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Abstract: This study presents a method for reaching user equilibrium in network traffic assignment problems with capacity constraints.
The presented approach minimizes each user’s own travel time using a gradient-based algorithm based on the Taylor series. The
algorithm is shown to converge efficiently to user equilibrium after a limited number of iterations. A numerical example is provided
to demonstrate the effectiveness of the presented approach, and comparisons are made with other algorithms available in the literature.
The obtained results show that the presented method is capable of reaching user equilibrium for capacity network traffic assignment
problems.
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1 Introduction

The Traffic Assignment Problem (TAP) plays a pivotal role in the field of transportation planning, aiming to accurately
predict drivers’ route preferences and resulting traffic flow patterns. This problem is closely linked to Wardrop’s User
Equilibrium (UE) condition, originally introduced by Wardrop in 1952 [1]. Wardrop’s first principle, as it is commonly
known, explains the behavior of travelers within a transportation network. According to this principle, individuals with
the same origin and destination (OD) must experience identical travel durations and cannot independently minimize their
travel times by choosing alternative routes [2]. Beckmann and colleagues made significant progress by transforming the
UE condition into a nonlinear convex programming problem. This transformation paved the way for efficient algorithms
designed to address the UE condition ([13], [4], [12], [26], [27], [9], [16], [31]). Researchers have approached the Traffic
Assignment Problem (TAP) from various angles, employing different solution methods categorized broadly as
link-based, path-based, and bush-based approaches. Link-based methodologies, exemplified by well-known algorithms
like the Frank-Wolfe algorithm [8], the LeBlanc-Morlok algorithm [9], the Mitradjieva-Lindberg algorithm [10], and the
Chen-Liu-Kim algorithm [14], prioritize optimizing link flows. One notable advantage of these approaches is their lower
operational memory requirements when solving the optimization problem. On the other hand, path-based methods, such
as the Florian-Constantin algorithm [11] and the Jayakrishnan-Tsai algorithm [12], work with path flows and tend to
converge faster compared to link-based methods. However, they typically require more memory. In contrast, bush-based
approaches, illustrated by algorithms like the Bar-Gera algorithm [13], the Dial algorithm [5], the Nie algorithm [15],
and the Gentile algorithm [7], leverage the acyclic network structure created by the set of utilized routes originating from
each source point in an equilibrium scenario. These methodologies address the problem by solving a sequence of
node-centric subproblems defined within the ”bush” structure emanating from each source point. They have made
significant strides in algorithmic development, offering notable gains in computational speed and memory efficiency,
especially for large networks. However, applying these algorithms to address equilibrium concerns in exceedingly
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large-scale networks may still present certain challenges. Javani and Babazadeh introduced an algorithm that identifies
descent directions by iteratively solving a series of quadratic programming subproblems within the framework of
truncated quadratic programming. This method, formally referred to as OD-based Frank-Wolfe truncated quadratic
programming, systematically addresses each quadratic programming subproblem related to Origin-Destination (OD)
pairs. These subproblems are efficiently resolved using the Frank-Wolfe optimization technique, considering only the
active paths [39]. Recently, Galligari and Sciandrone introduced a path equilibration algorithm. In each iteration of this
algorithm, the flows of only two paths associated with each Origin-Destination (OD) pair are adjusted. This is achieved
through an inexact line search method combined with an adaptive column generation technique, as detailed in their work
referenced as Galligari and Sciandrone [40]. For static TAP, Babazadeh et al. devised a path-based algorithm that
decomposes the problem into origin-destination (OD) pairs and utilizes the Wolfe reduced gradient method to solve each
subproblem. To model the impact of traffic congestion on arc connections, various travel cost functions have been
proposed. Polynomial functions are commonly used in practice. These functions estimate finite travel times for all arc
flows, assuming that roads can handle unlimited traffic by default. However, in reality, arc connections have specific
capacity limits that restrict traffic flows ([21], [22]). To improve the accuracy of assignment models and address the
constraints associated with assuming infinite traffic capacity, it would be advantageous to incorporate maximum limits
on arc flows. This can be achieved explicitly by introducing arc capacities or implicitly by utilizing asymptotic travel
time functions. The latter concept suggests that as the flow on an arc approaches its upper bound, the travel time on that
arc tends towards infinity ([23], [24]). Arc flow capacity constraints commonly arise due to traffic control measures or
congestion. Factors such as speed limits and traffic signal cycle times establish predefined capacities for arc flows, which
are widely recognized and must not be exceeded by drivers violating traffic regulations [25]. Capacity constraints on arc
flows can also vary depending on current traffic conditions. During peak hours, arc flows may become imbalanced and
exceed capacity, while under normal circumstances, they usually remain below capacity. Therefore, a traffic model
should consider different capacity levels for different traffic situations, such as specific time intervals. It is worth noting
that approximate weak capacities may slightly exceed the capacity limits in certain cases [28].

The consideration of capacity constraints is of paramount importance as it enables the control of arc flows to approach
their maximum limits, while asymptotic travel time functions generally remain below these thresholds. Nevertheless,
there have been instances where asymptotic travel time functions have led to excessively high travel times, resulting in
misleading route redirections. Conversely, the explicit integration of link capacities poses the challenge of compromising
the structured nature of capacity-unconstrained problems, as discussed by Boyce, Janson, and Eash (1981) [29]. This
presents computational complexities, especially when employing techniques such as the Frank-Wolfe method and
simplicial decomposition, as outlined by Klessig (1974) [30]. Under rigorous assumptions regarding the characteristics
of travel time functions and initial conditions, the subproblem of multicommodity flow within the Frank-Wolfe method
can be transformed into a series of shortest-route subproblems, ensuring convergence toward an optimal flow pattern, as
described by Daganzo (1977) [23] and Hearn and Ribera (1981) [17]. While a capacitated user equilibrium assignment
problem may deviate from strict adherence to Wardrop’s first principle, it still upholds a modified version of the
principle, wherein generalized travel costs with well-defined attributes replace traditional travel costs. From a
computational perspective, the utilization of asymptotic travel time functions entails certain drawbacks due to potential
numerical challenges. Moreover, when employing feasible-direction algorithms like the Frank-Wolfe method,
meticulous initialization of the algorithm is imperative to compute a flow pattern that strictly adheres to the implicit
upper bounds on link flows, as highlighted by Daganzo (1977) [24]. Hence, we propose an iterative algorithm to address
the Traffic Assignment Problem (TAP) with capacity constraints. There exists a substantial body of literature on the
application of Taylor series in optimization problems (refer to Bertsekas et al. [33], Nocedal and Wright [34], and
Bazaraa et al. [32]). The algorithm’s objective is to determine an optimal flow pattern that minimizes travel times while
respecting the capacity limits of the arcs within the transportation network. Furthermore, the user equilibrium conditions
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are mathematically formulated as a linearly constrained convex program. The algorithm takes into consideration the arc
performance functions, which quantify the cost of utilizing an arc based on its flow and congestion effects. By
incorporating capacity constraints, the algorithm aims to strike a balance between travel efficiency and network capacity
utilization. Finally, this paper examines a numerical example previously utilized by Barton and Hearn (1979) [18] and
compares the results obtained through Moiseev’s direct search method implemented in Maple (2011) [37] and the Powell
method (1964) [36]. This comparison showcases the superior performance of the proposed algorithms in terms of
convergence rate and solution quality. The paper is structured as follows:
Section 2 presents the model formulation of the optimization problem for the network TAP with capacities. Section 3
provides the proposed algorithm for obtaining the UE of TAP with capacities. Section 4 applies the proposed algorithm
to a numerical example. Section 5 presents the conclusions and findings of the study.

2 Capacitated User Equilibrium Traffic Assignment Problem

A traffic network can be formally represented as a directed graph denoted by G(N ,A ), where N represents the set of
nodes, and A represents the set of connections. In this context, the nodes correspond to sources denoted as S, and
destinations denoted as D.

In transportation networks, each arc a ∈ A is associated with an arc performance function ta : R+ → R++. This function
measures the cost of utilizing the arc based on its flow, taking into account congestion effects. The primary objective is to
identify a traffic flow pattern that can meet travel demands while simultaneously achieving user equilibrium.

The principle of user equilibrium route choice, first introduced by Wardrop [1], stipulates that the travel times for all
utilized routes are equal and lower than the travel time for any unused route taken by a single vehicle.

Let crs represent the travel time (or travel cost) on route k for the origin-destination pair (r,s) ∈ C under a feasible flow
pattern. Assuming that k routes are used and carry positive flows, a user equilibrium flow pattern is attained if the
following condition is satisfied:

crs
1 = crs

2 = . . .= crs
k ,

and the travel times for unused routes within each origin-destination pair are equal to or greater than those of utilized
routes.

Addressing the challenge of achieving user equilibrium traffic assignment while accounting for arc capacity constraints
gives rise to a captivating problem known as the Capacitated User Equilibrium Traffic Assignment Problem (capacitated
UE TAP). This intricate mathematical puzzle was initially introduced by Dafermos and Sparrow in 1969 [38].

At its core, the problem aims to minimize the total travel cost or travel time, denoted by z( f ), which emerges as the
integral of the arc cost or travel time function ta(τ) over the flow quantity fa on each arc a. The optimization can be
mathematically expressed as follows:

min z( f ) = ∑
a∈A

∫ fa

0
ta(τ)dτ (1)

subject to:
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∑
k∈Rrs

hrs
k = drs, ∀(r,s) ∈ D (2)

hrs
k ≥ 0, ∀k ∈ Rrs,∀(r,s) ∈ D (3)

∑
(r,s)∈C

∑
k∈Rrs

δ
rs
a,khrs

k = fa, ∀a ∈ A (4)

fa ≤ ua, ∀a ∈ A (5)

where:

–z( f ) is the objective function representing the total travel time to be minimized by integrating travel times over all
routes.

– fa denotes the flow quantity on each arc.
–ta(·) represents the travel time function on link a at a certain flow level.
–hrs

k indicates the flow quantity on each link for a specific route and origin-destination pair.
–drs represents the demand quantity for a given origin-destination pair.
–δ rs

a,k is an indicator variable that takes the value of 1 if arc a belongs to route k between nodes r and s, and 0 otherwise.
–Rrs represents the set of routes between nodes r and s.
–C is the set of all arcs.
–ua is the capacity constraint on arc a.

3 KKT Conditions for Network Traffic Assignment Problem

The first-order optimality conditions for this optimization problem are given by the Karush-Kuhn-Tucker (KKT)
conditions:

∇z( f )− ∑
(r,s)∈D

λrs∇

(
∑

k∈Rrs

hrs
k −drs

)
− ∑

a∈A

ηa∇( fa −ua) = 0 (6)

ηa( fa −ua) = 0, ∀a ∈ A (7)

λrs

(
∑

k∈Rrs

hrs
k −drs

)
= 0, ∀(r,s) ∈ D (8)

ηa ≥ 0, λrs ≥ 0, (9)

where ∇ denotes the gradient operator. λrs and ηa are the Lagrange multipliers associated with the constraints, and fa is
the predefined arc flows.
To derive the second-order optimality conditions, we analyze the Hessian matrix of the Lagrangian function, defined as
follows:

H( f ,λ ,η) = ∇
2z( f )− ∑

(r,s)∈D

λrs∇
2

(
∑

k∈Rrs

hrs
k −drs

)
− ∑

a∈A

ηa∇
2 ( fa −ua) (10)

After calculating the Hessian matrix, we evaluate its definiteness at the optimal solution to determine the second-order
optimality conditions. The conditions are as follows:
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1. If H is positive definite, then the solution is a strict local minimum.
2. If H is positive semidefinite, then the solution is a local minimum.
3. If H is negative definite, then the solution is a strict local maximum.
4. If H is negative semidefinite, then the solution is a local maximum.

4 Iterative Approach for TAP with Capacities

In this section, we present an iterative solution approach for the TAP with Capacities. To facilitate understanding, we will
use mathematical symbols commonly used in optimization.

Table 1: List of Notations and Definitions

z( f ) Objective function
f (k) Value of the arc flow variable f at iteration k
z( f ∗) User optimal value of the objective function
∆ f (k) Change in the arc flow variable f between consecutive iterations
H( f ∗) Hessian matrix of the objective function evaluated at the user optimal

solution point f ∗

(∆ f (k))⊤ Transpose of the vector ∆ f (k)

( f (k)− f ∗)⊤ Transpose of the vector f (k)− f ∗
”Positive definite” Property of the Hessian matrix H( f ∗) implying it is

nonsingular and all of its eigenvalues are positive
”Positive semidefinite” Property of the Hessian matrix H( f ∗) implying it is

nonnegative and all of its eigenvalues are nonnegative

The second-order Taylor series approximation of the objective function z( f ) around the optimal point f ∗ is given by the
following equation:

z( f )≈ z( f ∗)+∇z( f ∗) · ( f − f ∗)+
1
2
( f − f ∗)⊺H( f ∗) · ( f − f ∗) (11)

This expression provides us with an estimation of the objective function value z( f ) near the optimal point f ∗ in an indirect
manner, utilizing information from the gradient vector ∇z( f ∗) and the Hessian matrix H( f ∗).
To demonstrate the convergence of the proposed algorithm to the user equilibrium of TAP with capacities, we can examine
the following:
For the arc flow f ∗, we have ∇z( f ∗) = 0, which simplifies the approximation as:

z( f )≈ z( f ∗)+
1
2
( f − f ∗)⊺H( f ∗) · ( f − f ∗) (12)

Next, let’s bound the expression z( f )− z( f ∗):

|z( f )− z( f ∗)| ≤ 1
2
∥ f − f ∗∥2∥H( f ∗)∥ (13)

where ∥ · ∥ represents the norm of a vector.

To show the convergence, we need to demonstrate that the expression above approaches a bounded value. For this, we
need to control the value of ∥ f − f ∗∥.
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If f approaches f ∗, ∥ f − f ∗∥ will tend to zero, which implies that z( f )− z( f ∗) will approach a bounded value. This
indicates the convergence of the proposed procedure.

Therefore, as the points f approach the point f ∗, the function z( f ) will also converge to the value z( f ∗).

Theorem 1.The objective function z( f ) converges to z( f ∗) as the number of iterations tends to infinity, provided that the
following conditions hold:

1.The descent property holds, i.e., the objective function decreases or remains the same with each iteration.
2.The Hessian matrix H( f ∗) is positive definite (or positive semidefinite).

The descent property requires that the objective function decreases (or remains the same) with each iteration. Let’s
consider the change in the objective function after one iteration:

z( f (k+1))− z( f (k)) =
1
2
(∆ f (k))⊤ ·H( f ∗) · (∆ f (k))

− 1
2
( f (k)− f ∗)⊤ ·H( f ∗) · ( f (k)− f ∗)

Expanding the terms and rearranging, we obtain:

z( f (k+1))− z( f (k)) =−1
2
( f (k)− f ∗)⊤ ·H( f ∗) · ( f (k)− f ∗)

+(∆ f (k))⊤ ·H( f ∗) · (∆ f (k))

Since H( f ∗) is positive definite (or positive semidefinite), we can write:

( f (k)− f ∗)⊤ ·H( f ∗) · ( f (k)− f ∗)≥ 0

Thus, we have:
z( f (k+1))− z( f (k))≤ (∆ f (k))⊤ ·H( f ∗) · (∆ f (k)

Since (∆ f (k))⊤ ·H( f ∗) ·(∆ f (k)) is nonnegative, it follows that z( f (k+1))−z( f (k))≤ 0. Hence, the objective function either
decreases or remains the same with each iteration, satisfying the descent property.

Remark.The positive definiteness (or positive semidefiniteness) of the Hessian matrix H( f ∗) depends on the specific
properties and characteristics of the objective function z( f ), as well as the problem itself. In general, the Hessian matrix
is positive definite if the objective function is convex and smooth.

Without further information about the objective function z( f ) and its specific properties, it is challenging to provide a
general proof of positive definiteness (or positive semidefiniteness) for all cases.

However, in practice, the positive definiteness (or positive semidefiniteness) of the Hessian matrix can be ensured by
considering appropriate conditions and constraints in the problem formulation. These conditions may include convexity
properties, smoothness of the objective function, and convexity of the feasible region.

Overall, if the descent property holds (objective function decreases or remains the same with each iteration), and the
Hessian matrix is positive definite (or positive semidefinite), the given algorithm will converge to the user optimal
solution.
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Using the second-order Taylor series approximation (4), we reduce the original problem (1)-(2) to a subproblem that
approximates the user equilibrium. The subproblem is defined as follows:

min z( f ∗)+∇z( f ∗) · ( f − f ∗)+
1
2
( f − f ∗)⊤∇

2z( f ∗)( f − f ∗) (14)

where:

–z( f ∗) represents the objective function value at the arc flow point f ∗.
–∇z( f ∗) denotes the gradient vector evaluated at f ∗.
–∇2z( f ∗) represents the Hessian matrix evaluated at f ∗.

The constraints remain the same as in equation (2), specifying the additional conditions to be satisfied. The subproblem
aims to approximate f ∗ of the original problem.
The algorithm is illustrated with Algorithm 1.

Algorithm 1 Iterative Algorithm

1: Initialize the current point as f = f ∗
2: Compute z( f ∗), gradient vector ∇z( f ∗), and Hessian matrix ∇2z( f ∗)
3: Calculate z( f ) for the current point
4: Build and solve the subproblem subject to the constraints
5: Obtain a new solution f
6: Compute |z( f )− z( f ∗)|
7: if |z( f )− z( f ∗)|< ε then
8: Terminate the iteration as convergence is achieved
9: else

10: Update f ∗ with the current f and go back to step 2
11: end if

Remark.It is important to note that the initial point selected can be arbitrary and may not satisfy the constraints of the TAP
with capacities. Additionally, it is important to note that f is dependent on chain (route) flows, and when f is substituted
into z( f ), the problem becomes entirely dependent on chain (route) flows hrs

k .

f = f (hrs
k )z( f ) = z( f (hrs

k ))

As a result, the problem can be solved by iteratively adjusting the chain (route) flows hrs
k until the constraints of the

problem are satisfied.

5 A Numerical Example

Consider a directed network ([18]) with nodes N and links A, where N = {1,2,3,4,5,6,7,8,9} and A represents a set of
directed links as shown in Table 2.
Let C be the set of center nodes, where C = {1,2,3,4}. Let T be the set of transfer point nodes, where T = {5,6,7,8,9}.
We can determine that the number of center nodes and transfer point nodes is ∥C∥= 4 and ∥T∥= 5, respectively.

The network A consists of several arcs, and each arc is assigned a specific capacity value. We define set ua to represent
practical capacities corresponding to arcs in A, as presented in Table 2.
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Table 2: Details of Directed Network

Arc Set A Capacity Set ua Travel Time Ta

(1,5) 10 5
(1,6) 16 6
(2,5) 35 3
(2,6) 18 9
(5,6) 20 9
(5,7) 11 2
(5,9) 26 8
(6,5) 11 4
(6,8) 33 6
(6,9) 32 7
(7,3) 25 3
(7,4) 24 6
(7,8) 19 9
(8,3) 39 8
(8,4) 43 6
(8,7) 36 4
(9,7) 26 4
(9,8) 30 8

The cost of reaching the destination nodes from the source nodes is given as in Table 3.

Table 3: Cost of Reaching Destination Nodes from Source Nodes

Source Node Destination Node Cost

1 3 10
1 4 20
2 3 30
2 4 40

The set of start nodes S and end nodes D can be identified. In this case, start nodes are represented by S = {1,2}, and end
nodes are represented by D = {3,4} in the network.
The given network is depicted in Figure 1.
In this example, the test problem within the network employs the travel time formula specified by the Bureau of Public
Roads. The formula used to compute the travel time on arc a, denoted as ta( fa), is given by:

ta( fa) = Ta

(
1+θ

(
fa

ua

)β
)

Here, Ta represents the free-flow travel time on arc a, as shown in Table 2. θ is a fixed parameter set to 0.15, and β is a
constant exponent greater than 1. In these calculations, we selected β = 4. The practical capacity of arc a is denoted as
ua.

To ensure flexibility and scalability, arc capacities ua are uniformly scaled by a factor of θ , denoted as θ · ua. It is
important to note that θ is a positive constant applied uniformly across all arcs in set A, facilitating consistent scaling of
practical capacities.
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Fig. 1: Transportation network with capacities

For each specific problem instance, the capacity scaling factor θ is carefully chosen to be as small as possible, while still
preserving feasibility. This deliberate selection of a small θ value, such as θ = 1.5, contributes to the creation of
challenging instances for the TAP with Capacities, thereby generating more intricate and demanding scenarios.

The transportation network under investigation consists of 96 chain flows or routes, which are subject to 4 demand
constraints and 18 arc flow constraints. These constraints and chain flows have been determined using the Python 3
programming language within the Jupyter notebook.

Subsequently, the proposed algorithm was implemented based on these constraints and executed using the Maple 2023
software. The obtained results for each iteration of the algorithm are presented in Table 4. Furthermore, a visual
representation of the obtained results is displayed in Figure 2 and Figure 3.

Table 4 shows results obtained from the iterative optimization process. It provides valuable insights into the progress of
the presented algorithm and the corresponding values at each iteration.

The ”Iteration” column enumerates the iterations performed during the optimization process. ”The subproblem (z
value)” column represents values obtained from optimizing the subproblem (7)-(8) within each iteration. The “Primal
Problem (z value)” column displays the values obtained from optimizing the main problem (1)-(2) itself. These values
represent the overall objective or performance measure of the optimization problem.
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Table 4: The obtained results for each iteration

Iteration Subproblem (z value) Primal Problem (z value) Tolerance Value

1 1139.888345599630 1132.758369384533 -
2 1130.266246175331 1129.960421053934 2.80×10−3

3 1129.742574488579 1129.703495875214 2.57×10−1

4 1129.665822397805 1129.658097868443 4.54×10−2

5 1129.650511108232 1129.648939306953 9.16×10−3

6 1129.647365299124 1129.647030158681 1.91×10−3

7 1129.646675140486 1129.646593810956 4.36×10−4

8 1129.646516108661 1129.646507267934 8.65×10−5

9 1129.646500084046 1129.646498622683 8.65×10−6

10 1129.646497205562 1129.646496916876 1.71×10−6

11 1129.646496636925 1129.646496579896 3.37×10−7

2 4 6 8 10
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

To
le
ra
nc

e

Iteration vs Tolerance
Tolerance

Fig. 2: Change in tolerance at each iteration

Fig. 3: Value of objective functions at each iteration

The ”Tolerance Values” column quantifies the convergence of the optimization algorithm by measuring the discrepancy
between consecutive iterations. It indicates the level of acceptable deviation or error tolerated between iterations. A
smaller tolerance value suggests a closer approximation to the solution.
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Fig. 2 depicts the change of tolerance values at each iteration. It provides a graphical representation of the analysis of the
proposed algorithm.

The table is arranged in ascending order of iterations, allowing for a clear understanding of the optimization progress.
Each row presents the values achieved at a specific iteration, including the subproblem value, primal problem value, and
tolerance value.

In addition, the obtained results of the proposed algorithm were compared with a derivative-free optimization [37] and
Powell method [36], employing identical initial conditions and a tolerance value of 10−6. This comparison, conducted
using Maple 2023 software, revealed that the proposed method outperformed alternative methods in terms of iteration
count and objective function values. As shown in Table 5, the proposed algorithm demonstrated superior convergence,
achieving better results and requiring fewer iterations to reach the solution compared to Moiseev’s and Powell’s methods.

Table 5: Comparison of Methods

Method Objective Function Value (z) Iteration Count

Moiseev’s Method [37] 1138.334035437554 7652
Powell’s Method [36] 1133.133.008693671905 10000
Proposed Method 1129.646496579896 11

6 Conclusion

In this paper, an iterative solution method for the capacitated TAP is introduced, which is a nonlinear programming
challenge aimed at minimizing total travel cost while adhering to arc capacity constraints. The approach involves using
the second-order Taylor series approximation of the objective function centered around the user optimal solution. It is
demonstrated that, as the number of iterations approaches infinity, the objective function converges to its optimal value,
given that the descent property is upheld and the Hessian matrix is positive definite (or positive semidefinite).

The primary contributions of this study are as follows:

An iterative solution method for the capacitated TAP is proposed. The convergence of the proposed approach is proven,
subject to the satisfaction of the descent property and positive definiteness (or positive semidefiniteness) of the Hessian
matrix. A detailed analysis of the convergence properties of the approach is conducted. It is believed that the proposed
method shows promise as an effective and straightforward alternative for solving the capacitated TAP. The simplicity of
implementation, along with its proven convergence under reasonable conditions, makes it a valuable tool for
transportation planners and researchers involved in addressing capacitated TAPs.
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