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1 Department of Mathematics, Faculty of Science, Bartın University, Bartın, Turkey
2Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
3Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, Düzce, Turkey
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1 Introduction

Ostrowski inequality [12], which is introduced by Ostrowski in 1938, have a great importance in many fields of
mathematic due to the abundance of application areas. This inequality can be stated as follows.

Suppose that φ : [σ ,ρ]→ R is a differentiable function on (σ ,ρ) such that its derivative φ
′

: (σ ,ρ)→ R is bounded on
(σ ,ρ), i.e., ∥φ ′∥

∞
= sup

ξ∈(σ ,ρ)

|φ ′(ξ )|< ∞. Then, one has

∣∣∣∣∣∣φ(κ)− 1
ρ −σ

ρ∫
σ

φ(ξ )dξ

∣∣∣∣∣∣≤
[

1
4
+

(
κ− σ+ρ

2

)2

(ρ −σ)2

]
(ρ −σ)

∥∥φ
′∥∥

∞
(1)

for all κ ∈ [σ ,ρ]. The constant 1
4 is the best possible?

Inequality (1) has wide applications in numerical analysis and in the theory of some special means; estimating error
bounds for some special means, some mid-point, trapezoid and Simpson rules and quadrature rules, etc. Hence,
inequality (1) has attracted considerable attention and interest from mathematicians and researchers. To exemplify, a
generalized version of Ostrowski’s inequality was established by Dragomir et al. in [5]. Dragomir expanded the
inequality (1) by using an absolutely continuous function and a convex mapping in [3], and he gave applications for
power and exponantial mappings. In addition, An integral inequality of Ostrowski type for functions the second
derivatives of which is bounded are provided by Dragomir and Barnett in [4]. In [6]-[10], [13], and [25], the authors
examined Ostrowski and Mid-point type inequalities for twice differentiable functions. In particular, Cerone et al. [1]
proved the following result which is related to our paper.
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Theorem 1.Let φ : [σ ,ρ]→ R be a twice differentiable mapping such that φ ′′ : (σ ,ρ)→ R is bounded on (σ ,ρ), i.e.,
∥φ ′′∥

∞
= sup

ξ∈(σ ,ρ)

|φ ′′(ξ )|< ∞. Then we have the inequality

∣∣∣∣∣∣φ(κ)−
(
κ− σ +ρ

2

)
φ
′(κ)− 1

ρ −σ

ρ∫
σ

φ(ξ )dξ

∣∣∣∣∣∣ (2)

≤

[
(ρ −σ)2

24
+

1
2

(
κ− σ +ρ

2

)2
]∥∥φ

′′∥∥
∞
≤ (ρ −σ)2

6

∥∥φ
′′∥∥

∞

for all κ ∈ [σ ,ρ].

Whereas many mathematical problems can be solved by using classical methods or some approximate integral equations,
domains of some mathematical issues are fractal curves, which are everywhere continuous but nowhere
differentiable.The local fractional theory, which is introduced by Yang in [20] and [21], are one of beneficial tools to deal
with the fractal and continuously nondifferentiable mappings. Therewith, a great number of researchers worked on local
fractional theory in different areas such as mathematical physics, engineering problems and applied sciences. For more
theoretical information and application areas on local fractional, you can see the references [20]-[24]. In addition, many
researchers have worked on local fractional versions of integral inequalities which possess a very important role in
applied and theoretical mathematics. For illustrate, authors provided local fractional versions of some significant
inequalities including Hölder’s inequality, Hermite-Hadamard inequality, Simpson and Newton in [2], [9], [11] and [16].
Furthermore, generalized Ostrowski type inequalities for mappings whose local fractional derivatives are bounded are
obtained in [14] and [15]. The authors worked on fractional integral inequalities in [18] and [19], Tingsong et. al also
gave certain integral inequalities for a different kind of convex functions in [17].

The main purpose of this study is to establish two inequalities that are connected with the celebrated generalized
Ostrowski type inequalities using functions whose second local fractional derivatives are bounded. Also, some
applications for generalized special means and local fractional quadrature formula are given by using these two results
improved in this paper.

2 Preliminaries

We give some important concepts, definitions and rules for local fractional theory. We first recall the set Rα of real line
numbers and the other α−type sets which was introduced by Yang in [21]. These sets are of great significance to describe
Yang’s local fractional derivative and integral which will use throughout this article.

For 0 < α ≤ 1, we have the following α-type sets:
Zα =: {0α ,±1α ,±2α , ...,±nα , ...} is α-type integer set.

Qα =: {mα =
(

p
q

)α

: p,q ∈ Z, q ̸= 0} is α-type rational numbers set.

Jα =: {mα ̸=
(

p
q

)α

: p,q ∈ Z, q ̸= 0} α-type irrational numbers set.
Rα =Qα ∪ Jα The α-type real line numbers set.
If σα ,ρα and ςα belongs the set Rα of real line numbers, then
(1) σα +ρα and σα ρα belongs the set Rα ;
(2) σα +ρα = ρα +σα = (σ +ρ)α = (ρ +σ)α ;
(3) σα +(ρα + ςα) = (σ +ρ)α + ςα ;
(4) σα ρα = ρα σα = (σρ)α = (ρσ)α ;
(5) σα (ρα ςα) = (σα ρα)ςα ;
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(6) σα (ρα + ςα) = σα ρα +σα ςα ;
(7) σα +0α = 0α +σα = σα and σα 1α = 1α σα = σα .

We can define Yang’s local fractional derivative and integral as follows.

Definition 1.[21] Assume that ψ : R → Rα is a non-differentiable function, κ → ψ(κ) is named to be local fractional
continuous at κ0, if there exists δ > 0 for any ε > 0, such that

|ψ(κ)−ψ(κ0)|< ε
α

holds for |κ−κ0|< δ , where ε,δ ∈ R. We denote ψ(κ) ∈Cα(σ ,ρ), if ψ(κ) is local continuous on the interval (σ ,ρ) .

Definition 2.[21] We define Yang’s local fractional derivative of ψ(κ) of order α at κ = κ0 by

ψ
(α)(κ0) =

dα ψ(κ)
dκα

∣∣∣∣
κ=κ0

= lim
κ→κ0

∆ α (ψ(κ)−ψ(κ0))

(κ−κ0)
α ,

where ∆ α (ψ(κ)−ψ(κ0))=̃Γ (α +1)(ψ(κ)−ψ(κ0)) .

We can denote ψ ∈ D(k+1)α(I) with k = 0,1,2, ..., if there exists ψ(k+1)α(κ) =

k+1 times︷ ︸︸ ︷
Dα
κ ...D

α
κψ(κ) for any κ ∈ I ⊆ R

Definition 3.[21] If ψ(κ) is element of Cα [σ ,ρ] , then we define Yang’s local fractional integral by

σ Iα
ρ ψ(κ) =

1
Γ (α +1)

ρ∫
σ

ψ(ξ )(dξ )α =
1

Γ (α +1)
lim

∆ξ→0

N−1

∑
j=0

ψ(ξ j)(∆ξ j)
α ,

with ∆ξ j = ξ j+1 −ξ j and ∆ξ = max{∆ξ1,∆ξ2, ...,∆ξN−1} , where
[
ξ j,ξ j+1

]
, j = 0, ...,N −1 and σ = ξ0 < ξ1 < ... <

ξN−1 < ξN = ρ is a division of interval [σ ,ρ] . Here, it follows that σ Iα
ρ ψ(κ) = 0 if σ = ρ and σ Iα

ρ ψ(κ) =−ρ Iα
σ ψ(κ) if

σ < ρ. If for any κ ∈ [σ ,ρ] , there exists σ Iα
κ ψ(κ), then we denoted by ψ(κ) ∈ Iα

κ [σ ,ρ] .

Lemma 1.[21] We should note that local fractional integration is anti-differentiation.
(1) Suppose that ψ(κ) = ϕ(α)(κ) ∈Cα [σ ,ρ] , then we have

σ Iα
ρ ψ(κ) = ϕ(ρ)−ϕ(σ).

(2) (Integration by parts for Yang’s local fractional integrals) Suppose that ψ(κ),ϕ(κ) ∈ Dα [σ ,ρ] and ψ(α)(κ),
ϕ(α)(κ) ∈Cα [σ ,ρ] , then we have

σ Iα
ρ ψ(κ)ϕ(α)(κ) = ψ(κ)ϕ(κ)|ρ

σ
−σ Iα

ρ ψ
(α)(κ)ϕ(κ).

Lemma 2.[21] We have the following formulas:

i)
dακkα

dxα
=

Γ (1+ kα)

Γ (1+(k−1)α)
κ(k−1)α ;

ii)
1

Γ (α +1)

ρ∫
σ

κkα(dκ)α =
Γ (1+ kα)

Γ (1+(k+1)α)

(
ρ(k+1)α −σ (k+1)α

)
, k ∈ R.

Theorem 2.[2] Let ψ,ϕ ∈Cα [σ ,ρ] , p,q > 1 with 1
p +

1
q = 1, then

1
Γ (α +1)

ρ∫
σ

|ψ(κ)ϕ(κ)|(dκ)α ≤

 1
Γ (α +1)

ρ∫
σ

|ψ(κ)|p (dκ)α

 1
p
 1

Γ (α +1)

ρ∫
σ

|ϕ(κ)|q (dκ)α

 1
q

.
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Ostrowski inequality for Yang’s local fractional integrals was introduced by Sarikaya and Budak as follows.

Theorem 3(Generalized Ostrowski inequality). [14] Supposing that I ⊆ R is an interval, ϕ : I0 ⊆ R → Rα (I0 is the
interior of I) such that ϕ ∈ Dα(I0) and ϕ(α) ∈Cα [σ ,ρ] for σ ,ρ ∈ I0 with σ < ρ. Then, for all κ ∈ [σ ,ρ] , one has∣∣∣∣ϕ(κ)− Γ (1+α)

(b−σ)α σ Iα
ρ ϕ(t)

∣∣∣∣≤ 2α Γ (1+α)

Γ (1+2α)

 1
4α

+

(
κ− σ+ρ

2
ρ −σ

)2α
(ρ −σ)α

∥∥∥ϕ
(α)
∥∥∥

∞

. (3)

3 Main Results

We observe how the inequalities will arise when we use twice local fractional differentiable functions in this section. First
of all, we establish an identity which is required to deduce our main results in the following Lemma.

Lemma 3.Let I ⊆ R be an interval, φ : I0 ⊆R→Rα (I0 is the interior of I) such that φ ∈ D2α(I0) and φ (2α) ∈C2α [σ ,ρ]

for σ ,ρ ∈ I0 with σ < ρ. Then one has the identity

1
2α (ρ −σ)α

1
Γ (1+σ)

ρ∫
σ

Λh (x,ξ ;α)φ
(2α) (ξ )(dξ )α (4)

=
(h−2)α

2α

(
κ− σ +ρ

2

)α

φ
(α) (κ)+

Γ (1+2α)

2αΓ (1+α)
φ (κ)

−Γ (1+α)

(ρ −σ)α (mh(κ))α

[
φ (ρ)−φ (σ)

2α

]

− 1
2α (ρ −σ)α

Γ (1+2α)

Γ (1+α)

ρ∫
σ

φ (ξ )(dξ )α

= : ∆h (φ ;κ,α)

for

Λh (κ,ξ ;α) :=


(σ −ξ )α (ξ −σ −mh(κ))α ,σ ≤ ξ < κ

(ρ −ξ )α (ξ −ρ −mh(κ))α ,κ ≤ ξ ≤ ρ

where mh(κ) = h
(
κ− σ+ρ

2

)
, h ∈ [0,2] and κ ∈ [σ ,ρ] .

Proof.By definition of function Λh (κ, t;α) , we find that

1
Γ (1+α)

ρ∫
σ

Λh (κ,ξ ;α)φ
(2α) (ξ )(dξ )α

=
1

Γ (1+α)

κ∫
σ

(σ −ξ )α (ξ −σ −mh(κ))α
φ
(2α) (ξ )(dξ )α

+
1

Γ (1+α)

ρ∫
κ

(ρ −ξ )α (ξ −ρ −mh(κ))α
φ
(2α) (ξ )(dξ )α .
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Applying local fractional integration by parts and using the Lemma 2, we obtain

1
Γ (1+α)

ρ∫
σ

Λh (κ,ξ ;α)φ
(2α) (ξ )(dξ )α

= (h−2)α (ρ −σ)α

(
κ− σ +ρ

2

)α

φ
(α) (κ)

+
1

Γ (1+α)

κ∫
σ

[
Γ (1+2α)

Γ (1+α)
(ξ −σ)α −Γ (1+α)(mh(κ))α

]
φ
(α) (ξ )(dξ )α

+
1

Γ (1+α)

ρ∫
κ

[
Γ (1+2α)

Γ (1+α)
(ξ −ρ)α −Γ (1+α)(mh(κ))α

]
φ
(α) (ξ )(dξ )α .

If we apply local fractional integration by parts again, then we obtain desired equality (4).

We deduce new inequalities involving local fractional integrals by considering generalized convex function in the
following theorem.

Theorem 4.The assumptions of Lemma 3 are satisfied. If φ (2α) is bounded on (σ ,ρ), i.e.,
∥∥∥φ (2α)

∥∥∥
∞

< ∞, then we possess

|∆h (φ ;κ,α)| (5)

≤

{
Γ (1+2α)

Γ (1+3α)

(
(ρ −κ)3α +(κ−σ)3α

2α (ρ −σ)α

)
−hα Γ (1+α)

Γ (1+2α)

(
κ− σ +ρ

2

)2α

− 1
(ρ −σ)α

[
Γ (1+α)

Γ (1+2α)
− Γ (1+2α)

Γ (1+3α)

]
[mh(κ)]3α

}∥∥∥φ
(2α)
∥∥∥

∞

for all σ ≤ κ ≤ σ+ρ

2 with h ∈ [0,2] , and

|∆h (φ ;κ,α)| (6)

≤

{
Γ (1+2α)

Γ (1+3α)

(
(ρ −κ)3α +(κ−σ)3α

2α (ρ −σ)α

)
−hα Γ (1+α)

Γ (1+2α)

(
κ− σ +ρ

2

)2α

+
1

(ρ −σ)α

[
Γ (1+α)

Γ (1+2α)
− Γ (1+2α)

Γ (1+3α)

]
[mh(κ)]3α

}∥∥∥φ
(2α)
∥∥∥

∞

for all σ+ρ

2 < κ ≤ ρ with h ∈ [0,2] . Here mh(κ) is defined by mh(κ) = h
(
κ− σ+ρ

2

)
.

Proof.If we take absolute value of both sides of (4), owing to the conditions of mapping φ (2α), we attain

|∆h (φ ;κ,α)| (7)

≤ 1
2α (ρ −σ)α

1
Γ (1+σ)

ρ∫
σ

|Ph (κ,ξ ;α)|
∣∣∣φ (2α) (ξ )

∣∣∣(dξ )α

≤

∥∥∥φ (2α)
∥∥∥

∞

2α (ρ −σ)α

 1
Γ (1+α)

κ∫
σ

|σ −ξ |α |ξ −σ −mh(κ)|α (dξ )α

+
1

Γ (1+α)

ρ∫
κ

|ρ −ξ |α |ξ −ρ −mh(κ)|α (dξ )α

 .
© 2023 BISKA Bilisim Technology
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We observe that

1
Γ (1+α)

r∫
γ

|ξ − γ|α |ξ −δ |α (dξ )α (8)

=
1

Γ (1+α)

δ∫
γ

(ξ − γ)α (δ −ξ )α (dξ )α +
1

Γ (1+α)

r∫
δ

(ξ − γ)α (ξ −δ )α (dξ )α

= 2α

[
Γ (1+α)

Γ (1+2α)
− Γ (1+2α)

Γ (1+3α)

]
(δ − γ)3α

+
Γ (1+2α)

Γ (1+3α)
(r− γ)3α − Γ (1+α)

Γ (1+2α)
(δ − γ)α (r− γ)2α

for all r,γ,δ such that γ ≤ δ ≤ r.

It should be calculated local fractional integrals in (7) for the cases σ ≤ κ ≤ σ+ρ

2 and σ+ρ

2 < κ ≤ ρ;

For the case when σ ≤ κ ≤ σ+ρ

2 , we find that

1
Γ (1+α)

κ∫
σ

|σ −ξ |α |ξ −σ −mh(κ)|α (dξ )α (9)

=
1

Γ (1+α)

κ∫
σ

(ξ −σ)α (ξ −σ −mh(κ))α (dξ )α

=
1

Γ (1+α)

κ−σ∫
0

uα(u−mh(κ))α (du)α

=
Γ (1+2α)

Γ (1+3α)
(κ−σ)3α − Γ (1+α)

Γ (1+2α)
[mh(κ)]α (κ−σ)2α .

If we use also the equality (8) for the second integral in (7), then we obtain

1
Γ (1+α)

ρ∫
κ

|ρ −ξ |α |ξ −ρ +mh(κ)|α (dξ )α (10)

= −2α

[
Γ (1+α)

Γ (1+2α)
− Γ (1+2α)

Γ (1+3α)

]
[mh(κ)]3α

+
Γ (1+2α)

Γ (1+3α)
(ρ −κ)3α +

Γ (1+α)

Γ (1+2α)
[mh(κ)]α (ρ −κ)2α .

Substituting the equalities (9) and (10) in (7), the inequality (5) can be readily captured.
For the case when σ+ρ

2 < κ ≤ ρ , using the equality (8), it follows that

1
Γ (1+α)

κ∫
σ

|σ −ξ |α |ξ −σ −mh(κ)|α (dξ )α = 2α

[
Γ (1+α)

Γ (1+2α)
− Γ (1+2α)

Γ (1+3α)

]
[mh(κ)]3α (11)

+
Γ (1+2α)

Γ (1+3α)
(κ−σ)3α − Γ (1+α)

Γ (1+2α)
[mh(κ)]α (κ−σ)2α .

We observe that

1
Γ (1+α)

ρ∫
κ

|ρ −ξ |α |ξ −ρ +mh(κ)|α (dξ )α =
Γ (1+2α)

Γ (1+3α)
(ρ −κ)3α +

Γ (1+α)

Γ (1+2α)
[mh(κ)]α (ρ −κ)2α . (12)
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Substituting the equalities (11) and (12) in (7), the inequality (6) can be easily obtained. The proof is thus completed.

Remark.If we choose α = 1 in the inequalities of theorem 4, then we capture the results obtained by Erden et al. in [8].

Corollary 1.Under the same conditions of theorem 4 with h = 0, one has the inequality∣∣∣∣ Γ (1+2α)

2αΓ (1+α)
φ (κ)+

(
σ +ρ

2
− x
)α

φ
(α) (κ)− Γ (1+2α)

2α (ρ −σ)α σ Iα
ρ φ(ξ )

∣∣∣∣ (13)

≤ Γ (1+2α)

Γ (1+3α)

(
(ρ −κ)3α +(κ−σ)3α

2α (ρ −σ)α

)∥∥∥φ
(2α)
∥∥∥

∞

.

Corollary 2.If we choose x = σ+ρ

2 in (13), then we possess the inequality∣∣∣∣ Γ (1+2α)

2αΓ (1+α)
φ

(
σ +ρ

2

)
− Γ (1+2α)

2α (ρ −σ)α σ Iα
ρ φ(ξ )

∣∣∣∣≤ 2
Γ (1+2α)

Γ (1+3α)

(ρ −σ)2α

24α

∥∥∥φ
(2α)
∥∥∥

∞

.

which is generalized Mid-point type inequalities for functions whose second local fractional derivatives are bounded.

Remark.If we take α = 1 in (13), then the inequality (13) collapses to the previous well-known result (2).

Remark.Similar results can be achieved by choosing h = 2 in the inequalities (5) and (6).

4 Applications to Numerical Integration

In this part, we deal with the inequalities (5) and (6) in order to develope new composite quadrature rules which generalize
the estimates given in the earlier works.

Supposing that Dz : σ = κ0 < κ1 < ... < κz−1 < κz = ρ is a division of the interval [σ ,ρ] , ζk ∈ [κk,κk+1] for k =

0, ...,z−1. We also define the quadrature

S
(

φ ,φ (α),ζ ,Dz

)
=

(h−2)α

Γ (1+2α)

z−1

∑
k=0

(
ζk −

κk +κk+1

2

)α

φ
(α) (ζk)bα

k +
1

Γ (1+α)

z−1

∑
k=0

φ (ζk)bα
k (14)

− Γ (1+α)

Γ (1+2α)
hα

z−1

∑
k=0

(
ζk −

κk +κk+1

2

)α

[φ (κk+1)−φ (κk)]

where bk = κk+1 −κk, k = 0, ..., z−1.

Theorem 5.Let I ⊆R be an interval, φ : I0 ⊆R→Rα (I0 is the interior of I) such that φ ∈ D2α(I0) and φ (2α) ∈C2α [σ ,ρ]

for σ ,ρ ∈ I0 with σ < ρ. If φ (2α) is bounded on (σ ,ρ), i.e., ∥ f ′′∥
∞
< ∞, then one has the representation

σ Iα
ρ φ(ξ ) =

1
Γ (1+α)

ρ∫
σ

φ (ξ )(dξ )α = S
(

φ ,φ (α),ζ ,Dz

)
+R

(
φ ,φ (α),ζ ,Dz

)

where S
(

φ ,φ (α),ζ ,Dz

)
is defined as in (14), and the remainder R

(
φ ,φ (α),ζ ,Dz

)
gives the estimations:

∣∣∣R(φ ,φ (α),ζ ,Dz

)∣∣∣≤ ∥∥∥φ
(2α)
∥∥∥

∞

{
1

Γ (1+3α)

z−1

∑
k=0

(
(κk+1 −ζk)

3α +(ζk −κk)
3α
)

(15)

−2α hα Γ (1+α)

Γ 2 (1+2α)

z−1

∑
k=0

(
ζk −

κk +κk+1

2

)2α

bα
k

− 2α h3α

Γ (1+2α)

[
Γ (1+α)

Γ (1+2α)
− Γ (1+2α)

Γ (1+3α)

] z−1

∑
k=0

(
ζk −

κk +κk+1

2

)3α
}

© 2023 BISKA Bilisim Technology
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8 Samet Erden et al.: Generalized Ostrowski type inequalities

for κk ≤ ζk ≤ κk+κk+1
2 with h ∈ [0,2] , and

∣∣∣R(φ ,φ (α),ζ ,Dz

)∣∣∣≤ ∥∥∥φ
(2α)
∥∥∥

∞

{
1

Γ (1+3α)

z−1

∑
k=0

(
(κk+1 −ζk)

3α +(ζk −κk)
3α
)

(16)

−2α hα Γ (1+α)

Γ 2 (1+2α)

z−1

∑
k=0

(
ζk −

κk +κk+1

2

)2α

bα
k

+
2α h3α

Γ (1+2α)

[
Γ (1+α)

Γ (1+2α)
− Γ (1+2α)

Γ (1+3α)

] z−1

∑
k=0

(
ζk −

κk +κk+1

2

)3α
}

for κk+κk+1
2 ≤ ζk ≤ κk+1 with h ∈ [0,2] , k = 0, ...,z−1.

Proof.If we apply the inequality (5) on [κk,κk+1] for k = 0, ..., z−1, then we attain∣∣∣∣ (h−2)α

2α

(
ζk −

κk +κk+1

2

)α

φ
(α) (ζk)+

Γ (1+2α)

2αΓ (1+α)
φ (ζk)

− Γ (1+α)

2α (κk+1 −κk)
α hα

(
ζk −

κk +κk+1

2

)α

[φ (κk+1)−φ (κk)]

− Γ (1+2α)

2α (κk+1 −κk)
α

Γ (1+α)

κk+1∫
κk

φ (ξ )(dξ )α

∣∣∣∣∣∣
≤
∥∥∥φ

(2α)
∥∥∥

∞

{
Γ (1+2α)

Γ (1+3α)

(
(κk+1 −ζk)

3α +(ζk −κk)
3α

2α (κk+1 −κk)
α

)

−hα Γ (1+α)

Γ (1+2α)

(
ζk −

κk +κk+1

2

)2α

− h3α

(κk+1 −κk)
α

[
Γ (1+α)

Γ (1+2α)
− Γ (1+2α)

Γ (1+3α)

](
ζk −

κk +κk+1

2

)3α
}

for κk ≤ ζk ≤ κk+κk+1
2 with h ∈ [0,2] . Later, summing the above inequality over k from 0 to z−1 and using the triangle

inequality, the estimations (15) can be readily obtained. If we follow similar operations for the case when κk+κk+1
2 ≤ ζk ≤

κk+1, then we obtain the estimation (16).

It is clear that the special cases of the estimations (15) and (16) give previously well-known quadrature formulas such as
midpoint quadrature rule.

Remark.If we choose α = 1 in the results of theorem 5, then we reach the estimates given by Erden et al. in [8].

Corollary 3.Under the same conditions of theorem 5 with ζk =
κk+κk+1

2 and h = 0, then one obtain the Mid-point
quadrature formula for local fractional integrals

σ Iα
ρ φ(ξ ) =

1
Γ (1+α)

ρ∫
σ

φ (ξ )(dξ )α = SM (φ ,Dz)+RM (φ ,Dz)

where the remainder RM (φ ,Dz) satisfies the estimation

|RM (φ ,Dz)| ≤
2

Γ (1+3α)

∥∥∥φ (2α)
∥∥∥

∞

23α

z−1

∑
k=0

b3α
k . (17)

Remark.If we take α = 1 in (17), we recapture the Mid-point quadrature rule which was presented by Cerone et al. in [1].
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5 Applications to Some Special Means

In this section, we obtain some inequalities including generalized means.For this, we first recall certain generalized
special means.

Generalized Arithmatic mean is defined by

A(σ ,ρ) =
σα +ρα

2α
,

and generalized Logartihmic mean is also defined by

Ls(σ ,ρ) =

[
Γ (1+ sα)

Γ (1+(s+1)α)

[
ρ(s+1)α −σ (s+1)α

(ρ −σ)α

]] 1
s

,

for s ∈ Z\{−1,0} , σ ,ρ ∈ R with σ ̸= ρ.

We consider the function φ : (0,∞) → Rα , φ(ξ ) = ξ sα , s ∈ Z\{−1,0} . If we use the Lemma 2 and the above
definitions, then, we possess

φ
(α) (κ) =

Γ (1+ sα)

Γ (1+(s−1)α)
κ(s−1)α , φ

(
σ +ρ

2

)
= [A(σ ,ρ)]s

and
1

(ρ −σ)α σ Iα
ρ φ(ξ ) = [Ls(σ ,ρ)]s

for 0 < σ < ρ. Also, one has

∥∥∥φ
(2α)
∥∥∥

∞

=


∣∣∣ Γ (1+sα)

Γ (1+(s−2)α)

∣∣∣ρ(s−2)α , s > 1

∣∣∣ Γ (1+sα)
Γ (1+(s−2)α)

∣∣∣σ (s−2)α , s ∈ (−∞,1]\{−1,0}

= : ϒs (σ ,ρ) .

If we reconsider the inequality (13) by considering generalized special means, then we have the inequality

∣∣∣∣ Γ (1+2α)

2αΓ (1+α)
κsα +

Γ (1+ sα)

Γ (1+(s−1)α)

[
A(σ ,ρ)κ(s−1)α −κsα

]
− Γ (1+2α)

2α
[Ls(σ ,ρ)]s

∣∣∣∣ (18)

≤ Γ (1+2α)

Γ (1+3α)

(
(ρ −κ)3α +(κ−σ)3α

2α (ρ −σ)α

)
ϒs (σ ,ρ) ,

for 0 < σ < ρ. If we also choose κ = σ+ρ

2 in (18), then we possess∣∣∣∣ Γ (1+2α)

2αΓ (1+α)
[A(σ ,ρ)]s − Γ (1+2α)

2α
[Ls(σ ,ρ)]s

∣∣∣∣≤ 2
Γ (1+2α)

Γ (1+3α)

(ρ −σ)2α

24α
ϒs (σ ,ρ) ,

which is the Mid-point type inequality involving generalized special means.

© 2023 BISKA Bilisim Technology
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