
NTMSCI 11, No. 4, 28-36 (2023) 28

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2023.510

On conformable fractional versions of trapezoid-type
inequalities according to twice-differentiable functions
Fatih Hezenci and Hüseyin Budak
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Abstract: This paper proves an equality for the case of twice-differentiable convex mappings with respect to the conformable fractional
integrals. With the help of this equality, several trapezoid-type inequalities are established by convex functions involving conformable
fractional integrals. Sundry significant inequalities are acquired with taking advantage of the convexity, the Hölder inequality, and the
power mean inequality. Furthermore, we present several new results connected with trapezoid-type inequalities by using the special
choices of obtained results.
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1 Introduction

Inequalities theory represents a long-standing topic in many mathematical fields and remains an attractive research with
many applications. The theory of convexity stages a central and stunning role in several fields of research. This theory
provides us with a powerful tool in order to solve many problems. Furthermore, the concept of convexity has been
extended and improved in many directions.

Another significant result connected with convex function is the Hermite–Hadamard-type inequality, which has been
first introduced by C. Hermite and J. Hadamard for the case of convex functions. Let f : I → R be a convex function on
the interval I of real numbers and a,b ∈ I with a < b. Then, the double inequality

f
(

a+b
2

)
≤ 1

b−a

b∫
a

f (x)dx ≤ f (a)+ f (b)
2

(1)

is valid. If f is concave, then both inequalities in (1) hold in the reverse direction. Trapezoidal inequality, which is the
right side of this inequality, and Midpoint inequality, which is the left side, have pioneered many scientific studies.

Fractional calculus has been the center of attraction for researchers in mathematical sciences on account of its
fundamental definitions, properties, and applications in tackling real-life problems. Moreover, fractional calculus is the
answer to the question of whether fractional integrals and fractional derivatives can be taken. Hence, it has been offered
large number of solutions to many problems. The most famous of the fractional integrals that are growing day by day are
the Riemann-Liouville, Conformable fractional, and Caputo integrals.

Several papers have been focused on acquiring trapezoid-type and midpoint-type inequalities that demonstrate the
bounds by the right-hand side and left-hand side of the Hermite–Hadamard inequality, respectively. For instance,
Dragomir first acquired trapezoidal inequalities in [6], while Kırmacı first derived midpoint-type inequalities in [17].
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Sarikaya et al. and Iqbal et al. established several fractional trapezoid and midpoint-type inequalities for convex
functions in papers [21] and [9], respectively.

With the help of the only derivative’s fundamental limit formulation, a newly well-behaved straightforward fractional
derivative known as the conformable derivative is provided in paper [15]. The conformable derivative fulfills several
important requirements that cannot be fulfilled by the Riemann-Liouville fractional operator and Caputo fractional
operator definitions. In addition to these, in paper [1] the researchers investigated that the conformable approach in [15]
cannot yield good results when compared to the Caputo definition via specific functions. This defect in the conformable
description is avoided by several refinements of the conformable approach [23,8].

Twice-differentiable functions have been studied by many mathematicians. Hermite–Hadamard-type inequalities are
proved by twice-differentiable convex functions in papers [3] and [4]. Several generalized fractional integral inequalities
of midpoint and trapezoid-type with respect to twice-differentiable convex mappings are established in paper [18].
Moreover, the authors [19] presented several new inequalities of the Simpson and the Hermite–Hadamard-type for
functions whose modulus of derivatives are convex. By using generalized fractional integrals in [5], presented some
midpoint and trapezoid-type inequalities via mappings whose second derivatives in modulus are convex. For further
information about fractional integral inequalities, see [13,7] and the references cited therein.

The purpose of this investigation is to derive several new trapezoid-type inequalities with the help of the
twice-differentiable functions involving conformable fractional integrals. We also acquire that the newly established
outcomes are the generalization of the existing trapezoid-type inequalities. This paper contains four chapters along with
the introduction. In the second part, some fundamental information that we will use in our outcomes is mentioned. More
precisely, we will give the definitions of Riemann-Liouville integral and conformable fractional integral. In the third part,
an equality will be established in the case of twice-differentiable convex function including the conformable fractional
integrals. By using this equality, sundry trapezoid-type inequalities will be proved by convex functions with respect to
conformable fractional integrals. To be more precise, several trapezoid-type inequalities are acquired with taking
advantage of the convexity, the Hölder inequality, and the power mean inequality. Furthermore, we will be given some
new results about trapezoid-type inequalities by using the special choices of obtained results. In the last section, the
conclusions obtained from the research will be presented. In addition, ideas for future research will be given.

2 Preliminaries

This section considers the basics for building our outcomes. More precisely, definitions of Riemann-Liouville integrals
and conformable integrals, which are well known in the literature, are given. From the fact of fractional calculus theory,
mathematical preliminaries will be present as follows:
The well-known gamma function, beta function and incomplete beta function are defined

Γ (x) :=
∞∫

0

tx−1e−tdt,

B(x,y) :=
1∫

0

tx−1 (1− t)y−1 dt,

and

B (x,y,r) :=
r∫

0

tx−1 (1− t)y−1 dt,
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respectively for 0 < x,y < ∞ and x,y ∈ R.

Kilbas et al. [16] defined fractional integrals, also called Riemann-Liouville integrals as follows:

Definition 1.[16] For f ∈ L1[a,b], the Riemann-Liouville integrals Jβ

a+ f (x) and Jβ

b− f (x) of order β > 0 are respectively
given by

Jβ

a+ f (x) =
1

Γ (β )

∫ x

a
(x− t)β−1 f (t)dt, x > a (2)

and

Jβ

b− f (x) =
1

Γ (β )

∫ b

x
(t − x)β−1 f (t)dt, x < b. (3)

Here, Γ denotes the Gamma function. Riemann-Liouville integrals reduces to the classical integrals for the case of β = 1.

In paper [12], Jarad et al. introduced the following fractional conformable integral operators. They also provided certain
characteristics and relationships between these operators and several other fractional operators in the literature. The
fractional conformable integral operators are defined by as follows:

Definition 2.[12] For f ∈ L1[a,b], the fractional conformable integral operator β J α
a+ f (x) and β J α

b− f (x) of order
β ∈ C, Re(β )> 0 and α ∈ (0,1] are respectively presented by

β J α
a+ f (x) =

1
Γ (β )

∫ x

a

(
(x−a)α − (t −a)α

α

)β−1 f (t)
(t −a)1−α

dt, t > a, (4)

and
β J α

b− f (x) =
1

Γ (β )

∫ b

x

(
(b− x)α − (b− t)α

α

)β−1 f (t)
(b− t)1−α

dt, t < b. (5)

Note that the fractional integral in (4) reduces to the Riemann-Liouville fractional integral in (2) if we assign α = 1.
Moreover, the fractional integral in (5) coincides with the Riemann-Liouville fractional integral in (3) if we select α = 1.
Sundry recent results with respect to fractional integral inequalities see [11,14,2,10] and the references cited therein.

3 Principal Outcomes

Lemma 1.If f : [a,b]→ R is a twice-differentiable function on (a,b) such that f ′′ ∈ L1 [a,b], then the following equality
holds:

f (a)+ f (b)
2

− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]

=
(b−a)2

αβ

2

1∫
0

 1∫
t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

 f ′′ (ta+(1− t)b)dt. (6)

Proof.Let us consider

(b−a)2
αβ

2


1∫

0

 1∫
t

(
1− (1− s)α

α

)β

ds

 f ′′ (ta+(1− t)b)dt

−
1∫

0

 1∫
t

(
1− sα

α

)β

ds

 f ′′ (ta+(1− t)b)dt

=
(b−a)αβ

2
[I1 − I2] . (7)
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Integrating by parts, we have

I1 =

1∫
0

 1∫
t

(
1− (1− s)α

α

)β

ds

 f ′′ (ta+(1− t)b)dt

=− 1
b−a

 1∫
t

(
1− (1− s)α

α

)β

ds

 f ′ (ta+(1− t)b)

∣∣∣∣∣∣
1

0

− 1
b−a

1∫
0

(
1− (1− t)α

α

)β

f ′ (ta+(1− t)b)dt

=
1

b−a

 1∫
0

(
1− (1− s)α

α

)β

ds

 f ′ (b)− 1
b−a

− 1
b−a

(
1− (1− t)α

α

)β

f (ta+(1− t)b)

∣∣∣∣∣
1

0

+
β

b−a

1∫
0

(
1− (1− t)α

α

)β−1

(1− t)α−1 f (ta+(1− t)b)dt

 .

Considering x = ta+(1− t)b, we get

I1 =
1

b−a

 1∫
0

(
1− (1− s)α

α

)β

ds

 f ′ (b)+
1

(b−a)2
αβ

f (a)

− Γ (β +1)

(b−a)αβ+2

1
Γ (β )

b∫
a

(
(b−a)α − (x−a)α

α

)β−1 f (x)

(x−a)1−α
dx

=
1

b−a

 1∫
0

(
1− (1− s)α

α

)β

ds

 f ′ (b)+
1

(b−a)2
αβ

f (a)− Γ (β +1)

(b−a)αβ+2
β J α

a+ f (b) . (8)

Using the argument outlined above, we obtain

I2 =

1∫
0

 1∫
t

(
1− sα

α

)β

ds

 f ′′ (ta+(1− t)b)dt

=
1

b−a

 1∫
0

(
1− sα

α

)β

ds

 f ′ (b)− 1

(b−a)2
αβ

f (b)+
Γ (β +1)

(b−a)αβ+2
β J α

b− f (a) . (9)

© 2023 BISKA Bilisim Technology



NTMSCI 11, No. 4, 28-36 (2023) / www.ntmsci.com 32

If we substitute (8) and (9) in the equality (7), then it can be arrived the following equality

(b−a)αβ

2
[I1 − I2] =

f (a)+ f (b)
2

− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]
,

which completes the proof of Lemma 1.

Theorem 1.Suppose that f : [a,b]→R denotes a twice-differentiable mapping on (a,b) such that f ′′ ∈ L1 ([a,b]) and | f ′′|
is convex on [a,b]. The, the following inequality∣∣∣∣∣ f (a)+ f (b)

2
− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣
≤ (b−a)2

αβ

2
[
ϕ1 (α,β )

∣∣ f ′′ (a)
∣∣+ϕ2 (α,β )

∣∣ f ′′ (b)
∣∣] (10)

is valid. Here, 

ϕ1 (α,β ) =
1∫
0

∣∣∣∣ 1∫
t

[(
1−(1−s)α

α

)β

−
(

1−sα

α

)β
]

ds
∣∣∣∣ tdt

= 1
αβ+1

1∫
0

∣∣B ( 1
α
,β +1,(1− t)α

)
−
(
B
( 1

α
,β

)
−B

( 1
α
,β +1, tα

))∣∣ tdt,

ϕ2 (α,β ) =
1∫
0

∣∣∣∣ 1∫
t

[(
1−(1−s)α

α

)β

−
(

1−sα

α

)β
]

ds
∣∣∣∣(1− t)dt

= 1
αβ+1

1∫
0

∣∣B ( 1
α
,β +1,(1− t)α

)
−
(
B
( 1

α
,β

)
−B

( 1
α
,β +1, tα

))∣∣(1− t)dt,

(11)

where B and B denote the beta function and incomplete beta function, respectively.

Proof.Let us take the absolute value of both sides of (6). Then, we derive∣∣∣∣∣ f (a)+ f (b)
2

− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣

≤ (b−a)2
αβ

2

1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣ ∣∣ f ′′ (ta+(1− t)b)
∣∣dt. (12)

If we use the convexity of the | f ′′| on [a,b], then we get∣∣∣∣∣ f (a)+ f (b)
2

− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣

≤ (b−a)2
αβ

2

1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣[t ∣∣ f ′′ (a)
∣∣+(1− t)

∣∣ f ′′ (b)
∣∣]dt

=
(b−a)2

αβ

2
[
ϕ1 (α,β )

∣∣ f ′′ (a)
∣∣+ϕ2 (α,β )

∣∣ f ′′ (b)
∣∣] .
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Remark.if it is chosen α = 1 in (10), then Theorem 1 reduces to∣∣∣∣∣ f (a)+ f (b)
2

− Γ (β +1)

2(b−a)β

[
Jβ

a+ f (b)+ Jβ

b− f (a)
]∣∣∣∣∣≤ (b−a)2

β

4(β +1)(β +2)
[∣∣ f ′′ (a)

∣∣+ ∣∣ f ′′ (b)
∣∣] ,

which is given by Usta et al. in [22, Corollary 5.5].

Remark.Let us consider α = 1 and β = 1 in (10). Then, Theorem 1 is equal to∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

b∫
a

f (x)dx

∣∣∣∣∣∣≤ (b−a)2

24
[∣∣ f ′′ (a)

∣∣+ ∣∣ f ′′ (b)
∣∣] ,

which is given by Sarikaya and Aktan in [19, Proposition 2].

Theorem 2.Let f : [a,b]→R denote a twice-differentiable function on (a,b) so that f ′′ ∈ L1 [a,b] with a < b and | f ′′|q be
convex on [a,b] with q > 1. Then, the following double inequality holds:∣∣∣∣∣ f (a)+ f (b)

2
− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣

≤ (b−a)2
αβ

2

 1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣
p

dt


1
p (

| f ′′ (a)|q + | f ′′ (b)|q

2

) 1
q

. (13)

Here, 1
p +

1
q = 1.

Proof.By using Hölder inequality in (12), we obtain∣∣∣∣∣ f (a)+ f (b)
2

− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣

≤ (b−a)2
αβ

2

 1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣
p

dt


1
p
 1∫

0

∣∣ f ′′ (ta+(1− t)b)
∣∣q dt

 1
q

.

From the fact that | f ′′|q is convex on [a,b]. It yields∣∣∣∣∣ f (a)+ f (b)
2

− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣

≤ (b−a)2
αβ

2

 1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣
p

dt


1
p

×

 1∫
0

[
t
∣∣ f ′′ (a)

∣∣q +(1− t)
∣∣ f ′′ (b)

∣∣q]dt

 1
q
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=
(b−a)2

αβ

2

 1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣
p

dt


1
p (

| f ′′ (a)|q + | f ′′ (b)|q

2

) 1
q

.

Finally, the proof of Theorem 2 is completed.

Remark.If we choose α = 1 in Theorem 2, then we derive∣∣∣∣∣ f (a)+ f (b)
2

− Γ (β +1)

2(b−a)β

[
Jβ

a+ f (b)+ Jβ

b− f (a)
]∣∣∣∣∣

≤ (b−a)2

2(β +1)

(
1− 2

p(β +1)+1

) 1
p
(
| f ′′ (a)|q + | f ′′ (b)|q

2

) 1
q

,

which is given in [22, Corollary 5.9].

Corollary 1.If we take α = 1 and β = 1 in Theorem 2, then we obtain∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

b∫
a

f (x)dx

∣∣∣∣∣∣≤ (b−a)2

4

(
2p−1
2p+1

) 1
p
(
| f ′′ (a)|q + | f ′′ (b)|q

2

) 1
q

.

Theorem 3.Assume that f : [a,b]→ R is a twice-differentiable function on (a,b) so that f ′′ ∈ L1 [a,b]. If | f ′′|q is convex
on [a,b] with q ≥ 1, then the following inequality holds:∣∣∣∣∣ f (a)+ f (b)

2
− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣
≤ (b−a)2

αβ

2
(ϕ3 (α,β ))1− 1

q
(
ϕ1 (α,β )

∣∣ f ′′ (a)
∣∣q +ϕ2 (α,β )

∣∣ f ′′ (b)
∣∣q) 1

q . (14)

Here, ϕ1 (α,β ) and ϕ2 (α,β ) are defined in (11) and

ϕ3 (α,β ) =

1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣dt

=
1

αβ+1

1∫
0

∣∣∣∣B(
1
α
,β +1,(1− t)α

)
−
(
B

(
1
α
,β

)
−B

(
1
α
,β +1, tα

))∣∣∣∣dt,

where B and B denote the beta function and incomplete beta function, respectively.

Proof.With the help of the power-mean inequality in (12), we have∣∣∣∣∣ f (a)+ f (b)
2

− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣

≤ (b−a)2
αβ

2

 1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣dt

1− 1
q
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×

 1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣ ∣∣ f ′′ (ta+(1− t)b)
∣∣q dt

 1
q

.

It is known that | f ′′|q is convex on [a,b]. Then, we have∣∣∣∣∣ f (a)+ f (b)
2

− αβ Γ (β +1)

2(b−a)αβ

[
β J α

a+ f (b)+ β J α
b− f (a)

]∣∣∣∣∣

≤ (b−a)2
αβ

2

 1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣dt

1− 1
q

×

 1∫
0

∣∣∣∣∣∣
1∫

t

[(
1− (1− s)α

α

)β

−
(

1− sα

α

)β
]

ds

∣∣∣∣∣∣[t ∣∣ f ′′ (a)
∣∣q +(1− t)

∣∣ f ′′ (b)
∣∣q]dt

 1
q

=
(b−a)2

αβ

2
(ϕ3 (α,β ))1− 1

q
(
ϕ1 (α,β )

∣∣ f ′′ (a)
∣∣q +ϕ2 (α,β )

∣∣ f ′′ (b)
∣∣q) 1

q .

This ends the proof of Theorem 3.

Remark.Let us consider α = 1 in Theorem 3. Then, we derive∣∣∣∣∣ f (a)+ f (b)
2

− Γ (β +1)

2(b−a)β

[
Jβ

a+ f (b)+ Jβ

b− f (a)
]∣∣∣∣∣≤ (b−a)2

β

2(β +1)(β +2)

(
| f ′′ (a)|q + | f ′′ (b)|q

2

) 1
q

,

which is given by Usta et al. in [22, Corollary 5.13].

Corollary 2.If we take α = 1 and β = 1 in Theorem 3, then Theorem 3 becomes to∣∣∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

b∫
a

f (x)dx

∣∣∣∣∣∣≤ (b−a)2

12

(
| f ′′ (a)|q + | f ′′ (b)|q

2

) 1
q

.

4 Concluding Remarks

In this presented article, an equality is established for the case of twice-differentiable convex mappings involving the
conformable fractional integrals. With the help of this equality, sundry trapezoid-type inequalities are given by convex
functions with respect to conformable fractional integrals. Several trapezoid-type inequalities are acquired with taking
advantage of the convexity, the Hölder inequality, and the power mean inequality. Furthermore, we give some new results
about trapezoid-type inequalities by using the special choices of obtained results.

The ideas and strategies via our outcomes concerning trapezoid-type inequalities based on conformable fractional
integrals may open new avenues for further research in this area. It will appeal to mathematicians that the inequalities
produced in the research include both conformable fractional integrals and twice differentiable functions. To the best of
our knowledge, these results are new in the literature. We expect that the ideas and techniques of this paper will inspire
ones working in this field. With the techniques used in the obtained inequalities, different types of fractional integrals can
be used to obtain new inequalities in the future. In addition to these, new inequalities can be obtained by considering
different order derivatives of the functions.
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