high order Fréchet derivatives. Our
multivariate operators are defined by using a multidimensional density function induced by the algebraic sigmoid
function. The approximations are pointwise and uniform. The related feed-forward neural network is with one
hidden layer.
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Highly dispersive optical soliton perturbation with complex—Ginzburg
Landau model by semi—inverse variation

Anjan Biswas
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E-mail: biswas.anjan@gmail.com

Abstract: The dynamics of perturbed highly dispersive optical solitons is studied in this work. The governing
model is the complex Ginzburg—Landau equation with six dispersion terms. The perturbation effects appear with
maximum allowable intensity or full nonlinearity. Three forms of self—phase modulation are considered. They
stem from Kerr effect, parabolic law and finally the polynomial form. The semi—inverse variational principle is
implemented to recover bright 1—soliton solutions to the model which is otherwise non—integrable with any of
the known integration schemes. The applied principle retrieves analytical, but not exact, bright 1—soliton solu-
tions to the model. The parameter constraints, that guarantee the existence of such solitons, are also identified, and
presented.

Keywords:solitons; Cardano; semi—inverse.
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A comparative analysis of an application of Subgradient and Nelder-Mead
methods to one layer-case Inverse problem of gravimetry.

Mark Sigalovsky and Anvar Asimov
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Abstract: We had conducted qualitative and quantitative comparative analysis with computer simulation for one
layer-case Inverse problem of gravimetry with conditions on the part of boundary. We use the Poisson equation
∆u(x; y) = −4πGψ(x; y), (x; y) ∈ Ω based model (where Ω is whole search area), and, given a distribution func-
tions of gravitational potential u and density ψ, we have to restore in-depth c and thickness d parameters of the
target deposit layer, minimizing the target function I(c; d) =

∫ L
0

∂u(x,0)
∂y − β(x)2dx → min, where β is a posteriōri

known real distribution of the gravitational potential vertical derivative, and all associated boundary conditions
are met [1],[3]. The problem is real data-based. Within the problem statement, the Subgradient and Nelder-Mead
methods were chosen for testing. The reasons for this choice are: 1) a target function property, which does not al-
low any gradient methods, as is stated during the study [1]; 2) the typicality of both mentioned methods as common
non-gradient methods. Our goal was to esteem their behavior and accuracy here. The uniqueness of exact solution
is proven [2], but in real calculation, some different data setups sometimes might give the same outputs due to the
well-known peculiarities of the applied methods; though, numeric results still are quite good for practice. In com-
parison, we concluded that, though subgradient method works noticeably slower (due to random search involved),
it restores the data better; Nelder-Mead also gives good results, but requires a good initial approximation; and it
is possible to use both in joint for more better results. Research was supported by grant project ”Development
of geographic information system for solving the problem of gravimetric monitoring of the state of the subsoil of
oil and gas regions of Kazakhstan based on high-performance computing in conditions of limited experimental
data” (Grant N0AP05135158-OT-19, SC MES RK). The results obtained appear to be useful for oil-and-gas field
practitioners.

Keywords:Inverse and ill-posed problems, non-gradient algorithms, oil industry.
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On Connections and Novelty in Fractional Calculus
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Abstract: Mathematics does not consist of proving unrelated results in a vacuum, and good mathematics does
not consist of copy-pasting known proofs to new settings where they work in the same way without modification.
Mathematics is a deeply interconnected beast, and the connections should be used to prove new results using old
ones as much as possible. On the other hand, if you notice that the same method of proof can be used for many
different results, it suggests that reproducing the proof many times is unnecessary, and instead you should look for
a general setting where the method can apply to prove a single result with many special cases.
Applying these philosophies to fractional calculus, we see that new fractional operators should always be under-
stood in terms of their connections with old and established ones, if such connections can be found. We also see
that it is useful to consider general fractional operators which contain many existing definitions as special cases,
to avoid time-wasting and redundancy in mathematical research. This talk will examine some general classes of
fractional operators, and their connections with the original Riemann–Liouville fractional calculus that allow many
classical results to be easily extended to more general settings.

Keywords:fractional calculus; algebraic conjugation; generalised fractional calculus.
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Discrete Wolbachia Diffusion in Mosquito Populations with Allee Effects

Unal Ufuktepe
College of Engineering and Technology, American University of the Middle East, Kuwait
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Abstract: We study stability analysis of a discrete-time dynamical system of Wolbachia diffusion in mosquito
populations with Allee effects on the wild mosquito population. We analyze the competition between released
mosquitoes and wild mosquitos. We show local and global stabilities of the fixed points, and type of bifurcations
with respect to parameters. The results are verified by numerical simulations.
Applying these philosophies to fractional calculus, we see that new fractional operators should always be under-
stood in terms of their connections with old and established ones, if such connections can be found. We also see
that it is useful to consider general fractional operators which contain many existing definitions as special cases,
to avoid time-wasting and redundancy in mathematical research. This talk will examine some general classes of
fractional operators, and their connections with the original Riemann–Liouville fractional calculus that allow many
classical results to be easily extended to more general settings.

Keywords:competition model, discrete dynamical systems, bifurcation, fixed point.
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Exponential Stability of the transmission Schrödinger equation with
boundary time-varying delay
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Abstract: In this paper, we study stability problems for the transmission Schrödinger equation with a Neumann
feedback control that contains a time-varying delay term and that acts on the exterior boundary. Under suitable
assumptions, we prove exponential stability of the solution. These results are obtained by introducing suitable
energies and suitable Lyapunov functionals.

Keywords:Schrödinger equation; transmission problems; time-varying delay; exponential stability.
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327 years of fractional calculus: theory and applications
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Abstract:Fractional calculus has a huge history and it is an interdisciplinary field with a potential impact in several
areas of science and engineering. In my talk I will present some open problems of the fractional calculus.
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Pull-Back Vector Fields
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Abstract:The problem studied in this paper is related to the bienergy of a pull-back vector field from a Riemannian
manifold to its tangent bundle equipped with the Sasaki metric. We show that a pull-back vector field on a compact
manifold which covers harmonic map. then the pull-back bundle V is biharmonic if and only if V is parallel.

Keywords:Horizontal lift, vertical lift, Pull-Back, biharmonic map.
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Rbf-Pum solution of magnetoconvection in a triangular cavity exposed to a
uniform magnetic field
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Abstract: Numerical simulation of Al2O3-Cu/water hybrid nanofluid flow in an isosceles right triangular
cavity exposed to either vertical or horizontal uniform magnetic field is numerically investigated. A local
method, radial basis function based partition of unity method (Rbf-Pum), is performed to solve steady
dimensionless governing equations in stream function-vorticity form numerically. Vertical magnetic
field suppresses the fluid flow and heat transfer more than the horizontal one. The rise in magnitude
of uniform magnetic field suppresses fluid flow and heat transfer. The dominance of convection is
pronounced at large Rayleigh numbers.

Keywords: Polyharmonic spline, radial basis function, hybrid nanofluid, triangular cavity.
Mathematics Subject Classification:

1 Introduction and Problem Definition
Nanofluids are very popular in recent years due to their capability of improvement on heat transfer.
Choi et al. [1] experimentally showed that nanaoparticle addition into a base fluid enhances thermal
conductivity, so does the heat transfer performance. Many numerical studies involving nanofluids are
carried out. Finite element method [2, 3, 4], finite volume method [5] and finite difference method [6]
are mostly encountered numerical methods used in these studies. Rbf based methods are rarely used in
these type of problems. Therefore, in the current study, Rbf-Pum is presented as an alternative numerical
method.
The two-dimensional, steady, laminar, incompressible flow is concerned in an isosceles right triangle
involving a hybrid nanofluid. The description of the problem is sketched in Fig. 1. Brownian motion,
viscous dissipation, radiation, Hall effect, induced magnetic field and Joule heating effect are ignored.

Th

Tc

O

0.5

1

∂T/∂n = 0

u

v

g
45◦

B0

θm

Cu-Al2O3/water

Figure 1: Description of the problem.

ρhf = (1− ϕ)ρf + ρ1ϕ1 + ρ2ϕ2 (1.1a)
(ρCp)hf = (1− ϕ)(ρCp)f + (ρCp)1ϕ1 + (ρCp)2ϕ2

(1.1b)

(ρβ)hf = (1− ϕ)(ρβ)f + (ρβ)1ϕ1 + (ρβ)2ϕ2 (1.1c)

µhf =
1

(1− ϕ)2.5
(1.1d)

khf = kf

1− ϕ+ 2ϕ
knp

knp − kf
ln

(
knp + kf

2kf

)
1− ϕ+ 2ϕ

kf
knp − kf

ln

(
knp + kf

2kf

)
(1.1e)

σhf = σf

(
1 +

3(σnp/σf − 1)ϕ

(σnp/σf + 2)− (σnp/σf − 1)ϕ

)
(1.1f)
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Some physical properties of base fluid and nanoparticles are taken as given in [7]. Adopting single
phase nanofluid model, physical relations of hybrid nanofluid are given in the right side of Fig. 1, where
subindices 1, 2, f, np, hf refer to the nanoparticles Al2O3, Cu, fluid, nanoparticle and hybrid nanofluid,
respectively, ϕ = ϕ1+ϕ2 is the solid volume concentration of hybrid nanofluid, knp = (k1ϕ1+k2ϕ2)/ϕ is the
thermal conductivity of nanoparticle, ρ is the density, (ρCp) is the heat capacitance, (ρβ) is the thermal
expansion coefficient, αhf = khf/(ρCp)hf is the thermal diffusivity of nanofluid, σnp = (σ1ϕ1 + σ2ϕ2)/ϕ
is the electrical conductivity of nanoparticle, Eq. (1.1d) is the Brinkman’s model [8], Eq. (1.1e) is the
Xue’s model [9] and Eq. (1.1f) is the Maxwell’s model [10].
The governing equations in dimensionless stream function-vorticity formulation are derived as follows

∇2ψ = −w (1.2a)
αhf

αf
∇2T = u

∂T

∂x
+ v

∂T

∂y
, (1.2b)

Pr∇2w =
νfρhf
µhf

(
u
∂w

∂x
+ v

∂w

∂y

)
− (ρβ)hf

βf

νf
µhf

RaPr
∂T

∂x

− σhfµf

σfµhf
Ha2Pr

(
∂u

∂y
sin2 θm −

∂v

∂x
cos2 θm + 2 sin θm cos θm

∂u

∂x

)
, (1.2c)

where ν = µ/ρ is the kinematic viscosity. The numbers, Prandtl (Pr), Rayleigh (Ra) and Hartmann
(Ha), in these equations are defined as

Pr =
νf
αf
, Ra =

gβf (Th − Tc)L3

νfαf
, Ha = B0L

√
σf
µf
.

No slip boundary conditions for velocity, and in turn for stream function, are inserted on each walls as
u = v = ψ = 0. For temperature, Th = 1 and Tc = 0, and ∂T/∂n = 0 on jagged walls. Vorticity boundary
conditions are found by calculating w = ∇× u on each boundaries.

2 Numerical Procedure
Radial basis functions have taken great interest in the last decade. Novel books [11, 12, 13] include many
details about Rbfs.
Rbf-Pum is a local method. The localization is constructed by considering subdomains and solution
is approximated in each subdomain as in global Rbf. The obtained system matrix becomes sparse.
Subdomains here are also referred as open cover or patches. Shapes of these covers may be chosen such
as squares, circles or ellipses. In this study, circular patches are used. The radius of patches can be
arranged in such a way that the overlap between patches and covering are satisfied. Selection of the
radius strongly affect the accuracy of the solution. The following explanations for this method is based
on Ref.[14], and additional polynomial terms of degree one are also considered as in Ref. [15].
After getting the differentiation matrices, sayDx, Dy andD2 for the x-, y- and the Laplacian, respectively,
the dimensionless nonlinear governing equations are iteratively solved as follows

D2ψ
n+1 = −wn (2.1a)

u = un+1 = Dyψ
n+1, v = vn+1 = −Dxψ

n+1 (2.1b)(
D2 −

αf

αhf
M

)
Tn+1 = 0 (2.1c)(

PrD2 −
νfρhf
µhf

M

)
wn+1 = − (ρβ)hf

βf

νf
µhf

RaPrDxT
n+1 (2.1d)

− σhfµf

σfµhf
Ha2Pr

(
(Dyu) sin

2 θm − (Dxv) cos
2 θm + 2 sin θm cos θm(Dxu)

)
,
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where M is the matrix equal to diag(u)Dx + diag(v)Dy and n is the iteration level.
As a ratio of convective heat transfer to conductive heat transfer, average Nusselt number is also checked

as Nu = −
∫ 1

0

∂T

∂y
dx using the numerical integration presented in [16]. A relaxation parameter τ is used

once the vorticity equation is solved as wn+1 ← τwn+1 + (1 − τ)wn, where τ ∈ (0, 1). τ is either taken
as 0.02 or 0.01 in the current executions.

3 Numerical Computations
All numerical computations are done in 2.3 GHz Quad-Core i7 computer with MATLAB R2020a. Prandtl
number (Pr = (µf (Cp)f/kf ) is computed and fixed at 6.0674. Fluid flow and heat transfer are visualized
in streamlines and isotherms in variation of Hartmann number, Rayleigh number and the angle of the
uniform magnetic field. Regarding to the single phase model, ϕ1 = ϕ2 is kept at 0.01. Polyharmonic
spline Rbf, f = r3, is adopted with monomials 1, x, y.
Node distribution is designed utilizing Gauss-Chebyshev-Lobatto (GCL) grids as in Fig.2 This distribution
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Figure 2: Node setup and circular patches. The number of patches is fixed at 42.

is done concerning the sharp corners in the geometry. On this figure, pink dots point to the center of the
patches. Nb = 192 number of boundary and Ni = 2209 number of interior nodes are used.
In the following figures’ illustrations, streamlines are at the top two rows of contours and isotherms are
at the bottom two rows. In Fig. 3, the core of streamlines shifts in the direction of the applied magnetic
field. At Ha = 100, the central fluid velocity becomes smaller at θm = 90◦ than θm = 0◦. Almost
conductive behavior is exhibited in isotherms in each contours due to the small Rayleigh number.
In Figs. 4-5, fluid flow and heat transfer are examined at Ra = 105 and Ra = 106, respectively, in different
Ha numbers as well as angles θm. At a small Ha number (Ha = 10), fluid and temporal behavior are not
altering at any angle θm in both Rayleigh numbers. On the other hand, the rise in Ha number causes fluid
to obey the direction of the magnetic field, and central vortex in streamlines is pushed either horizontally
at θm = 0◦ or vertically at θm = 90◦. Also, the decrease in central streamline values is noted significantly
at a large Ha (Ha = 100) comparing angles. In isotherms, stabilization in contours is apparently seen
with the augmentation in Ha number at any angle θm. That is, convective heat transfer is suppressed
by larger Lorentz force. At Ra = 106, Ha = 100, the vertical magnetic field tends to separate the fluid
flow, and isotherms are also perturbed vertically.

4 Conclusions
In this study, Rbf-Pum solution of natural convection flow of a hybrid nanofluid in an isosceles right
triangle under the effect of either a horizontal or a vertical uniform magnetic field is presented.
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Figure 3: Ra = 104 in different Ha numbers.
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Figure 4: Ra = 105 in different Ha numbers.
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Figure 5: Ra = 106 in different Ha numbers.

Some results may be listed as follows :

• Buoyancy driven flow is pronounced with the augmentation in Ra number.

• When θm = 0◦ or θm = 90◦, from Ha = 10 to Ha = 100,
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* the most decrease (over 90%) in |ψ|max occurs at Ra = 104 and Ra = 105.

* On the other hand, while the decrease at Nu at Ra = 104 and Ra = 105 is almost the same
(9%), the decrease at Ra = 106 is more (19.31%) with θm = 90◦ than θm = 0◦ (16.49%).
That is, convective heat transfer decreases as Ha rises. This decrease becomes significant as
Ra increases.

• At Ha = 100, from θm = 0◦ to θm = 90◦,

* 45% at Ra = 104, 43.49% at Ra = 105 and 19.54% at Ra = 106 decrease in |ψ|max is observed.

* Although not too much change is noted in Nu, the most decrease (3.77%) is exhibited at
Ra = 106.

As a consequence, uniform magnetic field coming through the heated part of the cavity is more forcing
for fluid flow and convective heat transfer. Further, Rbf-Pum is a good alternative numerical method for
solving these type of problems, too.
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1 Introduction

Bernstein type rational functions, Rn (f ;x) = 1
(1+anx)

n

∑n
k=0 f

(
k
bn

) ( n
k

)
(anx)

k
(n = 1, 2, ...)

Balázs defined and investigated them in 1975, (see [1]). In this definition, f is a real and single valued
function defined on[0,∞) the interval, an andbn are real numbers that have been appropriately chosen
and are independent ofx. Seven years later, in 1982, Balázs and Szabados cooperates to improve the
estimate in [1] by selecting appropriate parameters an and bn under some restrictions forf (x) , (see [2]).
Recently, different q−generalizations of Balázs-Szabados operators have been studied by several re-
searchers, see [3, 4, 5, 6, 7]. In [8], the Kantorovich type q−analogue of the Balázs-Szabados operators is
defined by Hamal and Sabancigil as follows:

R∗
n,q (f, x) =

n∑
k=0

rn,k (q, x)

∫ 1

0

f

(
[k]q + qkt

bn

)
dqt, (1.1)

where f : [0,∞) → R, q ∈ (0, 1) ,an = [n]
β−1
q , bn = [n]

β
q , 0 < β ≤ 2

3 , n ∈ N, x ≥ 0,

and rn,k (q, x) =
1

(1+anx)
n

[
n
k

]
q

(anx)
k∏n−k−1

s=0

(
1 + (1− q) [s]q anx

)
.

In [10], recently, Hamal and Sabancigil introduced a new Kantorovich-type (p, q)−analogue of the Balázs–
Szabados operators by generalizing the new Kantorovich-type q−analogue of Balázs–Szabados operators,
given by 1.1, as follows:

R∗
n,p,q (f, x) =

n∑
k=0

r∗n,k (p, q, x)

∫ 1

0

f

pn−k
(
[k]p,q + qkt

)
bn

 dp,q t , (1.2)

where r∗n,k (p, q, x) =
1

pn(n−1)/2

[
n
k

]
p,q

pk(k−1)/2
(

anx
1+anx

)k ∏n−k−1
j=0

(
pj − qj anx

1+anx

)
and 0 < q < p ≤ 1, an = [n]

β−1
p,q , bn = [n]

β
p,q , 0 <β ≤ 2

3 , n ∈ N, x ≥ 0, f : [0,∞) → R.
Before stating the main result for these operators, we give some notations and definitions
of(p, q)−calculus. For any p > 0, q > 0, non-negative integern, the (p, q)−integer of the numbernis
defined as follows:
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[n]p,q = pn−1 + pn−2q + pn−3q2 + ...+ pqn−2 + qn−1 =


pn−qn

p−q if p ̸= q ̸= 1

npn−1 if p = q ̸= 1
[n]q if p = 1

n if p = q = 1

,

the (p, q)−factorial is defined by

[n]p,q! =

n∏
k=1

[k]p,q , n ≥ 1 and [0]p,q! = 1,

and (p, q)−binomial coefficient is defined by[
n
k

]
p,q

=
[n]p,q!

[k]p,q! [n− k]p,q!
, 0 ≤ k ≤ n.

The formula of (p, q)−binomial expansion is defined by

(ax+ by)
n
p,q =

∑n
k=0 p

(n−k)(n−k−1)
2 q

k(k−1)
2 an−kbkxn−kyk

= (ax+ by) (pax+ qby)
(
p2ax+ q2by

)
...
(
pn−1ax+ qn−1by

)
.

Let f : C[0, a] → R, the (p, q)−integral of is defined by:∫ a

0

f(t)dp,qt = (p− q)a

∞∑
k=0

f

(
qk

pk+1
a

)
qk

pk+1
if

∣∣∣∣pq
∣∣∣∣ > 1 .

Fast [11] and Fridy [12] provided the following notions.
Suppose that E ⊆ N = {1, 2, ...}and En = {k ≤ n : k ∈ E} .Then δ (E) = lim

n→∞
1
n |En| is called natural

density of E provided that the limit exists.

Definition 1.1. A sequence x = (xn) is statistically convergent to the numberLif for everyε > 0, we
have δ {k ∈ N : |xk − L| ≥ ε} = 0 is denoted by stA − lim

n→∞
xn = L.

Because all finite subsets of the natural numbers have density zero, any convergent sequence is statistically
convergent, but not contrariwise.
For example , consider the sequence A = {an, n = 1, 2, 3, ...} whose terms are

an =

{ √
n when n = m2, ∀m = 1, 2, 3, ...

1 otherwise

we can see that the sequence is divergent in ordinary sense, but it is statistically convergent to 1.
Let CB [a, b] denote the space of all functions f which are continuous in every point of the interval[a, b]
and bounded on the entire positive real line, |f (x)| ≤ Mf ,∀x ∈ (0,∞).

Lemma 1.1. [10] For all Let n ∈ N, x ∈ [0,∞) and0 < q < p ≤ 1, we have the following equalities:

R∗
n,p,q (1, x) = 1.

R∗
n,p,q (t, x) =

pn

[2]p,q bn
+

2q

[2]p,q

(
x

1 + anx

)
.

R∗
n,p,q

(
t2, x

)
= p2n

[3]p,qb
2
n
+

(4q3+5q2p+3qp2)pn−1

[2]p,q [3]p,qbn

(
x

1+anx

)
+

q[n−1]p,q
[n]p,q

4q3+q2p+qp2

[2]p,q [3]p,q

(
x

1+anx

)2
.
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Lemma 1.2. [10] For all n ∈ N, x ∈ [0,∞) 0 < q < p ≤ 1, we have the following estimations:

(
R∗

n,p,q ((t− x), x)
)2 ≤ 1

bn

{
1

bn
+

(pn − qn)
2

bn

(
1

p+ q
+

1

p− q
(anx)

)2
}
, x ∈ [0,∞) , (1.3)

R∗
n,p,q

(
(t− x)

2
, x
)
≤ A1

bn
ϕn (p, q) (1 + x)

2
, x ∈ [0,∞) , (1.4)

R∗
n,p,q

(
(t− x)

4
, x
)

≤ A2

b2n
(1 + x)

2
, x ∈ [0,∞) , (1.5)

where A1 > 0, A2 > 0 and ϕn (p, q) = max
{
pn−1, bn − anp

n−1, 1
[3]p,qbn

}
.

In the following theorem, Bohman-Korovkin type statistical approximation theorem was proved by Gadjiev
and Orhan.

Theorem 1.1. [13] Let (ℓn)n∈N be a sequence of positive linear operators acting from CB [a, b] to B [a, b]
that is, ℓn : CB [a, b] → B [a, b] satisfies the conditions that

stA − lim ∥ℓn (ei)− ei∥ = 0 with ei (t) = ti and ∀ i = 0, 1, 2. (1.6)

Then, we have
stA − lim

n
∥ℓnf − f∥ = 0 ,∀ f ∈ CB ([a, b]) .

Now, we give the main result of this research is to use modulus of continuity to study the rate of A-
statistical convergence of Kantorovich type (p, q)−analogue of the Balázs–Szabados operators R∗

n,p,q (f, x).

Theorem 1.2. Let q = (qn) , p = (pn) , 0 < qn < pn ≤ 1 such that stA− lim
n
qn = 1, stA− lim

n
pn = 1 and

stA−lim
n
pnn = 1 . Then for each compact interval[0, b] ⊂ [0,∞), we have stA−lim

n

∥∥R∗
n,p,q (f, x)− f (x)

∥∥ =

0 , ∀ f ∈ C ([0, b]).

Proof According to Theorem 1, it is sufficient to show that it satisfies (1.6). By using Lemma 1, it is
clear that

stA − lim
n

∥∥∥R∗
n,pn,qn (e0;x)− e0

∥∥∥ = 0 , since R∗
n,pn,qn (e0;x) = 1. (1.7)

Again by Lemma 1, we have∣∣∣R∗
n,pn,qn (e1;x)− e1

∣∣∣ = ∣∣∣∣ pn
n

[2]p,qbn
+ 2qn

[2]pn,qn

(
x

1+an,pn,qnx

)
− x

∣∣∣∣
=

pn
n

[2]pn,qn
bn

+ (pn−qn)
[2]pn,qn

x
1+an,pn,qnx +

an,pn,qnx2

1+an,pn,qnx .

By taking the maximum of both sides of the last equality on [0, b] with 0 < b < 1
an,pn,qn

, we obtain

∥∥∥R∗
n,pn,qn (e1;x)− e1

∥∥∥ ≤ pnn
[2]pn,qn

bn
+

(pn − qn)

[2]pn,qn

b

1 + an,pn,qnb
+

an,pn,qnb
2

1 + an,pn,qnb
.

By using the limits stA − lim
n
qn = 1, stA − lim

n
pn = 1, we have

stA − lim
n

pnn
[2]pn,qn

bn,pn,qn

= 0, stA − lim
n

(pn − qn)

[2]pn,qn

= stA − lim
n
an,pn,qn = 0,

therefore, ∥∥∥R∗
n,pn,qn (e1;x)− e1

∥∥∥ < ε.
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For ε > 0 , we define the sets

A :=
{
n ∈ N :

∥∥∥R∗
n,pn,qn (e1; .)− e1

∥∥∥ ≥ ε
}
, (1.8)

A1 =

{
n ∈ N :

pn
n

[2]pn,qn
bn

≥ ε

}
, A2 =

{
n ∈ N : (pn−qn)

[2]pn,qn

b
1+an,pn,qnb ≥ ε

}
, and

A3 =
{
n ∈ N :

an,pn,qnb2

1+an,pn,qnb ≥ ε
}
, thus from (1.8) we can see that A ⊆ A1

⋃
A2

⋃
A3,

δ
{
n ∈ N :

∥∥∥R∗
n,pn,qn (e1; .)− e1

∥∥∥ ≥ ε
}
≤ δ

{
n ∈ N :

pn−1
n

bn,pn,qn

b
1+an,pn,qnb ≥ ε

3

}
+ δ

{
n ∈ N :

(
1− 1

(1+an,pn,qnb)
2

)
b2 ≥ ε

3

}

+δ

{
n ∈ N :

pn−1
n

‘

[n]pn,qn

b2(
1 + an,pn,qnb

)2 ≥ ε

3

}
. (1.9)

By taking the limit of both sides of the above inequality (1.9) , It is obvious that

stA− lim
n

pn−1
n

bn,pn,qn

b

1 + an,pn,qnb
= 0, stA− lim

n

1(
1 + an,pn,qnb

)2 = 1, stA− lim
n

pn−1
n

‘

[n]pn,qn

b2(
1 + an,pn,qnb

)2 = 0.

Which implies
stA − lim

n

∥∥∥R∗
n,pn,qn (e1;x)− e1

∥∥∥ = 0. (1.10)

Also, by using Lemma 1, we may write∣∣∣R∗
n,pn,qn (e2;x)− e2

∣∣∣ ≤ ∣∣∣∣ p2n
n

[3]pn,qn
b2n

+
(4q3n+5q2npn+3qnp

2
n)p

n−1
n

[2]pn,qn
[3]pn,qn

bn

(
x

1+an,pn,qnx

)∣∣∣∣∣∣∣∣+ qn[n−1]pn,qn

[n]pn,qn

4q3n+q2npn+qnp
2
n

[2]pn,qn
[3]pn,qn

(
x

1+an,pn,qnx

)2
− x2

∣∣∣∣
≤ p2nn

[3]pn,qn
b2n,pn,qn

+

(
4q3n + 5q2npn + 3qnp

2
n

)
pn−1
n

[2]pn,qn
[3]pn,qn

bn,pn,qn

(
x

1 + anx

)

.+

{
1− 4q3n + q2npn + qnp

2
n

[2]pn,qn
[3]pn,qn

1

(1 + an,pn,qn)
2

}
x2 +

pn−1
n

[n]pn,qn

4q3n + q2npn + qnp
2
n

[2]pn,qn
[3]pn,qn

(
x

1 + anx

)2

By taking the maximum of both sides of the last equality on [0, b] with 0 < b < 1
an,pn,qn

, we get

∥∥∥R∗
n,pn,qn (e2;x)− e2

∥∥∥ ≤ p2nn
[3]pn,qn

b2n,pn,qn

+

(
4q3n + 5q2npn + 3qnp

2
n

)
pn−1
n

[2]pn,qn
[3]pn,qn

bn,pn,qn

(
b

1 + an,pn,qnb

)

+

{
1− 4q3n + q2npn + qnp

2
n

[2]pn,qn
[3]pn,qn

1

(1 + an,pn,qnb)
2

}
b2 +

pn−1
n

[n]pn,qn

4q3n + q2npn + qnp
2
n

[2]pn,qn
[3]pn,qn

(
b

1 + an,pn,qnb

)2

By using the limits stA − lim
n
qn = 1, stA − lim

n
pn = 1, we have

stA − lim
n

4q3n + q2npn + qnp
2
n

[2]pn,qn
[3]pn,qn

= 1, stA − lim
n

pn−1
n

[n]pn,qn

= 0, stA − lim
n

p2nn
[3]pn,qn

b2n,pn,qn

= 0.

Therefore, ∥∥∥R∗
n,pn,qn (e2;x)− e2

∥∥∥ < ε.
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Now, for given ε > 0, we introduce the following sets;

D :=
{
n ∈ N :

∥∥∥R∗
n,pn,qn (e2; .)− e2

∥∥∥ ≥ ε
}
,

D1 =
{
n ∈ N :

p2n
n

[3]pn,qn
b2n,pn,qn

≥ ε
4

}
,

D2 =

{
n ∈ N :

(4q3n+5q2npn+3qnp
2
n)p

n−1
n

[2]pn,qn
[3]pn,qn

bn,pn,qn

(
b

1+an,pn,qnb

)
≥ ε

4

}
,

D3 =

{
n ∈ N :

{
1− 4q3n + q2npn + qnp

2
n

[2]pn,qn
[3]pn,qn

1

(1 + an,pn,qnb)
2

}
b2 ≥ ε

4

}
,

D4 =

{
n ∈ N :

pn−1
n

[n]pn,qn

4q3n + q2npn + qnp
2
n

[2]pn,qn
[3]pn,qn

(
b

1 + an,pn,qnb

)2

≥ ε

4

}
. (1.11)

Then, from (1.11) we may write D ⊆ D1

⋃
D2

⋃
D3

⋃
D4,

δ
{
n ∈ N :

∥∥∥R∗
n,pn,qn (e2; .)− e2

∥∥∥ ≥ ε
}
≤ δ

{
n ∈ N :

p2n
n

[3]pn,qn
b2n,pn,qn

≥ ε
4

}
+ δ

{
n ∈ N :

(4q3n+5q2npn+3qnp
2
n)p

n−1
n

[2]pn,qn
[3]pn,qn

bn,pn,qn

(
b

1+an,pn,qnb

)
≥ ε

4

}
+ δ

{
n ∈ N :

{
1− 4q3n+q2npn+qnp

2
n

[2]pn,qn
[3]pn,qn

1
(1+an,pn,qnb)2

}
b2 ≥ ε

4

}
+δ

{
n ∈ N :

pn−1
n

[n]pn,qn

4q3n + q2npn + qnp
2
n

[2]pn,qn
[3]pn,qn

(
b

1 + an,pn,qnb

)2

≥ ε

4

}
,

by taking the limit of both sides of the above inequality, It is obvious that
δ (D) ≤ δ (D1) + δ (D2) + δ (D3) + δ (D4) = 0, which implies
stA − lim

n

∥∥∥R∗
n,pn,qn (e2;x)− e2

∥∥∥ = 0. As a result, Equation (1.6) is proven, yielding the desired result. ■

2 Conclusion
In this paper, by using the notion of (p, q)−calculus and statistical convergence, we give the main result of
this research is to use modulus of continuity to study the rate of A-statistical convergence of Kantorovich
type (p, q)−analogue of the Balázs–Szabados operators.
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1 Introduction
Not with standing the wide variety of freely distributed and, especially, commercial industrial software for
mathematical geophysics, there still is a certain number of companies who develop their own GIS software
from scratch, aimed for their specific needs. This study was conducted as a part of such software project,
developed for specific task, and successfully completed. Involved in cross-disciplinary work group, we
had to develop an evaluation and predictive GIS, mainly driven on gravimetric data. The customer was
a company running field development over the several deposits of the Caspian shelf. Due to physical
specifics of the problem, the model built is two-dimensional, Poisson equation - based and has conditions
on the part of boundary. The problem itself is to restore coordinate parameters for an homogeneous
gravitational anomaly by the results of gravimetry, which appears to be an inverse problem of gravimetry.
During the study, two versions of problem statement were considered. This work is dedicated mainly to
the second problem statement, so-called "layer-case", which is explained further. Here we had conducted
qualitative and quantitative comparative analysis with computer simulation for this problem.

2 Problem Statement: Problems 1 and 2
Let us have rectangular area Ω with horizontal coordinate x and vertical one y: Ω = {(x; y)|0 < x <
L, 0 < y < H}, where the area length L and its depth H are set. The boundary of Ω consists of Earth
surface y = 0 , and of inner bound S: x = 0 and x = L - sides, y = H - lower side. In Ω we consider
Poisson equation

∆φ(x; y) = −4πGρ(x; y); (x; y) ∈ Ω,

where φ = φ(x; y), ρ = ρ(x; y) is distribution of density in the area, and G is the gravitational constant.
It is known that somewhere in the Ω there is some heterogeneity, or gravitation anomaly Ω0, which is
sought for, i.e. the target area. The densities ρ1 and ρ2, first for heterogeneity, second for host rock, are
supposed to be known. Then, the formula holds:

ρ(x; y) =

{
ρ1, (x; y) ∈ Ω0

ρ2, (x; y) /∈ Ω0.

Denoting u the difference between potentials of perturbed and unperturbed gravitational field, and with
respect to the system linearity, we arrive at equation

∆u(x; y) = −4πGψ(x; y), (x; y) ∈ Ω, (2.1)
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where

ψ(x; y) =

{
η, (x; y) ∈ Ω0

0, (x; y) /∈ Ω0,
(2.2)

and η is the difference between host rock and anomaly densities. Further, we will mention values u and
η just as potential and density (really, they are differences of values of corresponding values). The Ω is
chosen to be such large, that anomaly influence on its inside boundary practically absents, hence, the
potentials of perturbed and unperturbed fields there are equal. We obtain the homogeneous boundary
condition:

u(x; y) = 0, (x; y) ∈ S. (2.3)

By the on-surface gravimetry we know function u and its vertical derivative. Thus, we obtain the
boundary conditions:

u(x; 0) = 0, 0 < x < L, (2.4)
∂u(x, 0)

∂y
= β(x), 0 < x < L, (2.5)

where functions α and β (gravitational potential and its vertical derivative, correspondently) are supposed
known. We set Ω0 as

Ω0 = {(x; y)|a ≤ x ≤ a+m, b ≤ y ≤ b+ n} (2.6)

for Problem 1, or
Ω0 = {(x; y)|a ≤ x ≤ b, c ≤ y ≤ d} (2.7)

for Problem 2 (layer-case), and here values a and b are known, and the coordinates c and d (layer
in-depth and thickness, correspondently), are to be found. Thus, we have inverse problems:

Given the data (1)-(6), to restore the pair of parameters:

Problem 1: restore the center coordinates (a; b) of the target area Ω0, where (1)-2.6 holds;
Problem 2: restore the in-depth and thickness of target layer (c; d), where (1)-2.7 holds;

According to common principles of inverse problem solving, we pass to the functional minimiza-
tion problem for the target function:

I(k; l) =

∫ L

0

[
∂u(x, 0)

∂y
− β(x)

]2
dx→ min, (2.8)

where (k; l) denotes the parametric pair sought, according to Problem 1 or Problem 2, correspondently.

3 Target Function Study
In the solving practice of unconditional extremum problems of optimal control, gradient methods are
most often used, Let ω = −4πGη , and let p = p(x; y) be solution of Laplace’s equation

∆p(x; y) = 0, (x; y) ∈ Ω, (3.1)

with boundary conditions

p(x; 0) = 2

(
β(x)− ∂u(x, 0)

∂y

)
, 0 < x < L; p(x; y) = 0, (3.2)

(x; y) ∈ S. (3.3)

Then, the next two Theorems hold:
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Theorem 3.1. (for Problem 1) If the conditions (8-10) hold, then functional I has derivative in any
point (a; b) and in any direction (g;h), and this derivative has form

I ′(a; b; g;h) = ω

∫ a+m

a

[p(x; b)− p(x; b+ n)] dx|h|+ ω

∫ a+m

a

[p(a; y)− p(a+m; y)] dy|g|, (3.4)

where values (a; b) are center coordinates of Ω0.

Theorem 1 describes the derivative when target area might vary both in horizontal and in vertical
directions via geometric parallel translation. Next, the Theorem 2 describes more simple situation, when
variation occurs only inside vertical stripe, and subsequently resulting formula is much simpler.

Theorem 3.2. (for Problem 2) If the conditions (8-10) hold, then functional I has derivative in any
point (c; d) and in any direction (g;h), and this derivative has form

I ′(c, d; g, h) = ω · |g|
∫ b

a

p(x, c)dx+ ω · |h|
∫ b

a

p(x, d)dx, (3.5)

where values (c; d) are in-depth and thickness of target layer, correspondently.

Proof outline: (steps) 1. To find variation of the target function; 2. to find dependence between
the integration limits variation and form of the difference functional; passing to the limit, to obtain the
functional derivative form. Proof is complete. Both theorems have similar proof techniques (see [1] for
Theorem 1 proof)

4 Remarks
• By virtue of the fact the obtained derivatives (11-12) dependencies on the directions (g;h) are

nonlinear (as they contain the modulus function), the target function I is non-smooth;

• Hence, the stated problem can not be solved with gradient methods, and requires only non-smooth
methods of solution;

• Modulus is subdifferentiable function.

• Within the problem statement, the subgradient and Nelder-Mead methods were chosen for numeric
testing.

5 Passing to Inverse Problem
The next theorem allows to solve the inverse problem stated, setting up the subgradient method (it is
possible because of Remark 3).

Theorem 5.1. If the pair (c′, d′) is the subgradient for function I at the point (c; d), then the inequalities
hold:

|c′| ≤ |C(p)| , |d′| ≤ |D(p)| , (5.1)

where

C(p) = ω ·
∫ b

a

p(x; c)dx,D(p) = ω ·
∫ b

a

p(x; d)dx,

and p is the solution of adjoint system (3.1-3.3).
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6 Algorithms

6.1 The iterational formulae for subgradient method have form:

ak+1 = ak − αk
a′k

|(a′k, b′k)|
, bk+1 = bk − αk

b′k
|(b′k, b′k)|

,

αk =
α√
k + 1

; α > 0

Ik = min[I(ak−1, bk−1), I(ak, bk)]

6.2 Iterational formulae for Nelder-Mead method have their standard form.

7 Numeric results. Comparison. Corollary.

7.1 Numeric Results
7.1.1 The reasons for choice the mentioned two methods for testing here are: 1) a target function
property, which does not allow any gradient methods, as is stated during the study [1]; 2) the typicality
of both mentioned methods as common non-gradient methods. Our goal was to esteem their behavior
and accuracy here; 7.1.2 Numeric results for Problem 1 were discussed in [1], and here we discuss results
for Problem 2. 7.1.3. Here are results of computer simulation of two methods for some parameter setups:

Table 1, results for: c=0.5 d=0.6
Method c d c, relative error d, relative error

Subgradient 0.435 0.519 0.13 0.135
Nelder-Mead 0.458 0.534 0.084 0.11

Table 2, results for: c=0.7 d=0.9
Method c d c, relative error d, relative error

Subgradien 0,721 0,802 0,03 0,109
Nelder-Mead 0,697 0,866 0,004286 0,038

Table 3, results for: c=0.3 d=0.7
Method c d c, relative error d, relative error

Subgradient 0.363 0.725 0.210 0.036
Nelder-Mead 0.337 0.745 0.123 0.064

7.2 Comparison. Corollary
We had conducted qualitative and quantitative comparative analysis with computer simulation for the
given problem. The problem is real data-based. The uniqueness of exact solution is proven [2], but
in real calculation, some different data setups sometimes might give the same outputs due to the well-
known peculiarities of the applied methods; though, numeric results still are quite good for practice.
In comparison, we concluded that, though subgradient method works noticeably slower (due to random
search involved), it restores the data better; Nelder-Mead also gives good results, but requires a good
initial approximation; and it is possible to use both in joint for more better results. The results obtained
appear to be useful for oil-and-gas field practitioners.
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Abstract: The knapsack problem is basic in combinatorial optimization and has many variants and
expansions. We focus on the quadratic stochastic multi-objective knapsack problem with random weights.
We propose a Multi-Objective Memory Algorithm with Local Pareto Neighborhood Selection Search. At
each iteration of our algorithm, a crossover, a mutation, and a local search are applied to a population
of solutions to generate new solutions that will constitute an offspring population.
Then, we apply, on the combined population of parents and offspring, the best solution selection operator
based on the termination of the non-domination rank and the crowding distance obtained respectively by
the non-domination sorting algorithm and the crowding distance computation algorithm. To prove the
performance of our algorithm, we compare it with both an exact algorithm and the NSGAII algorithm.
Our experimental results show that the MASNPL algorithm leads to significant efficiency.

1 Mathematical Formulation
We consider a stochastic quadratic multi-objective knapsack problem of the following form: given a
knapsack with a fixed weight capacity c > 0 as well as a set of n items, i = 1, . . . , n, each item has a
weight that is not known in advance, i.e. the decision of which items to choose must be made without the
exact knowledge of their weights. Therefore, we treat the weights as random variables and assume that
the weights χi, i = 1, . . . , n, are independently normally distributed with means µi > 0, and standard
deviations σi, i = 1, . . . , n. Moreover, each item i = 1, . . . , n has a fixed m-vector reward per weight unit
ri = (r1i , . . . , r

m
i )T , r1i ∈ Z+, k = 1, . . . ,m, and to each pair of items i and j, 1 ≤ i ̸= j ≤ n, is associated

a m-vector of joint reward per unit of weight rij = (r1ij , . . . , r
m
ij )

T , for each objective k, k = 1, . . . ,m. The
choice of a reward per unit weight can be justified by the fact that the value of an item often depends on
its weight, which is not known in advance.
In case of overweight, items must be removed and a penalty d must be paid for each unit of weight
unwrapped. Our goal is therefore to minimize the total penalty.
The selection of an item is defined by a binary decision variable xi which takes the value 1 if item i is
included in the selection and 0 otherwise.
The Multi-objective Quadratic Stochastic Knapsack Problem can be mathematically formulated as fol-
lows:

The Quadratic Stochastic Knapsack Problem with simple recourse
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In the formulation of the multi-objective quadratic stochastic knapsack problem with simple recourse,
the capacity constraint has been included in the objective function by using the penalty function [.]

+ and
a penalty factor d > 0, in the case of an overload, items have to be removed and a penalty d has to be
paid for each unit of weight that is unpacked.

max
x∈{0,1}n

E
[ n−1∑

i=1

n∑
j=i+1

r
(k)
ij xixj(χi + χj)

]
+E

[ n∑
i=1

r
(k)
i xiχi

]
− dE

[ n∑
i=1

xiχi − c
]+

, k = 1, . . . ,m. (1.1)

Equation (1.1) aims to maximize the total profit of all assigned objects.
The special case when k = 2 is called bi-objective binary knapsack problem and denoted by 0-1 BOKP.
where:

- E[.] denotes the expectation,

- g(x, χ) =

n∑
i=1

xiχi,

- d ∈ R+,

We write the objective function of the Quadratic Stochastic Knapsack Problem with simple recourse as
follows:

J(k)(x, χ) = E
[ n−1∑

i=1

n∑
j=i+1

r
(k)
ij xixj(χi + χj)

]
+E

[ n∑
i=1

r
(k)
i xiχi

]
− dE

[ n∑
i=1

xiχi − c
]+

, k = 1, . . . ,m. (1.2)

Since the function J is not differentiable, we present an approximation to its gradient, named approxi-
mation by convolution. This is one of the two methods presented by Andrieu and al. (for further details
on this method see [1]).
Based on “Approximation By Convolution Method”, we can approximate the ∇(Jt)x gradient of the
function J as follows:

∇(J(kt))(x, χ) =
[
(r

(k)
1 χ1, . . . , r

(k)
n χn)

T +
( n∑

j=1
j ̸=1

r
(k)
1j (χ1 + χj)xj , . . . ,

n∑
j=1
j ̸=n

r
(k)
nj (χn + χj)xj

)T ]
−d

(
− 1

t
h
(g(x, χ)− c

t

)
.χ.

(
g(x, χ)− c

)
+ 1R+

(
g(x, χ)− c

)
.χ
)
, k = 1, . . . ,m.

(1.3)

In [1] and [12], the authors proposed various function may be chosen for h. They compute for each
function a reference value for the mean square error of the obtained approximated gradient and compare
them. It turns out that, the function h = 3

4

(
1− x2

)
(1R+)), offers the smallest of this value (here the

indicator function (11) is defined as:

(11) =

{
1 if 1 ≤ x ≤ 1
0 otherwise

Based on the result of [12], we give the following estimation of the gradient of J :

∇(J(kt))(x, χ) =

[
(r

(k)
1 χ1, . . . , r

(k)
n χn)

T +
( n∑

j=1
j ̸=1

r
(k)
1j (χ1 + χj)xj , . . . ,

n∑
j=1
j ̸=n

r
(k)
nj (χn + χj)xj

)T
]

−d.

(
− 3

4t

(
1−

(g(x, χ)− c

t

)2)
· 11 ·

(g(x, χ)− c

t

)
.χ.

(
g(x, χ)− c

)
− 1R+

(
g(x, χ)− c

)
.χ

)
,

k = 1, . . . ,m.

(1.4)
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1.1 Deterministic Equivalent Problem

The new random variable is defined as follows: X :=
∑n

i=1 xiχi, which is normally distributed with
mean µ̂i :=

∑n
i=1 µixi,standard deviation σ̂ :=

√∑n
i=1 σ

2
i x

2
i , density function φ (x) = 1

σ̂f
(

x−µ̂
σ̂

)
and

cumulative distribution function Φ (x)= 𭟋
(

x−µ̂
σ̂

)
.

We write the deterministic equivalent objective function as follows:

Jk
det(x) =

n−1∑
i=1

n∑
j=i+1

r
(k)
ij xixj(µi+µj)+

n∑
i=1

r
(k)
i µixi−d·

[
σ̂ · f

(
c− µ̂

σ̂

)
− (c− µ̂) ·

[
1−𭟋

(
c− µ̂

σ̂

)]]
, k = 1, ...,m.

(1.5)

2 Resolution Method
In the decomposition framework, the original MO−QSKP is first decomposed into many SO−QSKP .
To be specific, given the objective vector F (x) =

(
f1(x), f2(x), . . . , fm(x)

)T and weight vector λ =
(λ1, . . . , λm)T , where the sum of weights vector should be equal to 1, and an approximation of the
gradient of the function J (x, χ) is given by:

∇(Jk
t )(x, χ) =

m∑
k=1

λ(k).

[[
(r

(k)
1 χ1, . . . , r

(k)
n χn)

T +
( n∑

j=1
j ̸=1

r
(k)
1j (χ1 + χj)xj , . . . ,

n∑
j=1
j ̸=n

r
(k)
nj (χn + χj)xj

)T
]

−d.

(
− 3

4t

(
1−

(g(x, χ)− c

t

)2)
· 11 ·

(g(x, χ)− c

t

)
.χ.

(
g(x, χ)− c

)
− 1R+

(
g(x, χ)− c

)
.χ

)]
,

k = 1, . . . ,m.

(2.1)

In this section, we detail our Memetic Algorithm With Selection Neighborhood Pareto Local Search
Algorithm MASNPL For MO −QSKP , including initialization, crossover, and local search.
Then, the fitness of each individual is evaluated and Non-dominated Sorting is applied to assign a non-
domination rank irank equal to its non-domination level, and Crowding-Distance is computed for each
individual i in the population idist.
These two parameters, irank and idist, are used to select individuals in the most crowded region and
maintain the diversity of solutions on the Pareto front. Then, binary tournament selection is applied to
choose the parents, after whic, crossover and mutation operators are performed to generate new candidate
solutions, i.e., the offspring population of size N .
Non-dominated sorting and Crowding distance are applied to a combined population. Then, the popula-
tion Rt is sorted according to non-domination. Now, solutions belonging to the best non-dominated set,
F1 are of the best solutions in the combined population and must be emphasized more than any other
solution in the combined population.
If the size of F1 equal to N , we definitely add all members of the set F1 for the new population Pt+1.
If the size of F1 is smaller then N , we definitely put all members of the set F1 for the new population
Pt+1. The remaining members of the population Pt+1 are chosen from subsequent non-dominated fronts
in the order of their ranking.
Thus, solutions from the set F2 are chosen next, followed by solutions from the set F3, and so on.
The above process (Lines 17-20 of Algorithm 4) is continued until a final set of non-dominated solutions
of size N is obtained. The new population Pt+1 of size N is now used for selection, a binary tournament
selection operator, crossover, and mutation to create a new population Qt+1 of size N The above process
(Lines 6-23 of Algorithm 4) is repeated until NGmax is obtained.
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Algorithm 1 Memetic Algorithm With Selection Neighborhood Pareto Local Search (MASNPL)

1: Input: P : the current Population of size N ;
2: Input: N : the size of population;
3: Input: Q: the set of new offspring;
4: Input: N : the set of new offspring.
5: Initialize the population to size N ;
6: Evaluate Fitness for every individual in population of size N ;
7: Apply Non-dominated Sort Algorithm (P,N);
8: Compute Crowding-Distance Computation Algorithm (P,N);
9: NG = 1;

10: while NG ≤ NGmax do
11: Q = ∅;
12: for k = 1 to P

2 do
13: Select Parents using Binary Tournament;
14: Apply the crossover operator to generate two new offsprings (Q1, Q2);
15: Apply Mutation operator on both (Q1, Q2) with probability Pm = 1

n ;
16: for j = 1 to 2 do
17: Qj ←− the Selection Neighborhood Pareto Local Search (Qj);
18: Q = Q ∪ {Qj};
19: end for
20: end for
21: Rt = Pt ∪Qt;
22: Apply Non-dominated Sort Algorithm (Rt);
23: Pt+1 = ∅ and i = 1;
24: while (|Pt+1|+ |i|) ≤ N do ▷ until the parent population is filled
25: Crowding-Distance Computation (Fi); ▷ calculate crowding-distance in Fi

26: Pt+1 = Pt+1 ∪ Fi; ▷ include i-th non-dominated front in the parent population
27: i = i+ 1 ▷ check the next front for inclusion
28: end while
29: Sort Fi; ▷ sort in descending order using crowded comparison operator
30: Pt+1 = Pt+1 ∪ Fi[1, N − |Pt+1|]; ▷ choose the first (N − |Pt+1|) elements of Fi

31: Qt+1 = Make New Population (Pt+1); ▷ use selection, crossover and mutation to create a new
population (Qt+1)

32: NG = NG+ 1;
33: end while
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3 Conclusion
In this paper, we detailed the model for the Multi-objective Quadratic Stochastic Knapsack Problem with
simple recourse and random weight. As the objective functions were not differentiable, we approximated
their gradients by using approximation by convolution method, which is used for numerical resolution.
We apply a greedy heuristic for MO −QSKP to obtain an initial population of size N . Then we apply
the Non-dominated Sort Algorithm to this population. This algorithm aims to sort each individual
of the population into different non-domination levels, after that, we determine the crowding distance
value of a solution by applying the Crowding-Distance Computation Algorithm. Those algorithms gave
us a population sorted by non-domination levels and the crowding distance for each individual of the
population, then, the series of mutations, crossovers, and local search are applying to this population to
generate an offspring. To improve the offspring we apply the Selection Neighborhood Pareto Local Search
SNPLS algorithm based on the comparison between the old solution (offspring) and the new solution
obtained by the Gradient algorithm, then, the Non-dominated Sort Algorithm and the Crowding-Distance
Computation Algorithm are applied to offspring improved to select our first final best individuals of
population id of size N . Finally, the experimental results for the comparison between the MASNPL
algorithm and NSGAII algorithm show the using of the gradient algorithm with NSGAII algorithm is
significantly performance and efficient than the NSGAII algorithm
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Abstract: In this paper is defined a new class of contractions, (λ, ψ)- partial hybrid functions in CAT(0)
space. The goal of this paper is to present a new convergent fixed point result based on a (λ, ψ)- partial
hybrid contraction on CAT(0) space. We have assured the set of the fixed points for a (λ, ψ)- partial
hybrid on CAT(0) space is nonempty. Furthermore, a ∆-convergent theorem on CAT(0) space is proved.

Keywords: Fixed point, (λ, ψ)- partial hybrid contraction, CAT(0) space, ∆-convergence, Mann
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1 Introduction
M. Gromov [1], studied for the first time CAT(0) space in 1987. The study of CAT(0) spaces have
many applications in Graph Theory, Fixed Point Theory, etc. W. Kirk [2], [3] defined and proved many
fixed point results for nonexpansive functions. Dhompongsa and Panyanak [4] studied ∆-convergence
in CAT(0) space. Many authors have worked on Theory of Fixed Point in CAT(0) space by assuring
the existence of fixed point for various class of functions [5, 6, 7] or by presenting new iterations which
obtain approximating fixed point [8, 9]. Inspired by above, we propose a new class of contractions in
CAT(0) space called (λ, ψ)- partial hybrid functions. Related to them, some fixed point theorems and
some convergent results are obtained.

2 Preliminaries
Definition 2.1. [1] Let (X, d) be metric space and x, y ∈ X. The map γ : [0, l] → X is called a geodesic
curve if it completes the following conditions:

1. γ (0) = x;

2. γ (l) = y;

3. d (γ (t1) , γ (t2)) = |t1 − t2|, for every t1, t2 ∈ [0, l].

The image of γ is called geodesic segment that joins the point x, y. The couple (X, d) is called (unique)
geodesic metric space if for every two points in X there exists a (unique) geodesic curve that joins them.
It is denoted γ (t0 + (1− t) l) = tx

⊕
(1− t) y, t ∈ (0, 1).

A subset Y ⊆ X is called convex if for every geodesic segment that joins two points is included in Y .

Definition 2.2. [1] Let (X, d) be a geodesic space. A geodesic triangle consits of three points x1, x2, x3 ∈
X and three geodesic segments. It is denoted ∆(x1, x2, x3).

Definition 2.3. Let (X, d) be a geodesic space and ∆(x1, x2, x3) be a geodesic triangle. A comparison
triangle for geodesic triangle ∆(x1, x2, x3) is the triangle ∆(x1, x2, x3) := ∆(x1, x2, x3) in Euclidian plane
E2 such that dE2 (xi, xj) = d(xi, xj), for i, j ∈ {1, 2, 3}.

Definition 2.4. [1] The geodesic space (X, d) is called CAT(0) space if for every triangle ∆(x1, x2, x3)
and x, y ∈ ∆, the inequality d (x, y) ≤ dE2 (x, y ), for x, y ∈ ∆ , holds.
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Proposition 2.1. [10] Let (X, d) be a CAT(0) space. Then

d
(
(1− t)x

⊕
ty, z

)
≤ (1− t) d (x, z) + td(y, z)

where t ∈ [0, 1] , x, y, z ∈ X.

Proposition 2.2. [13]Let (X, d) be a CAT(0) space. Then the following inequality is true

d2
(
(1− t)x

⊕
ty, z

)
≤ (1− t) d2 (x, z) + td2 (y, z)− t(1− t)d2 (x, y)

for every t ∈ [0, 1] , x, y, z ∈ X.
The concept of ∆-convergence was introduced by Lim in 1976 [12] in generalized metric space. In 2008,
Kirk and Panyanak [11] used the ∆-convergence concept in CAT(0).

Definition 2.5. [14] Let X be a complete CAT(0) space, K be a subset of X and {xn} be a bounded
sequence in it.
Asymptotic radius r ((xn)) of the sequence (xn) is called r ((xn)) = inf {r (x, (xn)) : x ∈ X} , where
r (x, (xn)) = limn→+∞ sup d(xn, x).
Asymptotic center A((xn)) of the sequence (xn), A ((xn)) = {x ∈ X : r (x, (xn)) = r ((xn))} .

Definition 2.6. [12] Let X be a complete CAT(0) space. The sequence {xn} in X is called ∆-convergent
to a point x ∈ X if x is the only asymptotic center for each subsequence (un) of (xn) .

Theorem 2.1. [13] Let X be a complete CAT(0) space. Every bounded sequence in X, has a ∆-convergent
subsequence.

3 Main Results
Definition 3.1. Let K a nonempty, closed convex subset of a CAT(0) space (X, d). The function
T : K → K is called (λ, ψ)- partial hybrid if it satisfies the following condition: λ (x, y) d2 (Tx, Ty) ≤
ψ
(
max

{
d2 (x, y) , d2 (x, Ty) , d2 (Tx, y)

} )
, for every (x, y) ∈ X ×X, where ψ : [0, +∞[→ [0, +∞[ is a

continuous comparison function and λ : X ×X → [1,+∞[.

Lemma 3.1. Let (X, d) be a complete CAT(0) space and K a nonempty, closed convex subset of X
T : X → X be a (λ, ψ)- partial hybrid function. If F (T ) ̸= ϕ then F (T )is a closed and convex subset of
K.

Proof Since F (T ) ̸= ϕ we can take a sequence {xn}n∈N in F (T ). Suppose that the sequence {xn}n∈N
converges to a point x ∈ K. We have that

d2 (Tx, xn) ≤ λ (x, xn) d
2 (Tx, xn) ≤ ψ

(
max

{
d2 (x, xn) , d

2 (Tx, xn) , d
2 (x, xn)

} )
< max

{
d2 (x, xn) , d

2 (Tx, xn) , d
2 (x, xn)

}
= max

{
d2 (x, xn) , d

2 (Tx, xn)
}

Case 1. If max
{
d2 (x, xn) , d

2 (Tx, xn) , d
2 (x, xn)

}
= d2 (x, xn) then d2 (Tx, xn) < d2 (x, xn) . Conse-

quently, d2 (Tx, x) ≤ 0 and Tx = x.
Case 2. If max

{
d2 (x, xn) , d

2 (Tx, xn) , d
2 (x, xn)

}
= d2 (Tx, xn) then d2 (Tx, xn) < d2 (Tx, xn). This

case is trivial.
The next step is to prove that F (T )is a convex set. Taking z = (1− t)x

⊕
ty where x, y ∈ F (T ) and

t ∈ (0, 1), we have:

d2 (Tz, z) = d2
(
Tz, (1− t)x

⊕
ty

)
≤ (1− t) d2 (Tz, x) + td2 (Tz, y)− (1− t) td2 (x, y)

≤ (1− t) d2 (z, x) + td2 (z, y)− (1− t) td2 (x, y) .
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We see that

d2 (z, x) = d2
(
(1− t)x

⊕
ty, x

)
≤ (1− t) d2 (x, x)+td2 (y, x)−t (1− t) d2 (y, x) = t2d2 (x, y) .

Similarly, we have d2 (z, y) ≤ (1− t)
2
d2 (x, y).

Using the obtained inequalities, we take

d2 (Tz, z) ≤ (1− t) t2d2 (x, y) + t(1− t)
2
d2 (x, y)− (1− t) td2 (x, y) = 0.

Consequently, d (Tz, z) = 0 and Tz = z. As a result, z is a fixed point of T and z ∈ F (T ). ■

Theorem 3.1. Let (X, d) be a complete CAT(0) space and K a nonempty, closed convex subset of X
and T : X → X be a (λ, ψ)- partial hybrid function. The following propositions are equivalent:

1. F (T ) ̸= ϕ.

2. The sequence {Tnx} is bounded for some x ∈ X.

Proof Let suppose that F (T ) ̸= ϕ. Consequently, there exists a point x ∈ X such that Tx = x. As a
result, the sequence {Tnx}is bounded in X.
Let see conversely. The sequence {Tnx} is bounded for some x ∈ X. Denote xn = Tnx . Since {xn}n∈N
be a bounded sequence, there exists a point x∗ ∈ X, such that A ({xn}) = {x∗}.
Using Lemma 3.2 it yields x∗ ∈ K. Now, we see that

d2 (Tx∗, xn) ≤ λ (x∗, xn−1) d
2 (x∗, Txn−1) ≤ ψ

(
max

{
d2 (x∗, xn−1) , d

2 (Tx∗, xn−1) , d
2 (x∗, Txn−1)

} )
< max

{
d2 (x∗, xn−1) , d

2 (Tx∗, xn−1) , d
2 (x∗, Txn−1)

}
.

This yields limn→∞ supn d
2 (Tx∗, xn) ≤ limn→∞ supnmax

{
d2 (x∗, xn−1) , d

2 (Tx∗, xn−1) , d
2 (x∗, Txn−1)

}
Case 1. If max

{
d2 (x∗, xn−1) , d

2 (Tx∗, xn−1) , d
2 (x∗, Txn−1)

}
= d2 (x∗, xn−1) then d2 (Tx∗, xn) ≤

d2 (x∗, xn−1). In this case we have that Tx∗ = x∗.
Case 2. If max

{
d2 (x∗, xn−1) , d

2 (Tx∗, xn−1) , d
2 (x∗, xn)

}
= d2 (Tx∗, xn−1) then d2 (Tx∗, xn) ≤

d2 (Tx∗, xn−1). This case is trivial
Case 3. If max

{
d2 (x∗, xn−1) , d

2 (Tx∗, xn−1) , d
2 (x∗, xn)

}
= d2 (x∗, xn) then d2 (Tx∗, xn) ≤

d2 (x∗, xn) .

It yields that limn→∞ supn d
2 (Tx∗, xn) ≤ limn→∞ supn d

2 (x∗, xn) and (Φ(Tx∗))
2
= (Φ(x∗))

2. Since
A ({xn}) = {x∗}, Tx∗ = x∗.
In 1953, Mann [15] presented an iteration as follows yn+1 = (1− αn)yn

⊕
αnTyn, where αn ∈ [0, 1].

Below we assure a convergence theorem for a sequence constructed by Mann iteration. ■

Theorem 3.2. Let (X, d) be a complete CAT(0) space and K a nonempty, closed convex subset of X
and T : K → K be a (λ, ψ)- partial hybrid function. Suppose that there exists a point x ∈ X such that
{Tnx} is bounded. Let y0 ∈ X, and define the sequence {yn}n∈N which satisfies the Mann’s iteration
yn+1 = (1 − αn)yn

⊕
αnTyn, where αn ∈ [0, 1]. Thenlimn→+∞ d (yn, p) = 0, where p ∈ F (T ) and

limn→+∞ d (yn, Tyn) = 0 .

Proof Firstly, the existence of a fixed point p of the (λ, ψ)- partial hybrid function T is guaranteed by
Theorem 3.3.
Now we see that

d2 (yn+1, p) = d2
(
(1− αn) yn

⊕
αnTyn, p

)
≤ (1− αn) d

2 (yn, p) + αnd
2 (Tyn, p)− αn (1− αn) d

2 (yn, T yn)

≤ (1− αn) d
2 (yn, p) + αnd

2 (Tyn, p)

≤ (1− αn) d
2 (yn, p) + αn

ψ
(
max

{
d2 (yn, p) , d

2 (yn, p) , d
2 (yn+1, p)

} }
λ (yn, p)

≤ (1− αn) d
2 (yn, p) + αnψ

(
max

{
d2 (yn, p) , d

2 (yn+1, p)
} }
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Case 1. If max
{
d2 (yn, p) , d

2 (yn+1, p)
}

= d2 (yn, p) we have that

d2 (yn+1, p) ≤ (1− αn) d
2 (yn, p) + αnψ

(
d2 (yn, p)

)
< (1− αn) d

2 (yn, p) + αnd
2 (yn, p) = d2 (yn, p)

and this case is trivial.
Case 2. If max

{
d2 (yn, p) , d

2 (yn+1, p)
}

= d2 (yn+1, p), we obtain a contradiction.
This because

d2 (yn+1, p) ≤ (1− αn) d
2 (yn, p) + αnψ

(
d2 (yn+1, p)

)
< (1− αn) d

2 (yn, p) + αnd
2 (yn+1, p)

and d2 (yn+1, p) < d2 (yn, p).
Consequently, Case 2 could not happen.
It remains that d2 (yn+1, p) ≤ d2 (yn, p) for each n ∈ N .
As a result, the sequence {d2 (yn+1, p)}n∈N is monoton nonincreasing and bounded below by zero. So, it
converges to r ≥ 0.
Suppose that r > 0 and we have:

r ≤ d2 (yn+1, p) ≤
ψ(d2(yn,p)}
λ(yn,p)

≤ ψ
(
d2 (yn, p)

)
and r ≤ ψ(d2 (yn, p)).

Taking the limit of both sides, we take r ≤ ψ (r) < r, which is a contradiction. It yields that r = 0.

In other hand, we see that d2 (Tyn, p) ≤
ψ(d2(yn,p)}
λ(yn,p)

≤ ψ
(
d2 (yn, p)

)
< d2 (yn, p).

So d (p, Tyn) ≤ d (p, yn) and d (yn, T yn) ≤ d (yn, p) + d (p, Tyn) ≤ 2d (yn, p).
Consequently, limn→+∞ d (yn, T yn) = 0 . ■

Theorem 3.3. Let (X, d) be a complete CAT(0) space and K a nonempty, closed convex subset of X
and T : K → K be a (λ, ψ)- partial hybrid function. Suppose that there exists a point x ∈ X such that
{Tnx} is bounded. Let y0 ∈ K, and define the sequence {yn}n∈N which satisfies the Mann’s iteration
yn+1 = (1−αn)yn

⊕
αnTyn, where αn ∈ [0, 1]. Then the sequence {yn}n∈N is ∆-convergent to p ∈ F (T ).

Remark 3.1. The proof of Theorem 3.5 is analogous to the proof of Lemma 4.9 and Theorem 4.10 in [16]
for (λ, ψ)- partial hybrid functions.
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Abstract: The concepts of machine learning and artificial intelligence were first mentioned back in
1956. Since then, artificial intelligence has constantly been evolving but has only reached its peak
in the last decade. Machine learning is applied in medicine, online technology, marketing, sales,
logistics, and many others. In clustering, the aim is to find hidden relationships in the data. This
type of machine learning can be divided into many different groups of methods. The aim of this
work is to briefly discuss the methods of clustering mixtures, provide a comparison of these methods
using different data, and compare them with the currently most popular clustering methods. We
present k-means, Gaussian Mixture Model, Bayesian Gaussian Mixture Model, and Modified Inversion
Formula clustering in work. In this work, the different clustering methods were briefly reviewed,
and a modified inversion formula based on the new clustering method currently being developed
was mentioned. The results showed that the best methods are also different for different data sets.
Therefore, neither method is universal and unsuitable for all data sets. These results also showed that
the newly developed data clustering method has relatively good clustering results. For this reason, the
results of this method continue to be validated, and new modifications of this method are being developed.

Keywords: Machine learning, artificial intelligence, clustering, mixture models, inversion for-
mula.

1 Introduction
The concepts of machine learning and artificial intelligence were first mentioned back in 1956. Since
then, artificial intelligence has constantly been evolving but has only reached its peak in the last decade.
Artificial intelligence and its individual fields are now evolving more than ever due to the wide range of
options available, such as freely available sources, which are far more computing. They are receiving a
great deal of attention not only in science but also in practice. Artificial intelligence’s growing popularity
is significant because various processes can be performed faster and often with higher quality using these
technologies. Using these technologies eliminates the potential human error from the process. Also,
using these methods is much easier to automate various monotonous processes, which allows you to avoid
a lot of tedious work. Artificial intelligence, and if more precisely one of its fields, machine learning, is
widely used in various practice fields.

Machine learning is applied in areas such as medicine [1, 2], online technology [3, 4], marketing [5, 6],
sales [7], logistics [8] and many others. Machine learning can be used to solve various tasks: image
analysis, text analysis, analysis of structured data, reference systems, and other tasks. Different types
of machine learning are used to address these challenges: supervised, unsupervised, or motivational
learning. The fourth type of machine learning is also distinguished - semi-supervised machine learning.
Still, this type is much less common compared to others. In the case of supervised learning, we have a
pair of data in the initial data set that is the predictive variable and the predictive variables. The main
task, in this case, is to find a function that matches this data as much as possible and allows predictions
to be made later. In the case of stimulating machine learning, the agent receives information about the
goal accomplished and possessed and seeks to maximize the function of the goal. To achieve this, the
agent must learn about the environment and how to respond to different situations. The application of
these models is most often seen in autonomous cars, robots, and other similar fields. Finally, the third
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type is unsupervised learning. In the case of this learning, the purpose is not known in advance, which
means we have no labels in the data. In the case of this learning, the aim is to find hidden relationships
in the data. This type of machine learning can be divided into many different groups of methods, the,
data reduction methods, and clustering. In this work, the last type is the most important. The aim of
this work is to briefly discuss the methods of clustering mixtures, provide a comparison of these methods
using different data, and compare them with the currently most popular clustering methods.

The first part of this work briefly reviews the main clustering methods used in work, and their operation.
Then, in the second part of the work, a part of the clustering results obtained in the research is reviewed,
and a discussion of these results is presented.

2 Clustering Methods Review
As mentioned earlier, finding hidden connections between different observations is sometimes significant.
Dividing all observations into certain groups/clusters makes it much easier to interpret such results,
as it is possible to create cluster profiles. According to Jain, the main clustering of everything is to
group different observations into groups. Dividing observations into groups aims to form groups that
are homogeneous and as distinct as possible from other observations. Clustering can, in fact, be divided
into separate groups with different functioning. One of the most commonly used clustering methods
in practice today is the k-means method [9, 10]. The results of the K-means method are calculated as
follows. Suppose we have a data matrix X = [X1, X2, X3, . . . , Xn] and aim to assign these points to
clusters C = [C1, C2, . . . , Cc]. Cluster centers are then randomly selected. In the second step of the
clustering algorithm, the distance from the cluster centers to each point is calculated using the selected
distance. Different distances are used, such as Euclidean, Manhattan, Chebyshev, and other distances
[11]. Depending on the distance selected, clusters are also used differently. Each point is then assigned
according to the smallest distance to the cluster’s center that was calculated in the second step of the
algorithm. Finally, new cluster centers are calculated based on the assigned points for each cluster, and
the entire cycle is repeated until stable clusters are established. In this work, more attention is paid
to mixture clustering methods; one of the mixture clustering methods is the Gaussian mixture method
(GMM) [12, 13]. This method uses normal distributions and aims to cluster the data based on a mixture
of different normal distributions. Suppose we have a C cluster. Many practical application algorithms
use a certain number of clusters determined experimentally. An average matrix is estimated for each
cluster µc and covariance matrices Σc. It would be estimated using the maximum likelihood method for
only one distribution. However, since the number of clusters is larger and the number of clusters is C,
the density is defined as a linear function of the density of all these C distributions.

p(X) =

C∑
c=1

πcN (X|µc,Σc) (2.1)

where πc is the coefficient of the different distributions. In the case of the Gaussian mixture method, the
EM algorithm is usually used. The EM algorithm is an iterative method that estimates the parameters
of the model being constructed. In the case of the EM algorithm, the density of the data is calculated.
Next, these data are divided into different clusters, and finally, the averages and covariance matrices are
calculated. This method, for example, has different modifications in the scikit-learn Python library, and
the Bayesian Gaussian Mixture Method (BGMM) is presented in addition to the usual one [14]. Also,
these methods use different initialization procedures, which may allow different clusters to be obtained.
The aforementioned k-means method is usually used for initialization. A new data clustering method
based on a modified inversion formula (MIDE) is currently being developed [15]. This method also uses
an EM algorithm that allows parameters to be estimated. The method initializes a T matrix consisting
of points on a unit sphere. This matrix is then used for further density calculation.
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ψ̂τ (u) =

q̂τ∑
k=1

p̂k,τe
ium̂k,τ−u2σ̂2

k,τ/2 + p̂0,τ
2

(b− a)u
sin

(b− a)u

2
.e

iu(a+b)
2 (2.2)

3 Results
This section provides a brief overview of the results obtained experimentally. The evaluation of the
results of data clustering is reviewed first. Different data sets are used in the work, and finally, the main
results. This work uses accuracy metrics to evaluate different clustering methods, indicating how many
data points have been assigned to the correct cluster. This metric can be used because the data used
has predefined clusters. Other metrics should be used in other cases where clusters are not known in
advance. Different data sets are used in this work to assess the quality of clustering of different methods.
The following is a table showing the main results using different data sets.
Table 1 . Results based on the 10 000 runs for different datasets
Dataset K-means

(Eu-
clidean)

K-means
(Manhat-
tan)

GMM BGMM MIDEv1 MIDEv2

Aggregation 0.857 0.789 0.835 0.907 0.889 0.895
Gaussians1 1.000 1.000 1.000 1.000 1.000 1.000
CPU 0.738 0.698 0.574 0.590 0.808 0.828
Diabetes 0.356 0.314 0.419 0.439 0.420 0.448
Iris 0.831 0.745 0.953 0.838 0.933 0.955
Wine 0.966 0.923 0.953 0.977 0.943 0.953

4 Conclusion
In this work, the different clustering methods were briefly reviewed, and a modified inversion formula
based on the new clustering method currently being developed was mentioned. The results showed that
the best methods are also different for different data sets. Neither method is universal and is not suitable
for all data sets. These results also showed that the newly developed data clustering method has relatively
good clustering results. For this reason, the results of this method continue to be validated, and new
modifications of this method are being developed.

References
[1] Veloso, R., Portela, F., Santos, M.F., Silva, A., Rua, F., Abelha, A., Machado, J.: A clustering

approach for predicting readmissions in intensive medicine. Procedia Technology 16, 1307-1316 (2014)

[2] Nezhad, M.Z., Zhu, D., Sadati, N., Yang, K., Levi, P.: SUBIC: A supervised bi-clustering approach
for precision medicine. In: 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 755-760. IEEE, (Year)

[3] Landauer, M., Skopik, F., Wurzenberger, M., Rauber, A.: System log clustering approaches for cyber
security applications: A survey. Computers & Security 92, 101739 (2020)

[4] Kigerl, A.: Cyber Crime Nation Typologies: K-Means Clustering of Countries Based on Cyber Crime
Rates. International Journal of Cyber Criminology 10, (2016)

[5] Liu, H.-H., Ong, C.-S.: Variable selection in clustering for marketing segmentation using genetic
algorithms. Expert systems with applications 34, 502-510 (2008)

108



10th (Online) International Conference on Applied Analysis and Mathematical
Modeling-Abstracts and Proceeding Book (ICAAMM22,) July 1-3, 2022, Istanbul-Turkey

[6] Huang, J.-J., Tzeng, G.-H., Ong, C.-S.: Marketing segmentation using support vector clustering.
Expert systems with applications 32, 313-317 (2007)

[7] Lu, C.-J., Kao, L.-J.: A clustering-based sales forecasting scheme by using extreme learning machine
and ensembling linkage methods with applications to computer server. Engineering Applications of
Artificial Intelligence 55, 231-238 (2016)

[8] Rivera, L., Gligor, D., Sheffi, Y.: The benefits of logistics clustering. International Journal of Physical
Distribution & Logistics Management (2016)

[9] Sinaga, K.P., Yang, M.-S.: Unsupervised K-means clustering algorithm. IEEE access 8, 80716-80727
(2020)

[10] Ahmed, M., Seraj, R., Islam, S.M.S.: The k-means algorithm: A comprehensive survey and perfor-
mance evaluation. Electronics 9, 1295 (2020)

[11] Ghazal, T.M., Hussain, M.Z., Said, R.A., Nadeem, A., Hasan, M.K., Ahmad, M., Khan, M.A.,
Naseem, M.T.: Performances of K-means clustering algorithm with different distance metrics. (2021)

[12] He, Z., Ho, C.-H.: An improved clustering algorithm based on finite Gaussian mixture model.
Multimedia Tools and Applications 78, 24285-24299 (2019)

[13] Androniceanu, A., Kinnunen, J., Georgescu, I.: E-Government clusters in the EU based on the
Gaussian Mixture Models. Administratie si Management Public 6-20 (2020)

[14] Chen, X., Cheng, Z., Jin, J.G., Trepanier, M., Sun, L.: Probabilistic forecasting of bus travel time
with a Bayesian Gaussian mixture model. arXiv preprint arXiv:2206.06915 (2022)

[15] Ruzgas, T., Lukauskas, M., Cepkauskas, G.: Nonparametric Multivariate Density Estimation: Case
Study of Cauchy Mixture Model. Mathematics 9, 2717 (2021)

109



10th (Online) International Conference on Applied Analysis and Mathematical
Modeling-Abstracts and Proceeding Book (ICAAMM22,) July 1-3, 2022, Istanbul-Turkey

Dynamical analysis and solutions of nonlinear difference equations of
twenty-fourth order

Lama Sh. Aljoufi1, M. B. Almatrafi2

1Department of Mathematics, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi
Arabia

2Department of Mathematics, Faculty of Science, Taibah University, Saudi Arabia
E-mail: mmutrafi@taibahu.edu.sa

Abstract: This paper discusses the behaviors and solutions of some rational recursive relations of twenty-
fourth order using the iteration technique and the modulus operator. The stability of the equilibrium
points are comprehensively analyzed. We also present other properties such as periodicity, oscillation and
bounded solutions. Some numerical examples are obviously given to ensure the validity of the theoretical
work. These examples are plotted using MATLAB. The proposed techniques can be utilized to be applied
on other nonlinear equations.
Keywords: equilibrium, asymptotic stability, periodicity, exact and numerical solutions.

1 Introduction
The evolution of a certain natural phenomena is often described over a course of time using differential
equations. However, many real life problems can be sometimes modeled using discrete time steps which
lead to difference equations. Hence, recursive equations have an effective and powerful role in mathe-
matics. They are successfully utilized to investigate some applications in engineering, physics, biology,
economic and others. For instance, recursive equations have been well used in modeling some natural
phenomena such as the size of a population, the Fibonacci sequence, the drug in the blood system, the
transmission of information, the pricing of a certain commodity, the propagation of annual plants, and
others [1]. In addition, some scholars have used difference equations to find the numerical solutions of
some differential equations. More specifically, discretizing a given differential equation gives a difference
equation. For example, Runge-Kutta scheme is obtained from discretizing a first order differential equa-
tion. The development of technology has motivated the use of recurrence equations as approximations to
partial differential equations. It is worth mentioning that fractional order difference equations are often
utilized to investigate some real life phenomena emerging in nonlinear sciences.
Most properties of recursive expressions have been widely discussed by some researchers. For example,
researchers have explored the stability, periodicity, boundedness and solutions of some recursive equations.
We here present some published works. Alayachi et al. [2] analyzed the local and global attractivity,
periodicity and the solutions of a sixth order difference equation. Some numerical examples have been
also presented in [2]. In [3], Sanbo and Elsayed presented the periodicity, stability and some solutions
of a fifth order recursive equation. Almatrafi and Alzubaidi [4] discussed the dynamical behaviors of an
eighth order difference relation and showed some 2D figures for the obtained results. Moreover, Ahmed
et al. [5], found new solutions and investigated the dynamical analysis for some nonlinear difference
relations of fifteenth order. The authors in [6] obtained novel structures for the solutions of a rational
recursive relation. The local and global stability, boundedness, periodicity and solutions of a second order
difference equation were investigated in [7]. The authors proved that the local asymptotic stability of
the equilibrium point implies global asymptotic stability. In [8], Kara and Yazlik expressed the solutions
of a (k + l)-order recursive equation and investigated the asymptotic stability of the constructed results
of the problem when k = 3, and l = k. Finally, Elsayed [9] analyzed the qualitative behaviors of a
nonlinear recursive equation. More discussions about nonlinear recursive problems can be seen in refs.
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
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The motivation of writing this article arises from the investigation of fifteenth order difference equations
given in [5]. We consider more sophisticated rational difference equations of twenty-fourth order. There-
fore, this work aims to analyze some dynamical properties such as equilibrium points, local and global
behaviors, boundedness, and analytic solutions of the nonlinear recursive equations

χr+1 =
χr−23

±1±
∏5

i=0 χr−(4i+3)

, r = 0, 1, 2, ....

Here, the initial values χ−23, χ−22, ..., χ0 are arbitrary non-zero real numbers. In this work, we also
illustrate some 2D figures with the help of MATLAB to validate the obtained results.

Definition 1.1. We consider mod (κ, 4) = κ− 4⌊κ
4 ⌋, where ⌊Λ⌋ is the greatest integer less than or equal

to the real number Λ.

2 Dynamical analysis of χr+1 =
χr−23

1+χr−3χr−7χr−11χr−15χr−19χr−23

In this section, we implement specific strategies to investigate the dynamical behaviors of the difference
equation

χr+1 =
χr−23

1 + χr−3χr−7χr−11χr−15χr−19χr−23
, r = 0, 1, 2, ..., (2.1)

with the initial conditions χ−ι, ι = 0, 1, 2, ..., 23. More specifically, the attractivity and boundedness of
the solutions of Eq. (2.1) are investigated.

Theorem 2.1. Assume that {χr}∞r=−23 is a solution to Eq. (2.1). Then, for r = 0, 1, 2, ..., we have

χ24r−κ = εκ

r−1∏
i=0

(
1 + (6i+ ηκ − 1)µκ

1 + (6i+ ηκ)µκ

)
, (2.2)

where µκ =
∏5

j=0 εmod(κ,4)+4j , ηκ = 6−
[
κ
4

]
, χ−k = εκ, rµκ ̸= −1, r ∈ {1, 2, 3, ...}, and κ = 0, 1, 2, ..., 23.

Proof The solutions are true at r = 0. Let r > 0 and suppose that the results are true at r−1, as follows:

χ24r−24−κ = εκ

r−2∏
i=0

(
1 + (6i+ ηκ − 1)µκ

1 + (6i+ ηκ)µκ

)
. (2.3)

Using Eq. (2.1) and Eq. (2.3) gives

χ24r−23 =
χ24r−47

1 + χ24r−27χ24r−31χ24r−35χ24r−39χ24r−43χ24r−47

=
ε23

∏r−2
i=0

(
1+(6i+η23−1)µ23

1+(6i+η23)µ23

)
1 +

∏5
j=0

(
ε4j+3

∏r−2
i=0

(
1+(6i+η4j+3−1)µ4j+3

1+(6i+η4j+3)µ4j+3

))
=

ε23
∏r−2

i=0

(
1+(6i)ε3ε7ε11ε15ε19ε23

1+(6i+1)ε3ε7ε11ε15ε19ε23

)
1 + ε3ε7ε11ε15ε19ε23

∏r−2
i=0

(
1+(6i)ε3ε7ε11ε15ε19ε23

1+(6i+6)ε3ε7ε11ε15ε19ε23

)
= ε23

r−1∏
i=0

1 + (6i)ε3ε7ε11ε15ε19ε23
1 + (6i+ 1)ε3ε7ε11ε15ε19ε23

.

Furthermore, utilizing Eq. (2.1) and Eq. (2.3), we have
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χ24r−22 =
χ24r−46

1 + χ24r−26χ24r−30χ24r−34χ24r−38χ24r−42χ24r−46

=
ε22

∏r−2
i=0

(
1+(6i+η22−1)µ22

1+(6i+η22)µ22

)
1 +

∏5
j=0

(
ε4j+2

∏r−2
i=0

(
1+(6i+η4j+2−1)µ4j+2

1+(6i+η4j+2)µ4j+2

))
=

ε22
∏r−2

i=0

(
1+(6i)ε2ε6ε10ε14ε18ε22

1+(6i+1)ε2ε6ε10ε14ε18ε22

)
1 + ε2ε6ε10ε14ε18ε22

∏r−2
i=0

(
1+(6i)ε2ε6ε10ε14ε18ε22

1+(6i+6)ε2ε6ε10ε14ε18ε22

)
= ε22

r−1∏
i=0

(
1 + (6i)ε2ε6ε10ε14ε18ε22

1 + (6i+ 1) ε2ε6ε10ε14ε18ε22

)
.

Also, from Eq. (2.1) and Eq. (2.3), we have

χ24r−21 =
χ24r−45

1 + χ24r−25χ24r−29χ24r−33χ24r−37χ24r−41χ24r−45

=
ε21

∏r−2
i=0

(
1+(6i+η21−1)µ21

1+(6i+η21)µ21

)
1 +

∏5
j=0

(
ε4j+1

∏r−2
i=0

(
1+(6i+η4j+1−1)µ4j+1

1+(6i+η4j+1)µ4j+1

))
=

ε21
∏r−2

i=0

(
1+(6i)ε1ε5ε9ε13ε17ε21

1+(6i+1)ε1ε5ε9ε13ε17ε21

)
1 + ε1ε5ε9ε13ε17ε21

∏r−2
i=0

(
1+(6i)ε1ε5ε9ε13ε17ε21

1+(6i+6)ε1ε5ε9ε13ε17ε21

)
= ε21

r−1∏
i=0

(
1 + (6i)ε1ε5ε9ε13ε17ε21

1 + (6i+ 1) ε1ε5ε9ε13ε17ε21

)
.

Finally, using Eq. (2.1) and Eq. (2.3) gives

χ24r−20 =
χ24r−44

1 + χ24r−24χ24r−28χ24r−32χ24r−36χ24r−40χ24r−44

=
ε20

∏r−2
i=0

(
1+(6i+η20−1)µ20

1+(6i+η20)µ20

)
1 +

∏5
j=0

(
ε4j

∏r−2
i=0

(
1+(6i+η4j−1)µ4j

1+(6i+η4j)µ4j

))
=

ε20
∏r−2

i=0

(
1+(6i)ε0ε4ε8ε12ε16ε20

1+(6i+1)ε0ε4ε8ε12ε16ε20

)
1 + ε0ε4ε8ε12ε16ε20

∏r−2
i=0

(
1+(6i)ε0ε4ε8ε12ε16ε20

1+(6i+6)ε0ε4ε8ε12ε16ε20

)
= ε20

r−1∏
i=0

(
1 + (6i)ε0ε4ε8ε12ε16ε20

1 + (6i+ 1) ε0ε4ε8ε12ε16ε20

)
.

We similarly can obtain other relations of Eq. (2.2).

Theorem 2.2. Suppose that χ−23, χ−22, ..., χ0 ∈ [0,∞). Then, every solution of Eq. (2.1) is bounded.

Proof: Let {χr}∞r=−23 be a solution to Eq. (2.1). Then, from Eq. (2.1), one obtains

0 ≤ χr+1 =
χr−23

1 + χr−3χr−7χr−11χr−15χr−19χr−23
≤ χr−23, ∀ r ≥ 0.

Thus, the sequence {χ24r−i}∞r=0, i = 0, 1, ..., 23 is decreasing and is bounded from above by τ =
max{χ−23, χ−22, ..., χ0}.
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Theorem 2.3. Equation (2.1) has a unique fixed point which is χ = 0.

Proof: Using Eq. (2.1) gives

χ =
χ

1 + χ6 ,

which leads to
χ+ χ7 = χ.

Hence, χ7 = 0. This gives that χ = 0.

Theorem 2.4. Let χ−23, χ−22, ..., χ0 ∈ [0,∞). Then, the fixed point χ = 0 of Eq. (2.1) is locally stable.

Proof: Assume that ϵ > 0, and let {χΩ}∞Ω=−23 be a solution to Eq. (2.1) with

23∑
j=0

|χ−j | < ϵ.

Now, it is sufficient to show that |χ1| < ϵ. Note that

0 < χ1 =
χ−23

1 + χ−3χ−7χ−11χ−15χ−19χ−23
≤ χ−23 < ϵ.

The proof is done.

Theorem 2.5. Let χ−23, χ−22, ..., χ0 ∈ [0,∞). Then, the fixed point χ = 0 of Eq. (2.1) is globally
asymptotically stable.

Proof: In Theorem 2.4, we showed that the fixed point χ = 0 is locally stable. Let {χr}∞r=−23 be a
positive solution to Eq. (2.1). Then, it is needed to prove that limr→∞ χr = χ = 0. Note that Theorem
2.2 gives χr+1 < χr−23, ∀ r ≥ 0. The sequences {χ24r−i}∞r=0 , i = 0, 1, ..., 23 are decreasing and bounded
which means that the sequences {χ24r−i}∞r=0, i = 0, 1, ..., 23 approach to a limit Zi ≥ 0. Hence,

Z23 =
Z23

1 + Z3Z7Z11Z15Z19Z23
, Z22 =

Z22

1 + Z2Z6Z10Z14Z18Z22
, ..., Z0 =

Z0

1 + Z0Z4Z8Z12Z16Z20
.

This leads to Z0 = Z1 = ... = Z23 = 0.

3 Dynamical analysis of χr+1 =
χr−23

1−χr−3χr−7χr−11χr−15χr−19χr−23

This part investigates the qualitative behavior of the recursive equation

χr+1 =
χr−23

1− χr−3χr−7χr−11χr−15χr−19χr−23
, r = 0, 1, 2, ... (3.1)

where the initial conditions χ−ι, ι = 0, 1, 2, ..., 23, are real numbers.

Theorem 3.1. Assume that {χr}∞r=−23 is a solution to Eq. (3.1). Then, for r = 0, 1, 2, ...

χ24r−κ = εκ

r−1∏
i=0

(
−1 + (6i+ ηκ − 1)µκ

−1 + (6i+ ηκ)µκ

)
. (3.2)

Here, µκ =
∏5

j=0 εmod(κ,4)+4j , ηκ = 6−
[
κ
4

]
, χ−κ = εkκ, rµκ ̸= 1, r ∈ {1, 2, 3, ...}, and κ = 0, 1, 2, ..., 23.
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Proof: Equation (3.2) is true for r = 0. We let r > 0 and suppose that the solutions are true at r − 1.
Hence,

χ24r−24−κ = εκ

r−2∏
i=0

(
−1 + (6i+ ηκ − 1)µκ

−1 + (6i+ ηκ)µκ

)
. (3.3)

Utilizing Eq. (3.1) and Eq. (3.3) yields

χ24r−23 =
χ24r−47

1− χ24r−27χ24r−31χ24r−35χ24r−39χ24r−43χ24r−47

=
ε23

∏r−2
i=0

(
−1+(6i+η23−1)µ23

−1+(6i+η23)µ23

)
1−

∏5
j=0

(
ε4j+3

∏r−2
i=0

(
−1+(6i+η4j+3−1)µ4j+3

−1+(6i+η4j+3)µ4j+3

))
=

ε23
∏r−2

i=0

(
−1+(6i)ε3ε7ε11ε15ε19ε23

−1+(6i+1)ε3ε7ε11ε15ε19ε23

)
1− ε3ε7ε11ε15ε19ε23

∏r−2
i=0

(
−1+(6i)ε3ε7ε11ε15ε19ε23

−1+(6i+6)ε3ε7ε11ε15ε19ε23

)
= ε23

r−1∏
i=0

(
−1 + (6i)ε3ε7ε11ε15ε19ε23

−1 + (6i+ 1) ε3ε7ε11ε15ε19ε23

)
.

Furthermore, from Eq. (3.1) and Eq. (3.3), we have

χ24r−22 =
χ24r−46

1− χ24r−26χ24r−30χ24r−34χ24r−38χ24r−42χ24r−46

=
ε22

∏r−2
i=0

(
−1+(6i+η22−1)µ22

−1+(6i+η22)µ22

)
1−

∏5
j=0

(
ε4j+2

∏r−2
i=0

(
−1+(6i+η4j+2−1)µ4j+2

−1+(6i+η4j+2)µ4j+2

))
=

ε22
∏r−2

i=0

(
−1+(6i)ε2ε6ε10ε14ε18ε22

−1+(6i+1)ε2ε6ε10ε14ε18ε22

)
1− ε2ε6ε10ε14ε18ε22

∏r−2
i=0

(
−1+(6i)ε2ε6ε10ε14ε18ε22

−1+(6i+6)ε2ε6ε10ε14ε18ε22

)
= ε22

r−1∏
i=0

(
−1 + (6i)ε2ε6ε10ε14ε18ε22

−1 + (6i+ 1) ε2ε6ε10ε14ε18ε22

)
.

Moreover, from Eq. (3.1) and Eq. (3.3), we have

χ24r−21 =
χ24r−45

1− χ24r−25χ24r−29χ24r−33χ24r−37χ24r−41χ24r−45

=
ε21

∏r−2
i=0

(
−1+(6i+η21−1)µ21

−1+(6i+η21)µ21

)
1−

∏5
j=0

(
ε4j+1

∏r−2
i=0

(
−1+(6i+η4j+1−1)µ4j+1

−1+(6i+η4j+1)µ4j+1

))
=

ε21
∏r−2

i=0

(
−1+(6i)ε1ε5ε9ε13ε17ε21

−1+(6i+1)ε1ε5ε9ε13ε17ε21

)
1− ε1ε5ε9ε13ε17ε21

∏r−2
i=0

(
−1+(6i)ε1ε5ε9ε13ε17ε21

−1+(6i+6)ε1ε5ε9ε13ε17ε21

)
= ε21

r−1∏
i=0

(
−1 + (6i)ε1ε5ε9ε13ε17ε21

−1 + (6i+ 1) ε1ε5ε9ε13ε17ε21

)
.
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Finally, Eq. (3.1) and Eq. (3.3) lead to

χ24r−20 =
χ24r−44

1− χ24r−24χ24r−28χ24r−32χ24r−36χ24r−40χ24r−44

=
ε20

∏r−2
i=0

(
−1+(6i+η20−1)µ20

−1+(6i+η20)µ20

)
1−

∏5
j=0

(
ε4j

∏r−2
i=0

(
−1+(6i+η4j−1)µ4j

−1+(6i+η4j)µ4j

))
=

ε20
∏r−2

i=0

(
−1+(6i)ε0ε4ε8ε12ε16ε20

−1+(6i+1)ε0ε4ε8ε12ε16ε20

)
1− ε0ε4ε8ε12ε16ε20

∏r−2
i=0

(
−1+(6i)ε0ε4ε8ε12ε16ε20

−1+(6i+6)ε0ε4ε8ε12ε16ε20

)
= ε20

r−1∏
i=0

(
−1 + (6i)ε0ε4ε8ε12ε16ε20

−1 + (6i+ 1) ε0ε4ε8ε12ε16ε20

)
.

Other relations can be similarly done.

Theorem 3.2. Equation (3.1) has a unique equilibrium point χ = 0, which is non-hyperbolic.

Proof: Equation (3.1) leads to

χ =
χ

1− χ6 ,

from which we have
χ− χ7 = χ.

Hence, χ7 = 0. As a result, χ = 0. Next, we define a function

h (x1, x2, x3, x4, x5, x6) =
x1

1− x1x2x3x4x5x6
,

on I6 where I is a subset of R such that 0 ∈ I and f(I6) ⊆ I. It is obvious that h is continuously
differentiable on I6. Thus,

hx1(x1, x2, x3, x4, x5, x6) =
1

(1− x1x2x3x4x5x6)
2 , hx2(x1, x2, x3, x4, x5, x6) =

x2
1x3x4x5x6

(1− x1x2x3x4x5x6)
2 ,

hx3
(x1, x2, x3, x4, x5, x6) =

x2
1x2x4x5x6

(1− x1x2x3x4x5x6)
2 , hx4

(x1, x2, x3, x4, x5, x6) =
x2x2x3x5x6

(1− x1x2x3x4x5x6)
2 ,

hx5
(x1, x2, x3, x4, x5, x6) =

x2
1x2x3x4x6

(1− x1x2x3x4x5x6)
2 , hx6(x1, x2, x3, x4, x5, x6) =

x2
1x2x3x4x5

(1− x1x2x3x4x5x6)
2 .

Therefore,
hx1

(χ, χ, χ, χ, χ, χ) = 1, hx2
(χ, χ, χ, χ, χ, χ) = hx3

(χ, χ, χ, χ, χ, χ) = hx4
(χ, χ, χ, χ, χ, χ) =

hx5
(χ, χ, χ, χ, χ, χ) = hx6

(χ, χ, χ, χ, χ, χ) = 0.
We now obtain the linearized equation of Eq. (3.1) about χ = 0, which is given by

χΩ+1 = χΩ−23, (3.4)

whose characteristic equation is
λ24 − 1 = 0.

This means that
|λi| = 1, i = 1, 2, ..., 24.

As a result, χ is a non hyperbolic equilibrium point.
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4 Dynamical analysis of χr+1 =
χr−23

−1+χr−3χr−7χr−11χr−15χr−19χr−23

This section is assigned to show the solutions of the difference problem

χr+1 =
χr−23

−1 + χr−3χr−7χr−11χr−15χr−19χr−23
, r = 0, 1, 2, ..., (4.1)

where χ−ι, ι = 0, 1, 2, ..., 23 are real numbers. We also present the periodicity and the oscillation of the
solutions.

Theorem 4.1. Assume that {χr}∞r=−23 is a solution to Eq. (4.1). Then, for r = 0, 1, 2, ..., we have

χ24r−κ =
εκ

(−1 + µκ)
rακ

. (4.2)

Here, µκ =
∏5

j=0 εmod(κ,4)+4j , ακ = (−1)[
κ
4 ]+1, χ−κ = εκ, µκ ̸= 1, and κ = 0, 1, 2, ..., 23.

Proof: Equation (4.2) is true for r = 0. Let r > 0 and assume that the results are true at r − 1, as
follows:

χ24r−24−κ =
εκ

(−1 + µκ)
(r−1)ακ

. (4.3)

From Eq. (4.1) and Eq. (4.3), we have

χ24r−23 =
χ24r−47

−1 + χ24r−27χ24r−31χ24r−35χ24r−39χ24r−43χ24r−47

=

ε23
(−1+µ23)

r−1

−1 + ε3 (−1 + µ3)
r−1 ε7

(−1+µ7)
r−1 ε11 (−1 + µ11)

r−1 ε15
(−1+µ15)

r−1 ε19 (−1 + µ19)
r−1 ε23

(−1+µ23)
r−1

=
ε23

(−1 + ε3ε7ε11ε15ε19ε23)
r−1

(−1 + ε3ε7ε11ε15ε19ε23)

=
ε23

(−1 + ε3ε7ε11ε15ε19ε23)
r .

We also obtain from Eq. (4.1) and Eq. (4.3) that

χ24r−22 =
χ24r−46

−1 + χ24r−26χ24r−30χ24r−34χ24r−38χ24r−42χ24r−46

=

ε22
(−1+µ22)

r−1

−1 + ε2 (−1 + µ2)
r−1 ε6

(−1+µ6)
r−1 ε10 (−1 + µ10)

r−1 ε14
(−1+µ14)

r−1 ε18 (−1 + µ18)
r−1 ε22

(−1+µ22)
r−1

=
ε22

(−1 + ε2ε6ε10ε14ε18ε22)
r−1

(−1 + ε2ε6ε10ε14ε18ε22)

=
ε22

(−1 + ε2ε6ε10ε14ε18ε22)
r .

Furthermore, Eq. (4.1) and Eq. (4.3) give

χ24r−21 =
χ24r−45

−1 + χ24r−25χ24r−29χ24r−33χ24r−37χ24r−41χ24r−45

=

ε21
(−1+µ21)

r−1

−1 + ε1 (−1 + µ1)
r−1 ε5

(−1+µ5)
r−1 ε9 (−1 + µ9)

r−1 ε13
(−1+µ13)

r−1 ε17 (−1 + µ17)
r−1 ε21

(−1+µ21)
r−1

=
ε21

(−1 + ε1ε5ε9ε13ε17ε21)
r−1

(−1 + ε1ε5ε9ε13ε17ε21)

=
ε21

(−1 + ε1ε5ε9ε13ε17ε21)
r .

116



10th (Online) International Conference on Applied Analysis and Mathematical
Modeling-Abstracts and Proceeding Book (ICAAMM22,) July 1-3, 2022, Istanbul-Turkey

Finally, we use Eq. (4.1) and Eq. (4.3) to have

χ24r−20 =
χ24r−44

−1 + χ24r−24χ24r−28χ24r−32χ24r−36χ24r−40χ24r−44

=

ε20
(−1+µ20)

r−1

−1 + ε0 (−1 + µ0)
r−1 ε4

(−1+µ4)
r−1 ε8 (−1 + µ8)

r−1 ε12
(−1+µ12)

r−1 ε16 (−1 + µ16)
r−1 ε20

(−1+µ20)
r−1

=
ε20

(−1 + ε0ε4ε8ε12ε16ε20)
r−1

(−1 + ε0ε4ε8ε12ε16ε20)

=
ε20

(−1 + ε0ε4ε8ε12ε16ε20)
r .

One can similarly proved other relations.

Theorem 4.2. Equation (4.1) has three equilibrium points 0 and ± 6
√
2, which are non-hyperbolic.

Proof: It can be similarly done as the proof of Theorem 3.2.

Theorem 4.3. Equation (4.1) is periodic of period 24 if and only if µκ = 2, for κ = 0, 1, ..., 23, which
take the following form:

χ24r−κ = εκ, κ = 0, 1, ..., 23, and r = 0, 1, 2, ...

Proof: The proof is done by using Theorem 4.1.

Theorem 4.4. Let ε0, ε1, ..., ε23 ∈ (0, 1). Then, the solution {χΩ}∞Ω=−23 oscillates about the equilibrium
point χ = 0, with positive semicycles of length 24, and negative semicycles of length 24.

Proof: Using Theorem 4.1, we find χ1, χ2, ..., χ24 < 0 and χ25, χ26, ..., χ48 > 0. Thus, the result follows
by induction.

5 Dynamical analysis of χr+1 =
χr−23

−1−χr−3χr−7χr−11χr−15χr−19χr−23

This section presents the periodicity, oscillation, and the solutions of the recursive problem

χr+1 =
χr−23

−1− χr−3χr−7χr−11χr−15χr−19χr−23
, r = 0, 1, 2, ..., (5.1)

where χ−ι, ι = 0, 1, 2, ..., 23, are real numbers.

Theorem 5.1. Let {χr}∞r=−23 be a solution to Eq. (5.1). Then, for r = 0, 1, 2, ..., we have

χ24r−κ =
εκ

(−1− µκ)
rακ

. (5.2)

Here, µκ =
∏5

j=0 εmod(κ,4)+4j , ακ = (−1)[
κ
4 ]+1 and χ−κ = εκ, with µκ ̸= −1, κ = 0, 1, 2, ..., 23.

Proof: The results are true at r = 0. We let r > 0 and suppose that the solutions are true at r − 1 as
follows:

χ24r−24−κ =
εκ

(−1− µκ)
(r−1)ακ

. (5.3)
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Next, from Eq. (5.1) and Eq. (5.3), we obtain

χ24r−23 =
χ24r−47

−1− χ24r−27χ24r−31χ24r−35χ24r−39χ24r−43χ24r−47

=

ε23
(−1−µ23)

r−1

−1− ε3 (−1− µ3)
r−1 ε7

(−1−µ7)
r−1 ε11 (−1− µ11)

r−1 ε15
(−1−µ15)

r−1 ε19 (−1− µ19)
r−1 ε23

(−1−µ23)
r−1

=
ε23

(−1− ε3ε7ε11ε15ε19ε23)
r−1

(−1− ε3ε7ε11ε15ε19ε23)

=
ε23

(−1− ε3ε7ε11ε15ε19ε23)
r .

Moreover, utilizing Eq. (5.1) and Eq. (5.3) leads to

χ24r−22 =
χ24r−46

−1− χ24r−26χ24r−30χ24r−34χ24r−38χ24r−42χ24r−46

=

ε22
(−1−µ22)

r−1

−1− ε2 (−1− µ2)
r−1 ε6

(−1−µ6)
r−1 ε10 (−1− µ10)

r−1 ε14
(−1−µ14)

r−1 ε18 (−1− µ18)
r−1 ε22

(−1−µ22)
r−1

=
ε22

(−1− ε2ε6ε10ε14ε18ε22)
r−1

(−1− ε2ε6ε10ε14ε18ε22)

=
ε22

(−1− ε2ε6ε10ε14ε18ε22)
r .

We also use Eq. (5.1) and Eq. (5.3) to have

χ24r−21 =
χ24r−45

−1− χ24r−25χ24r−29χ24r−33χ24r−37χ24r−41χ24r−45

=

ε21
(−1−µ21)

r−1

−1− ε1 (−1− µ1)
r−1 ε5

(−1−µ5)
r−1 ε9 (−1− µ9)

r−1 ε13
(−1−µ13)

r−1 ε17 (−1− µ17)
r−1 ε21

(−1−µ21)
r−1

=
ε21

(−1− ε1ε5ε9ε13ε17ε21)
r−1

(−1− ε1ε5ε9ε13ε17ε21)

=
ε21

(−1− ε1ε5ε9ε13ε17ε21)
r .

Finally, Eq. (5.1) and Eq. (5.3) give

χ24r−20 =
χ24r−44

−1− χ24r−24χ24r−28χ24r−32χ24r−36χ24r−40χ24r−44

=

ε20
(−1−µ20)

r−1

−1− ε0 (−1− µ0)
r−1 ε4

(−1−µ4)
r−1 ε8 (−1− µ8)

r−1 ε12
(−1−µ12)

r−1 ε16 (−1− µ16)
r−1 ε20

(−1−µ20)
r−1

=
ε20

(−1− ε0ε4ε8ε12ε16ε20)
r−1

(−1− ε0ε4ε8ε12ε16ε20)

=
ε20

(−1− ε0ε4ε8ε12ε16ε20)
r .

Similarly, we can show other formulas.

Theorem 5.2. Equation (5.1) has a unique equilibrium point χ = 0, which is non-hyperbolic.

Proof: It can be similarly done as the proof of Theorem 3.2.

Theorem 5.3. Equation (5.1) is periodic of period 24 if and only if µκ = −2, κ = 0, 1, ..., 23, which have
the form

χ24r−k = εκ κ = 0, 1, ..., 23 and r = 0, 1, 2, ...
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Proof: It can be easily done by using Theorem 5.1.

Theorem 5.4. Let ε0, ε1, ..., ε23 ∈ (0,∞). Then, the solution {χr}∞r=−23 oscillates about the equilibrium
point χ = 0, with positive semicycles of length 24, and negative semicycles of length 24.

Proof: Using Theorem 5.1, we obtain that χ1, χ2, ..., χ24 < 0, and χ25, χ26, ..., χ48 > 0. Using induction
achieves the proof.

6 Numerical investigation
This part is added to guarantee that the constructed results are correct. We present some 2D example
under specific initial conditions.

Example 6.1. This example presents the behavior of Eq. (2.1) under the initial conditions χ−23 = 0.1,
χ−22 = 0.5, χ−21 = 5.3, χ−20 = 2, χ−19 = 0.54, χ−18 = 1.6, χ−17 = 0.07, χ−16 = 0.9, χ−15 = 0.10,
χ−14 = 3, χ−13 = 5, χ−12 = 3, χ−11 = 4, χ−10 = 5, χ−9 = 6.8, χ−8 = 7.8, χ−7 = 2.8, χ−6 = 9,
χ−5 = 2.9, χ−4 = 1.8, χ−3 = 6.8, χ−2 = 9.3, χ−1 = 1.9 and χ0 = 9.8, as shown in Figure 1 (left).

Example 6.2. Figure 1 (right) illustrates the dynamical behavior of Eq. (3.1) when χ−23 = 1, χ−22 = 5,
χ−21 = 5.3, χ−20 = 2, χ−19 = 0.54, χ−18 = 6, χ−17 = 0.07, χ−16 = 9, χ−15 = 0.10, χ−14 = 0.3,
χ−13 = 5, χ−12 = 0.3, χ−11 = 0.4, χ−10 = 5, χ−9 = 6.8, χ−8 = 7, χ−7 = 2, χ−6 = 9.5, χ−5 = 2.9,
χ−4 = 1, χ−3 = 6.8, χ−2 = 9, χ−1 = 1 and χ0 = 9.
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Figure 1: The left plot presents the behavior of Eq. (2.1) while the right picture depicts the behavior of
Eq. (3.1).
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Example 6.3. The graph of the Eq. (4.1) is plotted in Figure 2 (left) under the random values χ−23 = 0.1,
χ−22 = 0.5, χ−21 = 0.15, χ−20 = 0.2, χ−19 = 0.3, χ−18 = 0.2, χ−17 = 0.9, χ−16 = 0.11, χ−15 = 0.6,
χ−14 = 0.51, χ−13 = 0.14, χ−12 = 0.5, χ−11 = 0.2, χ−10 = 0.8, χ−9 = 0.5, χ−8 = 0.1, χ−7 = 0.3,
χ−6 = 0.7, χ−5 = 0.1, χ−4 = 0.88, χ−3 = 0.12, χ−2 = 0.89, χ−1 = 0.33 and χ0 = 0.2.

Example 6.4. The dynamical behavior of Eq. (5.1) is shown in Figure 2 (right) when χ−23 = 0.15,
χ−22 = 0.13, χ−21 = 0.55, χ−20 = 0.22, χ−19 = 0.33, χ−18 = 0.62, χ−17 = 0.29, χ−16 = 0.91, χ−15 =
0.56, χ−14 = 0.11, χ−13 = 0.44, χ−12 = 0.25, χ−11 = 0.02, χ−10 = 0.08, χ−9 = 0.85, χ−8 = 0.01,
χ−7 = 0.03, χ−6 = 0.17, χ−5 = 0.01, χ−4 = 0.8, χ−3 = 0.02, χ−2 = 0.09, χ−1 = 0.03 and χ0 = 0.62.
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Figure 2: The left plot illustrates the periodicity of Eq. (4.1) while the right picture depicts the periodicity
of Eq. (5.1).

7 Conclusion
To sum up, this paper has investigated four main rational difference equations of twenty-fourth order.
We have introduced the solutions of the considered equations using modulus operator. In Theorem 2.1,
we have presented and proved the solutions of Eq. (2.1), while Theorem 2.2 has shown the boundedness
of the solutions of Eq. (2.1). It has been proved that the fixed point of Eq. (2.1) is globally stable.
Theorem 4.3 has presented that Eq. (4.1) is periodic of period 24 if and only if µκ = 2. Furthermore, in
Theorem 5.1, we have explored the solutions of Eq. (5.1) which are periodic of period 24 if and only if
µκ = −2. We have also plotted the periodicity of Eq. (4.1) and Eq. (5.1) in Figures 2 (left) and 2 (right),
respectively. Finally, the used approaches can be simply applied for other nonlinear equations.
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Solution of a Class of Nonlinear Pantograph Differential Equations
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Abstract: In this paper, we dealt with a class of nonlinear Pantograph Differential Equations with some
initial condition. Since, there is not any analytic solution, we have applied the Pell Collocation Method
as a numerical method.
Keywords: Nonlinear differential equations, Pantograph equations, Pell collocation method, Delay equa-
tions.

1 Introduction
The pantograph differential equations are a special class of the functional differential equations with pro-
portional delay. These equations appear in the modeling of the problems encountered in many fields from
economics to quantum mechanics, from nonlinear dynamical systems to electrodynamics. Unfortunately,
it is not possible to find analytical solutions in many models presented with these equations. In that
case, we need to use various numerical methods. In our work, we consider the numerical method "Pell
Collocation Method(PCM)" for the approximate solution of a class of nonlinear Pantograph Differential
Equations. Many researchers used this method for the approximations. In this paper, we consider a class
of nonlinear Pantograph differential equation given by

m∑
k=0

n∑
r=0

Rkr(x)u
r (αkrx+ βkr (x))u

(k)(λkrx+ γkr (x)) (1.1)

+

m∑
k=1

n∑
r=1

Qkr(x)u
(r) (αkrx+ βkr (x))u

(k)(λkrx+ γkr (x))

= g(x), for a ≤ x ≤ b

according to the following initial conditions

m∑
k=0

[
ajku

(k)(0) + bjku
(k)(0)

]
= δj , j = 0, 1 (1.2)

where u(0)(x) = u(x), u0(x) = 1 and u(x) is an unknown function. Rkr(x), Qkr(x) and g(x) are given
continuous functions on interval [0, 1], ajk, ajk, αkr, λkr and δj are suitable constants. Also βkr (x) and
γkr (x) are suitable constants or arbitrary variables. The propose of our work is to determine the ap-
proximate solution as the truncated Pell series given by

u (x) =

N+1∑
n=1

cnPn(x) (1.3)

where Pn(x) denotes the Pell polynomials; cn (1 ≤ n ≤ N + 1) are the unknown coefficients for Pell
polynomial, and N is any positive integer which possess N ≥ m.
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2 Properties of Pell polynomials
The recurrence relation of those polynomials is defined by

Pn(x) = 2xPn−1(x) + Pn−2(x) (2.1)

For n ⩾ 3. , P1(x) = 1, P2(x) = 2x . The properties were further investigated by Horadam, A. F. and
Mahon, J. M.[2]. The first few Pell polynomials are

P1(x) = 1, (2.2)
P2(x) = 2x,

P3(x) = 4x2 + 1,

...

3 Fundamental relations
Let us assume that linear combination of Pell polynomials (1.3) is an approximate solution of Eq (1.1).
Our purpose is to determine the matrix forms of Eq (1.1) by using (1.3). Firstly,
i) In case of αkr = λkr = 1 and βkr (x) = γkr (x) = 0, we can write Pell polynomials (2.2) in the
matrix form

P (x) = T (x)M (3.1)

where P (x) = [P1 (x) P2 (x) · · ·PN+1 (x)], T (x) =
(
1 x x2 x3...xN

)
, C = (c1 c2 · · · cN+1)

T and

M =



1 0 1 0 1 0 1 0 1 · · ·
0 2 0 4 0 6 0 8 0 · · ·
0 0 4 0 12 0 24 0 40 · · ·
0 0 0 8 0 32 0 80 0 · · ·
0 0 0 0 16 0 80 0 240 · · ·
0 0 0 0 0 32 0 192 0 · · ·
0 0 0 0 0 0 64 0 448 · · ·
0 0 0 0 0 0 0 128 0 · · ·
0 0 0 0 0 0 0 0 256 · · ·
...

...
...

...
...

...
...

...
...

. . .


The matrix form of (1.3) by a truncated Pell series is given by

u (x) = P (x)C. (3.2)

By using (3.1) and (3.2), the matrix relation is expressed as

u (x) ∼= uN (x) = T (x)MC (3.3)
u′(x) ∼= u′

N (x) = TBMC

u′′ (x) ∼= u′′
N (x) = T (x)B2MC

...

u(k) (x) ∼= u
(k)
N (x) = T (x)BkMC

Also, the relations between the matrix T (x) and its derivatives T′(x), T′′(x),...,T(k)(x) are

T′(x) = T (x)B, T′′(x) = T (x)B2 (3.4)
T′′′(x) = T (x)B3, ...,T(k) (x) = T (x)Bk
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where

B =



0 1 0 0 0 0 · · · 0
0 0 2 0 0 0 · · · 0
0 0 0 3 0 0 · · · 0
0 0 0 0 4 0 · · · 0
0 0 0 0 0 5 · · · 0
0 0 0 0 0 0 · · · 0
...

...
...

...
...

. . . . . . N
0 0 0 0 0 0 · · · 0


, B0 =



1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0
0 0 0 0 1 0 · · · 0
0 0 0 0 0 1 · · · 0
...

...
...

...
...

. . . . . . 0
0 0 0 0 0 0 · · · 1


,T1,0 =


1 x0 ... xN

0

1 x1 ... xN
1

1
... ...

...
1 xN ... xN

N



ii) In case of αkr , λkr , βkr (x) and γkr (x) are arbitrary constants or variables. Then we set the
approximate solution defined by a truncated Pell series (1.3) in the matrix form

u (λkrx+ γkr (x)) ∼= uN (λkrx+ γkr (x)) = P (λkrx+ γkr (x))C.

By using the relations (3.1) and (3.2), the matrix relation is expressed as

u (λkrx+ γkr (x)) ∼= uN (λkrx+ γkr (x)) = P (λkrx+ γkr (x))C = T (λkrx+ γkr (x))MC

u′ (λkrx+ γkr (x)) ∼= u′
N (λkrx+ γkr (x)) = T(λ, γ) (x)BMC (3.5)

u′′ (λkrx+ γkr (x)) ∼= u′′
N (λkrx+ γkr (x)) = T(λ, γ) (x)B

2MC

...
u(k) (λkrx+ γkr (x)) ∼= u

(k)
N (λkrx+ γkr (x)) = T(λ, γ) (x)B

kMC

Also, the relations between the matrix T (λkrx+ γkr (x)) and its derivatives T′ (λkrx+ γkr (x)),
T′′ (λkrx+ γkr (x)),...,T(k) (λkrx+ γkr (x)) are

T′ (λkrx+ γkr (x)) = T (λkrx+ γkr (x))B, T′′ (λkrx+ γkr (x)) = T (λkrx+ γkr (x))B
2 (3.6)

T′′′ (λkrx+ γkr (x)) = T (λkrx+ γkr (x))B
3, ...,T(k) (λkrx+ γkr (x)) = T (λkrx+ γkr (x))B

k

where

Tλ, γ =


T (λkrx0 + γkr (x0))
T (λkrx1 + γkr (x1))

...
T (λkrxN + γkr (xN ))

 =


1 λkrx0 + γkr (x0) ... (λkrx0 + γkr (x0))

N

1 λkrx1 + γkr (x1) ... (λkrx1 + γkr (x1))
N

1
... ...

...
1 λkrxN + γkr (xN ) ... (λkrxN + γkr (xN ))

N


By using (3.5) and (3.6), we have the matrix relation

u(k) (λkrx+ γkr (x)) = T (λkrx+ γkr (x))B
kMC. (3.7)

By substituting the Pell collocation points given by

xi = a+
(b− a) i

N
, i = 0, 1, ...N (3.8)

into Eq(3.7), we obtain

u(k) (λkrxi + γkr (xi)) = Tλ, γ (xi)B
kMC, k = 0, 1, ...,m (3.9)

and the compact form of the relation (3.9) becomes

U(k) = Tλ, γB
kMC, k = 0, 1, ...,m (3.10)
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where

U(k) =


u(k) (λkrx0 + γkr (x0))
u(k) (λkrx1 + γkr (x1))

...
u(k) (λkrxN + γkr (xN ))

 .

In addition, we can obtain the matrix forms
(
Û
)r

U(k)and
(
Û
)(r)

U(k) which appears in the nonlinear
part of Eq. (1.1), by using Eq. (3.3) as

(
Û
)r

U(k) =


ur (αkrx0 + βkr (x0))u

(k) (λkrx0 + γkr (x0))
ur (αkrx1 + βkr (x1))u

(k) (λkrx1 + γkr (x1))
...

ur (αkrxN + βkr (xN ))u(k) (λkrxN + γkr (xN ))

 (3.11)

=


ur (αkrx0 + βkr (x0)) 0 ... 0

0 ur (αkrx1 + βkr (x1)) ... 0
...

...
. . .

...
0 0 ... ur (αkrxN + βkr (xN ))



×


u(k) (λkrx0 + γkr (x0))
u(k) (λkrx1 + γkr (x1))

...
u(k) (λkrxN + γkr (xN ))


(
Û
)(r)

U(k) =


u(r) (αkrx0 + βkr (x0))u

(k) (λkrx0 + γkr (x0))
u(r) (αkrx1 + βkr (x1))u

(k) (λkrx1 + γkr (x1))
...

u(r) (αkrxN + βkr (xN ))u(k) (λkrxN + γkr (xN ))



=


u(r) (αkrx0 + βkr (x0)) 0 ... 0

0 u(r) (αkrx1 + βkr (x1)) ... 0
...

...
. . .

...
0 0 ... u(r) (αkrxN + βkr (xN ))



×


u(k) (λkrx0 + γkr (x0))
u(k) (λkrx1 + γkr (x1))

...
u(k) (λkrxN + γkr (xN ))


where

Û = T̂ M̂ Ĉ and
(
Û
)(r)

= T̂
(
B̂
)r

M̂ Ĉ (3.12)

T̂λ,γ =


T (λkrx0 + γkr (x0)) 0 ... 0

0 T (λkrx1 + γkr (x1)) ... 0
...

...
. . .

...
0 0 ... T (λkrxN + γkr (xN ))

, B̂ =


B 0 ... 0
0 B ... 0
...

...
. . .

...
0 0 ... B

,
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M̂ =


M 0 ... 0
0 M ... 0
...

...
. . .

...
0 0 ... M

, Ĉ =


C 0 ... 0
0 C ... 0
...

...
. . .

...
0 0 ... C

.

Substituting the collocation points (xi = a+ (b− a)i/N, i = 0, 1,···, N) into Eq. (3.11), gives the system
of equations

m∑
k=0

n∑
r=0

Rkr(xi)u
r (αkrxi + βkr (xi))u

(k)(λkrxi + γkr (xi))

+

m∑
k=1

n∑
r=1

Qkr(xi)u
(r) (αkrxi + βkr (xi))u

(k)(λkrxi + γkr (xi))

= g(xi),

which can be expressed with the aid of Eqs. (3.9) and (3.11) as

m∑
k=0

n∑
r=0

Rkr

(
Û
)r

U(k) +

m∑
k=1

n∑
r=1

Qkr

(
Û
)(r)

U(k) = G (3.13)

where

Rkr = diag [Rkr(x0) Rkr(x1) ... Rkr(xN )] ,

Qkr = diag [Qkr(x0) Qkr(x1) ... Qkr(xN )]

and G =
[
g(x0) g(x1) ... g(xN )

]T
.

By substituting the relations (3.10) and (3.12) into Eq. (3.13), the fundamental matrix equation is
attained as{

m∑
k=0

n∑
r=0

Rkr

(
T̂α,β M̂ Ĉ

)r

Tλ,γB
kM+

m∑
k=1

n∑
r=1

QkrT̂α,β

(
B̂
)r

M̂ Ĉ Tλ,γB
k
M

}
C = G (3.14)

Briefly, Eq. (3.14) can also be shown as,

WC = G or [W;G] (3.15)

where

W =

m∑
k=0

n∑
r=0

Rkr

(
T̂α,β M̂ Ĉ

)r

Tλ,γB
kM+

m∑
k=1

n∑
r=1

QkrT̂α,β

(
B̂
)r

M̂ Ĉ Tλ,γB
k
M.

Here, Eq. (3.15) is a system containing (N +1) nonlinear algebraic equations with the (N +1) unknown
Pell coefficients. Using Eq. (3.10) at the points a and b, the matrix representation of the conditions in
Eq. (1.2) is given by{

m−1∑
k=0

[ajkT (0) + bjkT (0)] (B)
(k)

M

}
C = δj , j = 0, 1, 2, ...,m− 1

or we can write as
Vj C = [δj ] or [Vj ; δj ] ; j = 0, 1, 2, ...,m− 1 (3.16)

Here

Vj =

m−1∑
k=0

[ajkT (0) + bjkT (0)] (B)
(k)

M = [vj0 vj1 vj2 ... vjN ] .
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Table 1: Numerical results of the error function EN at the different values of N for Example 2

x E8(MDTM) E11(MDTM) E8 E11

0.1 3.56812× 10−12 3.59265× 10−12 2.21233× 10−9 3.60961× 10−13

0.3 4.67857× 10−10 4.52835× 10−12 6.10001× 10−9 9.75359× 10−13

0.5 4.58254× 10−8 5.85598× 10−11 7.06047× 10−9 1.14569× 10−12

0.7 9.28161× 10−7 2.78563× 10−10 5.60762× 10−9 1.11228× 10−12

0.9 8.72761× 10−6 6.64594× 10−9 8.19878× 10−10 1.40254× 10−12

Therefore, by replacing the condition matrices in (3.16) by the m rows of the augmented matrix (3.15),
the new augmented matrix will be

[
Ŵ; Ĝ

]
=



w00 w01 w02 · · · w0N ; g(x0)
w10 w11 w12 · · · w1N ; g(x1)
w20 w21 w22 · · · w2N ; g(x2)
...

...
...

. . .
... ;

...
w(N−m)0 w(N−m)1 w(N−m)2 · · · w(N−m)N ; g(xN−m)

v00 v01 v02 · · · v0N ; δ0
v10 v11 v12 · · · v1N ; δ1
v20 v21 v22 · · · v2N ; δ2
...

...
...

. . .
... ;

...
v(m−1)0 v(m−1)1 v(m−1)2 · · · v(m−1)N ; δm−1


(3.17)

In this way, the unknown Pell coefficients cn, n = 1, 2, ..., N + 1 are obtained by solving the system in
(3.17). Then, these coefficients are substituted into (1.3), and the approximate solution is obtained.

4 Illustrative example
In this section, a numerical example is presented to illustrate the efficient of the proposed method. On
this problem, the method is tested by using the error function. The obtained numerical results are
presented with table and graphic.

Example 1. Assume that the following differential equation

u′′(x)− u(x) +
8

x2
u2

(x
2

)
= 0; u(0) = 0, u′(0) = 1 (4.1)

The exact solution of Eq.(4.1) is given by u(x) = xe−x. Table 1 presents values of error function and a
numerical comparison of proposed method with modified differential transform method (MDTM) when
N = 8, 11. In Figure 1, it is presented that graphical comparison of approximate and exact solutions
obtained by the proposed method for N = 3.
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Abstract: In this paper, we introduce a generalized functional approach to approximate the non-
parametric function in the case of multivariate predictors, the single-index coefficient, and the non-linear
regression behavior in the case of functional predictors and a scalar response. Following the Fisher-scoring
algorithm and the principle of projection pursuit regression, we derive an additi, ve decomposition that
exploits the most predictive direction, the most predictive add the active component of the functional
predictor variable and the single-index component to explain the scalar response. On the one hand, this
approach allows us to avoid the well-known problem of the curse of dimensionality in the non-parametric
case with the notion of single index and the projection pursuit regression in the functional case, on the
other hand, it can be used as an explonatory tool for the analysis of a multivariate and functional random
variable belonging to a separable Hilbert space H. The terms of this decomposition are estimated with
an iterative Fisher scoring procedure that uses the Quasi-Likelihood function and an approximation of
the non parametric function by normalized B-splines. The good behaviour of our procedure is illustrated
from a theoretical and practical point of view. Asymptotic results indicate that the nonparametric func-
tion, the single index coefficient and the terms of the additive decomposition can be estimated without
suffering from curse of dimensionality , while some applications to real and simulated data show the high
predictive performance of our method.
Keywords: Additive decomposition, asymptotic normality, Fisher scoring algorithm, functional data
analysis (FDA), polynomial splines, predictive directions, projection pursuit regression, Quasi-likelihood,
single-index model
Mathematics Subject Classification:

1 Introduction
Let H be an Hilbert space which is endowed with the scalar product < ·, · >H and the norm || · ||H . Let
Y be a scalar response variable and (X,Z) ∈ Rd ×H be the predictor vector where X = (X1, . . . , Xd)
and Z be a functional random variable which is valued in H. For a fixed (x, z) ∈ Rd × H, we assume
that the conditional density function of the response Y given (X,Z) = (x, z) belongs to the following
canonical exponential family

fY |X=x,Z=z(y) = exp
(
y ξ(x, z)−B(ξ(x, z)) + C(y)

)
, (1.1)

where B and C are two known functions which are defined from R into R, and ξ : Rd ×H −→ R is
the parameter in the generalized parametric linear model which is linked to the dependent variable

µ(x, z) = E
[
Y |X = x, Z = z

]
= B′(ξ(x, z)), (1.2)

where B′ denotes the first derivative of the function B. In what follows we modelize the scalar response Y
as a generalized functional projection pursuit regression for partially linear single-index model ( GFPPR-
PLSIM). by

g(µ(X,Y )) = η0
(
α⊤X

)
+R (Z) + ε, (1.3)
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where α = (α1, α2, . . . , αd) ∈ Rd is the d-dimensional single-index coefficient vector, η is the unknown
single-index link function or the systematic non-linear component which will be assumed to be sufficiently
smooth, g is the known link function and R is the regression operator to be estimated which is approxi-

mated by a finite sum of terms R(Z) ≈
m∑
j=1

gj(⟨βj , Z⟩) where x⊤ denotes the transpose vector of x. βj is

called the j−th most predictive direction and gj is the j−th most predictive additive component.

2 Estimation methodology
Let (Xi, Yi, Zi)i=1,...,n be a sequence of independent and identically distributed (i.i.d.) vectors as (X,Y, Z)
and, for each i = 1, . . . , n,

g(µ(Xi, Yi)) = η
(
α⊤Xi

)
+R(Zi) + εi. (2.1)

We assume that the function η is supported within the interval [a, b] where a = inf(α⊤X) and

b = sup(α⊤X) and the regression operator R which we will model as R(Z) =
J∑

j=1

gj(⟨βj , Z⟩) where

βj ∈ H with ∥βj∥2 = 1, assuming that E(ε|X,Z) = 0 and E(ε2|X,Z) < ∞.

Let Wj = ⟨βj , Z⟩, j = 1, ..., J .
Denote ε1,β1 = Y − g1(⟨β1, Z⟩), then ε1,β1 and ⟨β1, Z⟩ are uncorrelated. So, in an iterative way, we can

define εj,βj
= Y −

j∑
k=1

gk(⟨βk, Z⟩), j = 1, ..., J − 1, and by plug-in g(µ(X,Z)) = η(α⊤X)−
J∑

k=1

gk(⟨βk, Z⟩)

with E[εj,βj
|⟨βj , Z⟩] = 0 at each stage j = 1, ..., J − 1 and E[εJ,βJ

|X, ⟨βJ , Z⟩] = 0. For j = 1, ..., J − 1,
the j−th direction βj is obtained by solving the minimum problem

min
∥βj∥2=1

E
[(
εj−1,βj−1 − E

[
εj−1,βj−1 |⟨βj , Z⟩

])2] (2.2)

so, the j−th component is defined as follow

gj(u) = E
[
εj−1,βj−1

|⟨βj , Z⟩ = u
]

(2.3)

Finally, we estimate α, η and gJ by using the quailikelihood function as will be defined later.

For j = 1, ..., J − 1, given β1, ..., βj , we wish to estimate the functions gj,βj (u) = E
[
εj−1,βj−1 |⟨βj , Z⟩ = u

]
with ε0,β0 = Y and εj,βj = Y −

j∑
k=1

gk,βk
(⟨βk, Z⟩) which can be estimated by using the Nadaraya-Watson

kernel approach. For all j = 1, ..., J − 1, the estimates are constructed as

ĝj,βj
(u) =

∑n
i=1 ε̂j−1,βj−1

Kj

(u−⟨βj ,Zi⟩
hj

)
∑n

i=1 Kj

(u−⟨βj ,Zi⟩
hj

)
where, for all i = 1, ..., n, ε0,β0,i = Yi, and ε̂j,βj ,i = Yi−

j∑
k=1

ĝk,βk
(⟨βs, Zi⟩), j = 1, ..., J−1 hj , j = 1, ..., J−1

are smoothing parameters depending on n, and Kj are standard kernel weighting functions.
We assume that the function η is supported within the interval [a, b] where a = inf(α⊤X) and b =
sup(α⊤X).
We introduce a sequence of knots (km) in the interval [a, b], with J interior knots, such that k−r+1 =
· · · = k−1 = k0 = a < k1 < · · · < kJ = kJ+1 = · · · = kJ+r, where J := Jn is a sequence of integers which
increases with the sample size n. Now, let Nn = Jn + r be the number of knots, (Bj(u))j=1,...,Nn

be
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the B-spline basis functions of order r, and h = (b− a)/(Jn + 1) be the distance between the neighbors
knots.
Let Sn be the space of polynomial splines on [a, b] of order r ≥ 1. By De Boor [7], we can approximate η,
assumed in H(p) (which will be defined in section 3) by a function η̃ ∈ Sn. So, we can write η̃(u) = γ̃⊤B(u)
where B(u) is the spline basis and γ̃ ∈ RNn is the spline coefficient vector.
We introduce a new knots sequence t0 < t1 < · · · < tk+1 of the support of R. Then, there exists
lJ = k + r + 1 functions in the B-splines basis which are normalized and of order r, such that

gJ(·) ≈ δ⊤B(J)(.) where B(J)(.) =
(
B

(J)
1 (.), B

(J)
2 (.), . . . , B

(J)
lJ

(.)
)⊤

and δ ∈ RlJ .

By setting W
(J)
i = ⟨βJ , Zi⟩, the mean function estimator m̂ (x, z) is then given by the evaluation of the

parameter θ =
(
α⊤, γ⊤, δ⊤

)⊤ and by inverting the following equation

g(µ(Xi, Zi))−
J−1∑
j=1

ĝj(⟨βj , Zi⟩) = γ̂⊤B
(
α̂⊤x

)
+δ̂⊤BJ(W

(J)
i ). Notice that the parameter θ =

(
α⊤, γ⊤, δ⊤

)⊤
is determined by maximizing the following quasi-likelihood rule

θ̂ =
(
α̂⊤, γ̂⊤, δ̂⊤

)⊤
= argmax

θ=(α,γ,δ)∈Rd×RNn×RlJ

l(θ), where l(θ) := l(α, γ, δ) = 1
n

∑n
i=1 Q

(
g−1(mi), Yi

)
, with

mi := γ⊤B
(
α⊤Xi

)
+ δ⊤B(J)(W

(J)
i ), where U0i = α⊤

0 Xi with α0, γ0, δ0, η0 denoting the true values,
respectively, of α, γ, δ, and η .
To overcome the constraint ∥α∥ = 1 and α1 > 0 of the d-dimensional index α, we proceed by a re-

parameterization, which is similar to Yu and Ruppert α(τ) =
(√

1− ∥τ∥2, τ⊤
)⊤

for τ ∈ Rd−1.

The true value τ0 of τ , must satisfy ∥τ0∥ ≤ 1. Then, we assume that ∥τ0∥ < 1. The jacobian matrix of
α : τ → α(τ) of dimension d× (d− 1) is J(τ). Notice that τ is unconstrained and is one dimension lower
than α.
Finally, let R(τ) =

(
J(τ) 0
0 IlJ × IlJ

)
the jacobian matrix of

(
α(τ)⊤, δ⊤

)⊤, which is of dimension

(d+ lJ)× (d+ lJ − 1). Let

(α̃, δ̃) = argmax
(α,δ)∈Rd×RlJ , τ∈Rd−1

1

n

n∑
i=1

Q
(
η̃
(
α⊤(τ)Xi

)
+ δ⊤B(J)(W

(J)
i ), Yi

)
and Ti =

(
X⊤

i , B(J)(W
(J)
i )⊤

)⊤
,

(τ̃ , δ̃) = argmax
τ,δ

l̃(τ, δ) where l̃(τ, δ) = 1
n

∑n
i=1 Q

(
η̃
(
α(τ)⊤Xi

)
+ δ⊤B(J)(W

(J)
i ), Yi

)
. Note that

θτ =
(
τ⊤, γ⊤, δ⊤

)⊤ is a (d − 1) ×Nn × lJ -dimensional parameter, while θ is a d ×Nn × lJ -dimensional
one. Let ρl(m) = 1

σ2Vm and denote ql(m, y) = ∂l

∂mlQ (m, y) , for l = 1, 2. Then, q1(m, y) =
(y −m) ρ1(m) and q2(m, y) = (y −m) ρ′1(m)− ρ2(m).

So, l (θτ ) becomes l (θτ ) = 1
n

∑n
i=1 Q

(
γ⊤B

(
α⊤(τ)Xi

)
+ δ⊤B(J)(W

(J)
i ), Yi

)
= 1

n

∑n
i=1 Q

(
g−1(mi), Yi

)
The score vector is then S (θτ ) = ∂l

∂θτ
(θτ ) = 1

n

∑n
i=1 q1 (mi, Yi) ξi(τ, γ, δ), where ξi(τ, γ, δ) = γ⊤B′ (α⊤(τ)Xi

)
J⊤(τ)Xi

B
(
α⊤(τ)Xi

)
B(J)(W

(J)
i )

 . The expectation of the Hessian matrix is H (θτ ) = E
[

∂2

∂θ⊤
τ ∂θτ

S (θτ )
]
=

− 1
n

∑n
i=1 ρ2 (mi) ξi(τ, γ, δ)ξ

⊤
i (τ, γ, δ),
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The Fisher Scoring update equations θ(k+1)
τ = θ(k)τ −

[
H
(
θ(k)τ

)]−1

S
(
θ(k)τ

)
, becomes

θ(k+1)
τ = θ(k)τ +

[
n∑

i=1

ρ2

(
m

(k)
i

)
ξi

(
τ (k), γ(k), δ(k)

)
ξ⊤i

(
τ (k), γ(k), δ(k)

)]−1

×

[
n∑

i=1

(
Yi − µ

(k)
i

)
ρ1

(
m

(k)
i

)
ξi

(
τ (k), γ(k), δ(k)

)]
,

where m
(k)
i = γ(k)⊤B

(
α(k)⊤(τ (k))Xi

)
+ δ(k)⊤B(J)(W

(J)
i ), for 1 ≤ i ≤ n.

It follows that

ĝ∗J(t) = δ̂⊤B(J)(t) = δ(k)⊤B(J)(t), η̂(t) = γ̂⊤B(t) = γ(k)⊤B(t),

m̂i = γ̂⊤B
(
α⊤(τ̂)Xi

)
+ δ̂⊤B(J)(W

(J)
i ) = γ(k)⊤B

(
α⊤ (τk))Xi + δ(k)⊤B(J)(W

(J)
i ),

where α̂ = α
(
τ (k)

)
is the estimator of the single-index coefficient vector of the GFPPR-PLSIM model.

3 Asymptotic results
Let v ∈ N∗ and e ∈ (0, 1] such that p = v + e > 1.5. We denote by H(p) the collection of functions g,
which are defined on [a, b] whose v-th order derivative, g(v), exists and satisfies the following e-th order
Lipschitz condition

∣∣g(v) (m′)− g(v)(m)
∣∣ ≤ C |m′ −m|e , for all a ≤ m,m′ ≤ b. Let ε = Y − m0(T )

where T =
(
X⊤,W⊤)⊤.

(C1) The single-index link function η0 ∈ H(p), where H(p) is defined as above.
(C2) For all m ∈ R and for all y in the range of the response variable Y , the function q2(m, y) is strictly
negative, and for k = 1, 2, there exist some positive constants cq and Cq such that cq <

∣∣qk2 (m, y)
∣∣ < Cq.

(C3) The marginal density function of α⊤X is continuous and bounded away from zero and is infinite on
its support [a, b]. The v-th order partial derivatives of the joint density function of X satisfy the Lipschitz
condition of order α (α ∈ (0, 1]).
(C4) For any vector τ , there exist positive constants cτ and Cτ , such that

cτIt×t ≤ E

[(
1
T

)(
1
T

)⊤ ∣∣∣α⊤(τ)X = α⊤(τ)x

]
≤ CτIt×t,

where t = 1 +Nn + lJ and T =
(
X⊤,W⊤)⊤.

(C5) The number of knots Nn satisfy n
1

2(p+1) ≪ Nn ≪ n
1
8 , for p > 3.

(C6) The fourth order moment of the random variable Z is finite, i.e., E∥Z(.)∥4 ≤ C, where C denotes
a generic positive constant.
(C7) The covariance function K(t, s) = Cov(Z(t), Z(s)) is positive definite.
(C8) For some finite positive constants Cρ, C∗

ρ and M0

|ρ1(m0)| ≤ Cρ and |ρ1(m)− ρ1(m0)| ≤ C∗
ρ |m−m0| for all |m−m0| ≤ M0.

(C9) It exists a positive constant C0, such that E(ϵ2|Uτ,0) ≤ C0, where ϵ = Y − g−1 (m0(T )).
(C10) We assume that all the random variables ⟨β, Z⟩, for all β ∈ H, have values on a set C where C is
a compact subset of R.
(C11) We assume that for some δ > 0 and some C = C(β1, β2, ..., βJ) ∈ R+, we have, for all j = 1, ..., J ,

∀(u, v) ∈ C2, |gj,βj
(u)− gj,βj

(v)| ≤ C|u− v|δ.
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(C12) The usual conditional moments requirement, ∀r ≥ 1, ∃C < ∞, E
[
|Y |r = σr(Z)

]
< Cr!. where

σr(.) is continuous and bounded, and we assume that for all β ∈ H, the distribution of the real random
variable ⟨β, Z⟩ is absolutely continuous with respect to the Lebesgue measur, with density fβ satisfying
0 < inf

u∈C
fβ(u) ≤ sup

u∈C
fβ(u) < ∞.

(C13) The specific conditions required for the nonparametric kernel smoother are the following: for any
j = 1, ..., J , Kj is integrable and bounded with support (−1, 1), and

∃τj > 0, ∃αj ≥ 0, hj ∼ Cst

(
(log n)αj

n

) 1
2τj+1

.

(C14) We assumed an extra smoothness of the target gj : ∀k = 1, ..., kj − 1,

∫
ukKj(u)du =

0 and
∫

ukjKj(u)du > 0 with kj ≥ qj and kj < jj−1.

3.0.1 Convergence of the estimated univariate components

The convergence of the estimated univariate components is given by the following theorem.

Theorem 3.1.
(i) Under the conditions (C10-C13), with τj = δ and αj = 1 in (C13) for j = 1, ..., J − 1, we have

sup
u∈C

|ĝj,βj
(u)− gj,βj

(u)| = O

((
log n

n

) β
2β+1

)
a.s.

(ii) Under the conditions (C10-C14), with τj = kj and αj = 0 in (C13) for , j = 1, ..., J − 1, we have

E

[ ∫
C

(
ĝj,βj

(u)− gj,βj
(u)
)2
du

]
∼ C

(
1

n

) 2kj
2kj + 1

.

So, for the J−th component , we have the following theorem

Theorem 3.2. Under assumptions (C1)− (C8), and k ∼ n1/(2r+1), we have

∥ĝJ,βJ
− gJ,βJ

(·)∥2 = OPp

(
N2

n

(
hp +

1√
nh

)2
)

+OPp(n
−2r/(2r+1)).

3.0.2 Estimation of the non-parametric function

Theorem 3.3. Under assumptions (C1)-(C7), we have ∥η̂ − η0∥2 = OP

{√
Nn

(
1√
nh

+ hp
)}

and

∥η̂ − η0∥n = OP

{√
Nn

(
1√
nh

+ hp
)}

3.0.3 Estimation of the parametric components

Theorem 3.4. Under assumptions (C1)-(C10), the quasi-likelihood estimator α̂ with the constraint
∥α̂∥ = 1 is asymptotically normal i.e.,

√
n (α̂− α0)

D→ N
(
0, J (τ0)D

−1J⊤ (τ0)
)
, where

D = E
[
ρ2 (m0(T ))

(
η′0 (Uτ,0) J

⊤ (τ0) Φ(X)
) (

η′0 (Uτ,0) J
⊤ (τ0) Φ(X)

)⊤]
.
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On the conditions starlikeness and close-to convexitv for certain analytic
functions
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Abstract: In this study, f(z) ∈ A, f(z) = z+
∑∞

n≥2 an.z
n will be an analytic function in the open unit

disc U = {z : |z| < 1, z ∈ C} normalized by f(0) = 0, f ′(0) = 1. In this work, starlike functions and
cloce-to-convex functions with degree 1

4 have been studied according to the exact analytic requirements.

Keywords: Analytic function, univalent function, starlike function,. close – to-convex function
Mathematics Subject Classification: 30C45, 23584

1 Introduction
Let class A be the class of analytic function in the open unit disc U = {z : |z| < 1, z ∈ C} normalized
by

f(z) = z +

∞∑
n≥2

an.z
n for f(0) = 0, f ′(0) = 1 where z ∈ U = {z : |z| < 1, z ∈ C}

S denotes the class of f(z) functions in A which f(z) is a univalent function. These f(z) ∈ A functions
lie in U as starlike of order α (0 ≤ α < 1), such that

Re(
zf ′(z)

f(z)
) > α, f(z) ∈ A for all z ∈ U = {z : |z| < 1, z ∈ C}

In other wordsf(z) ∈ S⊗(α)That is f(z) ∈ S⊗(α) if and only if z.f ′(z) ∈ S⊗(α). If there is a convex
function g(z) that provides the folloving uniequal function , then the f(z) is called close-to-convex. Let
K⊗ be the class of close-to-convex.

Re(
z.f ′(z)

g′(z)
) > α, z ∈ U = {z : |z| < 1 , z ∈ C} ,

According to the definitions fort he clasess starlike functions S⊗(α) and complex functions K(α) which
these functions are of α degree. ,we know that f(z) ∈ K(α) if and only if z.f ′(z) ∈ S⊗(α). [1, 5, 6, 11].
For the starlike function f(z) with degree α(0 ≤ α < 1) , we can give the following function as an example

f(z) =
z

1− z2
== z +

∞∑
n≥2

n.z(2n−1) ∈ S∗

Where f(U) is starlike region by origin.
And
For the convex function f(z) with α(0 ≤ α < 1) , we can give the following function as an example

f(z) =
1

2
, Ln

(
1 + z

1− z

)
= z +

∞∑
n≥2

1

2n− 1
z2n−1 ∈ K,

which K is set of convex functions
Where f(U) is convex region in complekx plane.
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Lemma 1.1. Let h(z) = 1 +
∑∞

n≥1 cn.z
n be analytic in the unit disc U and suppose that there exists a

point z0 ∈ U such that
Reh(z) > 0 and Reh(z0) = 0.

Then we have
z0.h′(z0) ≤ −1

2
(1 + |h(z0)|2) for |z| < |z0| .[1].

Theorem 1.1. (Main theorem1) Let f(z) ∈ A and suppose that there exists a starlike function g(z)
such that

Re

[
z.f ′(z)

g(z)
(1 +

z.f ′′(z)

f ′(z)
− zg′(z)

g(z)

]
> −1

8
(1 +

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣2),
Then f(z) is a close-to-convex function of degree 1

4 i.e f(z) ∈ K⊗( 14 ).

Proof Let us put h(z) = 4( z.f
′(z)

g(z) − 3
4 ) for h(0) = 1. Then h(z) is analytic in |z| < 1 which satisfies the

condition. Now using h(z) = 4( z.f
′(z)

g(z) − 3
4 ).

h′(z) = 4(
(f ′(z) + zf ′′(z)).g(z)− g′(z)zf ′(z)

(g(z))2
)

zh′(z) = 4(
zf ′(z)

g(z)
+

zf ′′(z)

f ′(z)
.
zf ′(z)

g(z)
− zf ′(z)

g(z)
.
zg′(z)

g(z)
) = 4(

zf ′(z)

g(z)
(1 +

zf ′′(z)

f ′(z)
− zg′(z)

g(z)
)

1

4
zh′(z) = (

zf ′(z)

g(z)
(1 +

zf ′′(z)

f ′(z)
− zg′(z)

g(z)
)

From h(z) is analytic in U and h(0) = 1 suppose that there exists a complex number z0 ∈ U which
satisfies the conditions of lemma. And from here

(
zf ′(z)

g(z)
(1 +

zf ′′(z)

f ′(z)
− zg′(z)

g(z)
) =

1

4
zh′(z).

On the other hand, since the function h(z) and the point z0 ∈ |z| < 1 satisfy all conditions lemma:1, then
we obtain

Re(
z0f

′(z0)

g(z0)
(1 +

z0f
′′(z0)

f ′(z0)
− z0g

′(z0)

g(z0)
) ≤ −1

8
(1 + |h(z0|2) = −1

8
(1 +

∣∣∣∣z0f ′(z0)

g(z0)

∣∣∣∣2).
Therefore proof of theorem 1 is completed. ■

Theorem 1.2. Let f(z) ∈ A, and suppose that there a starlike function g(z) such that Re( zf
′(z)

g(z) (1 +

zf ′′(z)
f ′(z) − zg′(z)

g(z) ) > − 1
2 (1 +

∣∣∣ zf ′(z)
g(z)

∣∣∣2) for z0 ∈ |z| < 1, Then f(z) is the close-to- convex, so f(z) ∈ K⊗.

Proof If h(z) = zf ′(z)
g(z) then, and h(z) is analytic in U.

By using h(z) = zf ′(z)
g(z) , we have

z0.f
′(z0)

g(z0)
(1 +

z0.f
′′(z0)

f ′(z0)
− zg′(z0)

g(z0)
) = z0h

′(z0).

Therefore, we obtain

Re

[
z0.f

′(z0)

g(z0)
(1 +

z0.f
′′(z0)

f ′(z0)
− zg′(z0)

g(z0)
)

]
= z0h

′(z0) ≤ −1

2
(1 +

∣∣h(z0)2∣∣ = −1

2
(1 +

∣∣∣∣z0f ′(z0)

g(z0)

∣∣∣∣2).[9]
■

137



10th (Online) International Conference on Applied Analysis and Mathematical
Modeling-Abstracts and Proceeding Book (ICAAMM22,) July 1-3, 2022, Istanbul-Turkey

Lemma 1.2. Let h(z) = 1+
∑∞

n≥1 cn.z
n be analytic in |z| < 1 and (α which is 0 < α ≤ 1

2) be a positive
real number. Then suppose that there exists a point z0 ∈ |z| < 1 such that

Reh(z) > α and Reh(z0) = α and h(z0) ̸= α for |z| < |z0| .

z0h
′(z0)

h(z0)
≤ − α

2(1− α)
[10]

Lemma 1.3. t(z) being a non- constant analytic function in |z| < 1 with t(0) = 0,. If |t(z)| attainins its
maximum value on the |z| = r < 1 at z0. Then

z0.w
′(z0) = kw(z) where k ≥ 1 is a real number[1].

Theorem 1.3. If f(z) ∈ A satisfies the following inequality
Re

[
z.f ′(z)
f(z) (1 + α z.f ′′(z)

f ′(z)

]
> −α2

4 (1− α), 0 ≤ α < 2 , then f(z) ∈ S⊗( 12 ) [2, 4].

Theorem 1.4. If f(z) ∈ A satisfies the following inequality
Re

[
z.f ′(z)
f(z) (1 + z.f ′′(z)

f ′(z)

]
> 0, then f(z) ∈ S⊗( 12 ) [2, 3].

Theorem 1.5. Let α ( 0 < α ≤ 1
4 ) is a pozitive real number and f(z) ∈ A. If

Re(1 + zf ′′(z)
f ′(z) ) > Re( zf

′(z)
f(z) )− 1

6 . Then, we have f(z) ∈ S⊗( 14 ).

Proof If h(z) = zf ′(z)
f(z) . Then h(z) is analytic in |z| < 1 and h(0) = 1. Suppose that there exists a

complex number z0 ∈ |z| < 1 which satisfies the conditions

Reh(z) >
1

4
and Reh(z0) =

1

4
and h(z0) ̸=

1

4
for |z| < |z0| .

Really, now using h(z) = zf ′(z)
f(z) , it follows that

h′(z) =
(f ′(z) + zf ′(z))f(z)− z(f ′(z))2

(f(z))2

zh′(z) =
zf ′(z)

f(z)
+

zf ′′(z)

f ′(z)
.
zf ′(z)

f(z)
− zf ′(z)

f(z)
.
zf ′(z)

f(z)

zh′(z)

h(z)
= 1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
for h(0) =

zf ′(0)

f(0)
= 1. (1.1)

Since the function h(z) and z0 ∈ |z| < 1 satisfy all conditions lemma 2, therefore in view of

zh′(z)

h(z)
and 1.1 gives Re(1 +

z0f
′′(z0)

f ′(z0)
) = Re(

z0h
′(z0)

h(z0)
+ h(z0)

This is a contradiction and therefore proof of the theorem 8 is completed. ■

Theorem 1.6. Let h(z) = 1+
∑∞

n≥1 bn.z
n be analytic in U = {z : |z| < 1} and suppose that there exists

z0 ∈ U such that Re(h(z)) > 0 for |z| < |z0| , Re(h(z0)) = 0. Then z0h
′(z0) ≤ − 1

4 (1 + |h(z0)|2).

Proof Let’s define p(z) = 2. 1−h(z)
1+h(z) function which satisfies the following conditions in its |z| < |z0|

region p(0) = 0 , |p(z)| < 1 and |p(z0)| = 1.

p′(z) = 2
−h′(z)(1 + h(z)− h′(z)(1− h(z)

(1 + h(z))2
=

−4h′(z)

(1 + h(z))2

From Reh(z) > 0 and Reh(z0) = 0 for |z| < |z0|
z.p′(z)
p(z) = −4zh′(z)

(1−h(z))(1+h(z)) or z0.p
′(z0)

p(z0)
= −4z0h

′(z0)
(1−h(z0))(1+h(z0))

≥ 1, for |z| < |z0|
Therefore, we have z0h

′(z0) ≤ − 1
4 (1 + |h(z0)|2). ■
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Theorem 1.7. Let’s assume that the function f(z) ∈ A satisfies the conditions f(z).f ′(z) ̸= 0 and

Re
[
z.f ′(z)
f(z) (1 + z.f ′′(z)

f ′(z)

]
> − 1

4

∣∣∣ z.f ′(z)
f(z)

∣∣∣2 for 0 < |z| < 1. Then f(z) ∈ S⊗( 14 ) .

Proof Let’s define the function h(z) = 2z.f ′(z)
f(z) − 1 which holds h(0) = 1 Using this value of h(z) ,

we can consider the following equality Re
[
z0.f

′(z0)
f(z0)

(1 + z0.f
′′(z0)

f ′(z0)

]
= Re

[
1
4z0h

′(z0) +
1
8 (1 + h(z0)

2
]

where
z0 ∈ U is a complex number which satisfies Reh(z) > 0 for |z| < |z0| and Reh(z0) = 0. By
using relations Reh(z0) = 0 , zo.h

′(zo) ≤ − 1
4 (1 + |h(z0)|2), the following inequality can be written.

Re
[
z0.f

′(z0)
f(z0)

(1 + z0.f
′′(z0)

f ′(z0)

]
≤ − 1

8 (1 + |h(z0)|2)− 1
8 |h(z0)|

2
+ 1

8

≤ −1

4
|h(z0)|2 ≤ −1

4

∣∣∣∣z0.f ′(z0)

f(z0)

∣∣∣∣ .
Therefore, we have Reh(z) > 0 or Re( z.f

′(z)
f(z) ) > 1

4 ,so f(z) ∈ S⊗( 14 ) [2]. ■

Theorem 1.8. (Main Theorem 2) If f(z) is a function which satisfies the following conditions
(z).f ′(z) ̸= 0 and Re

[
z.f ′(z)
f(z) (1 + α z.f ′′(z)

f ′(z)

]
> −α

8 (3− α)(2− α)(1− α) in 0 < |z| < 1 for

0 < α < 3, then f(z) is 1
4order starlike function. That is f(z) ∈ S⊗( 14 ).

Proof Let’s define z.f ′(z)
f(z) = (1−h(z))α4 +h(z) for h(0) = 1. Then the following equality can be written

such that Reh(z) > 0 and Reh(z0) = 0 for |z| < |z0|Then from here,

d

dz

z.f ′(z)

f(z)
=

f ′(z)

f(z)
+

zf ′′(z)

f ′(z)
.
f ′(z)

f(z)
− z(

f ′(z)

f(z)
)2 = (1− α

4
)h′(z)

zf ′(z)

f(z)
+

zf ′′(z)

f ′(z)
.
zf ′(z)

f(z)
− (

zf ′(z)

f(z)
)2 = (1− α

4
)z.h′(z)

zf ′(z)

f(z)
(1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
) = (1− α

4
)z.h′(z)

Suppose that there exists a complex point z0 ∈ |z| < 1 such that it satisfies the conditions
Reh(z) > 0 and Reh(z0) = 0 and lemma 1, lemma 2 and lemma 3. Then we have

Re

[
z0.f

′(z0)

f(z0)
(1 + α

z0.f
′′(z0)

f ′(z9)

]
=

Re

[
α(1− α

4
)z0h

′(z0) + α(1− α

4
)2(h(z))2 + (1− α

4
)(α2 + 1− α)h(z0) +

α3

8
+ (1− α)

α

4
)

]
If the relations Reh′(zo) = 0 and zo.Reh′(zo) ≤ − 1

4 (1 + |h(z0)|2) are used in the above equation, then

Re
[
z0.f

′(z)
f(z0)

(1 + α z0.f
′′(z0)

f ′(z0)

]
= Re( z0.f

′(z)
f(z0)

).Re((1 + α z0.f
′′(z0)

f ′(z0)
)

≤ −α
4 (1−

α
4 )(1 + |h(z0)|2)− α(1− α

4 )
2 |h(z0)|2 + α3

8 + α
4 (1− α)

≤ −α

4
(1− α

4
) +

α3

8
+

α

4
(1− α) ≤ −α3

8
(3− α)(2− α)(1− α)

Re( z.f
′(z)

f(z) ) > α
4 is also obtained, which is f(z) ∈ S⊗( 14 ). ■
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