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Abstract: Biomedical procedures such as surgical glue, knee replacement surgery, blood diagnostic and many others can exhibit the
significance of viscoinelastic behavior with non-Newtonian characteristics is analyzed. The present article addresses the flow design
is to accentuate the thermophysical characteristics of electrically conducting viscoinelastic nanofluid flow produced by a stretched
surface. The impacts of Brownian motion and thermophoresis on viscoinelastic nanofluid are accounted in the presence of heat and
mass transfer convective states. The modeled partial differential equations are transmuted into nonlinear ordinary differential equations
employing similarity transformations to facilitate the computation procedure. The solution of the achieved boundary value problem is
procured numerically by utilizing a program written with stiffness-switching methodology. The manners of controlling parameters on
the fluid velocity, temperature, and concentration profiles are spotlighted via graphs. Finally, by changing the pertinent parameters, the
Machine Learning technique is used to investigate critical properties of fluid flow, such as skin friction coefficient, Nusselt number,
and Sherwood number. The effects of driving parameters are illustrated in a graphical and tabular format. The precision of the current
methodology is validated by a comparison between the current and previous findings.
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1 Introduction

The heat transfer phenomenon is caused by a temperature distinction between two different bodies. A Prandtl-Eyring
nanofluid with heat and mass transfers is particularly essential in metallurgy, solar collectors, combustion systems,
chemical engineering, nuclear reactor safety, and other engineering applications. The buoyant forces from both thermal
and mass diffusion in heating and cooling caverns, energy phenomena, space technology, and solar power techniques,
among other things, govern such transport processes. Inspired by such observations, various researchers are still
discussing the heat and mass transfer effects in flow over a stretched surface with radiation effect [17,11,22,21,25,36].
The heat transmission process with convective temperature conditions at the surface is examined in [6,26,27,28,5,14,
24,33,12,16].

Fluids that are commonly encountered in daily life do not act as Newton predicted, i.e., deformation rate does not vary
linearly as shear stress accumulations. Blood, toothpaste, paints, ketchup, lubricants, and suspensions are all examples of
this sort of fluid. They are called non-Newtonian fluids. The deformation rate is used to estimate the shear characteristics
in Newtonian fluids, but this notion fails in non-Newtonian fluids. Non-Newtonian fluids are classified into viscoelastic
and viscoinelastic. The current research focuses on the investigation of viscoinelastic fluids. At zero shear stress, most
viscoinelastic fluids have similar properties. but on the other hand, properties are extremely unexpected when exposed to
stress. Researchers suggested several models for better understanding the physical characteristics of viscoinelastic fluids,
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including the power-law model, Prandtl fluid model, and Prandtl-Eyring fluid model. The Prandtl-Eyring fluid model is
the subject of this investigation. The Prandtl-Eyring nanofluid model has only been used in a few studies for example [4,
2,8,10,19].

Machine learning is a branch of artificial intelligence that emphasizes the construction of computer programmes with
data access by allowing the system to enhance and develop automatically by finding patterns in the database without a
need for human involvement. In the previous two decades, exabytes of data have been generated, and almost every
industry has been digitized. This data is used by machine learning algorithms to build a predictive model and to automate
a variety of time-consuming activities. It is divided into three categories: Supervised Machine Learning [23],
Unsupervised Machine Learning [15], and Semi-supervised Machine Learning, depending on the data type. The
connection between machine learning and fluid mechanics has a fascinating backstory. Applications of wind energy [9,
18,35,34,31,30], solar energy [37,32], and renewable energy systems in general [20] demonstrated by using a machine
learning approaches. Brenner et al. [7] investigated the role of machine learning in the advancement of fluid mechanics.
Rosenblatt’s perceptron [29] from the 1950s was designed to emulate the human brain ability to identify a separation
hyperplane that splits the training data linearly.

The cesarean delivery method of skin closure glue for wound complications and scar healing (Figure. 2) via
viscoinelastic nanofluid flow is investigated. Researchers continue inventing new formulations that display enhanced
biocompatibility, stability, elasticity, and degradability. These developments have the potential to enhance clinical
outcomes by improving haemorrhage control.

The following is an overview of the paper structure. In Section 2, the modeling statement and mathematical formulation
are presented. Section 3 explores the physical quantities of interest. Section 4 explains the solution methodology. The
graphical sketches of numerical solutions with physical performance are presented in the final Section. The present
investigation is summarised in the conclusion section.

2 Flow Analysis

The two-dimensional Prandtl-Eyring nanofluid flow over a stretched sheet is governed by the continuity, Navier–Stokes
equations, and Buongiorno design. The velocity of the sheet along the x-direction is U(x) = ax. A transversely headed
magnetic field containing strength B0 is executed to direct the flow direction, as displayed in Figure. 1c. Governing
equations for Prandtl-Eyring nanofluid model after concerning the boundary layer approximations can be depicted as
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in addition to the boundary constraints
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(a) (b)

(c)

Fig. 1: Surgical glue (a) before use (b) applied by connecting the skin edges (c) diagram of flow configuration.

u =U(x), v = 0, T = Tw and C =Cw at y = 0;

u → 0, T → T∞ and C →C∞ at y → ∞.

(5)

In the above problem, velocity components along the x and y-directions are u and v, respectively, v is the kinematic
viscosity, σ is the electrical conductivity, ρ is the density of the fluid. The fluid temperature is T , while the ratio between
efficient heat range of the nanoparticle material and efficient heat range of the base fluid is τ , A is the material parameter,
c is the material parameter, α1 is the thermal diffusivity, C is the nanoparticle concentration particles, DB is the Brownian
diffusion coefficient, DT is the thermophoresis coefficient. The scaling group of transformations that converted the
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governed partial differential equations (1-4) into ordinary differential equations are described below;
η =

(
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) 1
2
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1
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(6)

Using Equation (6) in (1-4), gives

α f ′′′(η)−αβ f ′′(η)2 f ′′′(η)− f ′(η)2 + f (η) f ′′(η)−M f ′(η) = 0, (7)
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along with the boundary conditions 
f (0) = 0, f ′(0) = 1, f ′(∞) = 0;

θ(0) = 1, θ(∞)→ 0;

φ(0) = 1, φ(∞)→ 0.

(10)

Here the Prandtl-Eyring parameters are signified by α = A
µc and β = a3x2
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3 Physical Quantities

The physical quantities of interest, i.e., wall drag coefficient, wall heat, and mass fluxes are defined as
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The mathematical expressions of wall shear stress τw, wall heat gradient qw and wall mass gradient qm is given by,
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After comprising the dimensionless variables in equations (11, 12), the skin friction coefficient, Nusselt number, and
Sherwood number are acclimated in the subsequent form:
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M Fatehzadeh et al. [13] Zahra et al. [1] Akbar et al. [3] Present results
0 -1 -1.004 1 -1.0014

0.5 - -1.1180 -1.11803 -1.22491
1.0 -1.41412 -1.4140 -1.41421 -1.41424
5.0 -2.44948 -2.4494 -2.44949 -2.44949
10 -3.31662 -3.3168 -3.31663 -3.31662
50 -7.14142 -4.4143 - -7.14143

100 -10.0499 -10.0502 -10.04988 -10.0499

Table 1: Comparision result of skin friction coefficient for various values of Hartmann parameter M when α=1, β=0.

4 Solution Methodology

Using a Wolfram Language program, the ordinary differential equations (7-9) are scrutinized numerically with the given
boundary constraints (10) for different values of pertinent parameters. Such as Prandtl-Eyring parameters, Hartmann
parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, and Lewis number. Except for the
different values of physical parameters shown in distinct figures and tables, the entire computational analysis is the same.

4.1 Machine Learning

The main focus of this study is on supervised learning algorithms, which is a common technique. To learn the input-
output mapping function y(pred) = f , input variables x and output variables y(pred) are used in pairs (x). The stochastic
gradient descent algorithm is one of the most often used forms of the gradient descent approach, as indicated by the
above-mentioned fundamentals. The best fit line for the variation of Skin friction coefficient, local Nusselt number and
local Sherwood number for a large variety of Hartmann parameter and Prandtl number, are acquired by utilizing Python
Language. If y(pred),x,b, and m are the predicted variable, input variable, bias term, and weight of the variable in a simple
regression model, then:

y(pred) = mx+b

When the model is being trained, the mean square error (MSE) is calculated, and it is a useful metric for predicting the
fluid flow characteristics, which is almost matches the actual value (y). In each iteration, the error values are minimized.
Furthermore, the training process is repeated until the best fit line is discovered.

Physical Quantites Parameter Values Numerical Value Predicted Value

C f x α=1, β = 0, Nb = Nt=0.1, Pr=2.0, Le=3.0

M=0 -1.0014 -1.06567
M=0.5 -1.22491 -1.20566
M=1 -1.41424 -1.34565
M=5 -2.44949 -2.46553

Nux α=1.5, β = 0.1, Nb = Nt=0.1, M=0.3, Le=3.0

Pr=2 0.7694 0.75733
Pr=5 1.11067 1.00571
Pr=7 1.22577 1.17130

Pr=10 1.32562 1.41968

Shx α=1.5, β = 0.1, Nb = Nt=0.1, M=0.3, Le=3.0

Pr=2 1.47834 1.47172
Pr=5 2.73039 2.60302
Pr=7 3.4276 3.35722

Pr=10 4.37306 4.48852

Table 2: Numerical and predicted value for physical quantities with various parameters.
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(a) (b)

Fig. 2: Influence of (a) fluid parameter α (b) fluid parameter β on velocity profile.

Fig. 3: Influence of Hartmann parameter M on velocity profile.

5 Graph Findings and Discussion

The main objective of this part is to analyze the outcomes of various pertinent parameters on the velocity field, temperature,
and mass concentration fields. α=1.5, β=0.1, M=0.3, Nb=0.1, Nt=0.1, and Le=3.0 are the default values, and all graphs
adhere to these values unless otherwise mentioned on the graph.

5.1 Velocity Profile

Figure. 2a indicates that the Prandtl-Eyring fluid parameter α , accelerates the linear momentum of fluid flow in boundary
layer regime, besides for α > 1, an enormous boost is detected in fluid velocity. Because, higher values of the pertinent
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(a) (b)

Fig. 4: Influence of (a) Brownian motion parameter Nb (b) thermophoresis parameter Nt on temperature profile.

Fig. 5: Influence of Prandtl number Pr on temperature profile.

parameter α lessen the viscous force. The momentum boundary layer slightly expanded for higher values of a material
parameter α .

Figure. 2b ensure the impact of fluid parameter β on velocity profile. The velocity curves overlap each other, indicating
that the velocity profile has altered slightly due to fluid parameter β adjustment. Furthermore, this diagram depicted a
decrease in linear momentum within boundary layer thickness.

The impact of the Hartmann number M on fluid velocity is adorned in Figure. 3. This graph demonstrated that the
velocity curves display decimation versus independent variable η , further strengthening the transverse magnetic field
impact velocity of the flow decreases. This outcome provides strength to the prominent fact that the magnetic field yields
Lorentz force, which lessens the velocity profile.
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(a) (b)

Fig. 6: Influence of (a) Brownian motion parameter Nb (b) thermophoresis parameter Nt on concentration profile.

(a) (b)

Fig. 7: Influence of (a) Prandtl number Pr (b) Lewis number Le on concentration profile.

A comparison of the obtained results corresponding to the local wall shear rate (i.e., α =1, β=0) with the existing
literature [13,1,3] in Table. 1 is made to validate the accuracy of the proposed numerical scheme and found to be
significant agreement.

5.2 Temperature and Concentration Profiles

The fluctuations of Brownian motion parameter Nb on temperature profile elucidated in Figure. 4a. The Brownian motion
is the movement of nanoparticles in liquids at random. This random movement accelerates the collision of nanoparticles
with fluid molecules, and the kinetic energy of the molecules is converted into heat energy, causing the temperature to
increase. Also, the thermal boundary layer strip is smaller than the momentum boundary layer strip, as shown in this
diagram.

Figure. 4b captures the effect of the thermophoresis parameter Nt on the temperature profile. Since the thermophoresis
phenomenon causes particles to move faster from a hotter continent to a cooler continent, consequently, heat moves
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(a)

(b)

(c)

Fig. 8: MSE values of (a) Skin friction coefficient against M (b) Nusselt number against Pr (c) Sherwood number against
Pr.
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quickly from hotter surface to fluid. Hence, it raises the temperature. The current figure validated the previously defined
theory, and it also shows a gradually rising temperature profile within the thermal boundary layer for given values of
thermophoresis parameter.

Figure. 5 displays the impact of Prandtl number Pr on temperature field. The correlation of viscous and thermal
conductivity is represented by the Prandtl number. As a consequence, a fluid with a higher Prandtl number has a lower
thermal thermal conductivity. The current computed results attest to this fact (Figure. 5). In this figure, it can be seen that
temperature decreases significantly in the boundary layer system since Prandtl number increases. Furthermore, a slight
decrease in the thermal boundary layer is observed for higher values of Prandtl number.

The effects of Brownian motion parameter Nb on nanoparticle concentration in the boundary layer domain are
displayed in Figure. 6a. The graph demonstrates that the Brownian motion lessens both concentration and boundary layer
thickness. This is because an increase in Brownian motion accelerates random movement, which evaporates the
nanoparticles and thus declines concentration. Figure. 6b demonstrates the effects of thermophoresis parameter Nt on
concentration profile. The concentration field rises fast at higher values of the thermophoresis parameter at all points of
the flow domain, as seen in this graph.

Figure. 7a sketches the impact of Prandtl number Pr in concentration profile. This graph shows the Prandtl number
significantly reduces the nanoparticle concentration. In addition, the boundary layer strip is too thin when the Prandtl
number is high. The effects of Lewis number on the concentration profile are elucidated in Figure. 7b. By the definition of
Lewis number, higher values of Lewis number decreases the mass diffusivity and thus concentration. This figure forecasts
the concentration of nanoparticles, and the thickness of the boundary layer decreases significantly as the Lewis number
increases.

Finally, Figure. 8a, 8b, and 8c illustrate the effect of the coefficient of skin friction, Nusselt number, and sherwood
number on the broad ranges of Hartmann parameter M and Prandtl number Pr with MSE. Furthermore, Table. 2 clarifies
the numerical and estimated model results for numerous testing data sets. The expected outcomes perfectly resemble the
numerical value. Thus, the developed model can precisely predict the physical quantities of interest.

6 Enumerated Key points

Thermophysical properties of a Prandtl-Eyring nanofluid over a stretched surface are investigated. A program designed
in Wolfram Language and machine learning techniques are used to analyze numerical solutions. The following are the
specific conclusions reached as a result of application to biomedical industry:

–The Prandtl-Eyring fluid parameter β and the Hartmann number M have an identical influence on fluid velocity. Both
parameters lessen velocity, but the Prandtl-Eyring fluid parameter α drives it to increase.

–Brownian motion and thermophoresis characteristics are favorable for temperature rise, and the Prandtl number
reduces the temperature.

–When Brownian motion diffusion is increased in the boundary layer domain, nanoparticle concentration rises. While
the thermophoresis parameter reduces it. Furthermore, the Lewis number and the Prandtl number drastically decrease
the concentration.

–The Machine Learning approach utilized in this work performed well in predicting the nature of physical body through
skin friction coefficient, local Nusselt number, and local Sherwood number.
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