New Products on Undirected Graphs

Nechirvan B. Ibrahim, Alias B. Khalaf
Department of Mathematics, College of Science, University of Duhok, Duhok, Kurdistan Region-Iraq

Received: 11 May 2022, Accepted: 23 January 2023
Published online: 25 June 2023.

Abstract

In this paper we present some new products on undirected graphs, explain them by examples and introduce some properties of these products. Moreover, we define the neighborhood set of vertices in these products and examine their sizes.

Keywords: Coneighbor graph, product of graphs, size of product, Coneighbor set of vertices.

1 Introduction

A graph product is a binary operation on graphs. mainly, an operation that takes two graphs G_{1} and G_{2} and produces a graph H with the properties that the vertex set of H is the Cartesian product $V\left(G_{1}\right) \times V\left(G_{2}\right)$, in which $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ are the vertex sets of G_{1} and G_{2}, respectively. While vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of H are adjacent if some conditions about u_{1}, v_{1} in G_{1} and u_{2}, v_{2} in G_{2} are fulfilled. In the literature, product graph is presented to establish new graphs and investigate their properties and applications, among them, intersection, union, join, Cartesian product, Kronecker product, strong product and composition product of graphs. A graph G is a finite non empty set of elements called vertices together with a set of unordered pairs of distinct vertices of G called edges. The vertex set of G is denoted by V or $V(G)$, while the edge set is denoted by E or $E(G)$. A graph G with vertex set V and edge set E may be denoted by an ordered pair (V, E). The cardinality of the vertex set of a graph G is called the order of G and is denoted by p or $|V(G)|$, while the cardinality of its edge set is called the size of G and is denoted by q or $|E|$. Two vertices u and v are said to be neighborhood of each other if u and v have a common edge in G. The set of all neighborhoods of u is said to be open neighborhood of u and it is denoted by $N(u)$; the set of all neighborhoods of u together with u is said to be the closed neighborhood of u in G and it is denoted by $N[u]$. The degree of a vertex v in a graph G, denoted by $\operatorname{deg}_{G}(v)$, is the number of edges incident with v. The adjacency matrix $A(G)$ or $A=\left[a_{i j}\right]$ of a labeled graph G of order p and with vertex set $V(G), V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a $p \times p$ matrix in which $a_{i j}=1$ if v_{i} and v_{j} are adjacent, and 0 if they are not. For details we refer to [1], [2], [3], [5] and [6].

Harary and Wilcox [6], introduced some new Boolean operations on undirected graphs and determined the their adjacency matrices. Also, they studied some invariants and relations of Boolean operations. El-kholy et al in [9], defined some new operations on undirected graphs and examined the relations between the folding of a given pair of graphs and the folding of a graph generated from them. Shibata and Kikuchi [3], defined new two products on graphs called skew product and the converse skew product and they found relations between these two products and other products on graphs. Also, they investigated several classes of graph products. The purpose of this paper, is to construct new graphs generated from product on undirected graphs by means of the concept of coneighbor set vertices.

[^0]
2 Properties of Coneighbor Graphs

In this section, we introduce some definitions and results of coneighbor graphs.
Definition 1.[8] Two vertices (edges) are said to be coneighbor if and only if they have the same set of neighborhood vertices (edges).

Definition 2.[8] A graph G is said to be coneighbor graph if it contains a set of coneighbor vertices, while a graph G is said to be an edge coneighbor graph if it contains a set of coneighbor edges.

Definition 3.[5] The set of all coneighbor of u is the open coneighbor of u or the coneighbor set of u and it is denoted by $C N(u)$; the set $C N[u]=C N(u) \cup\{u\}$ is the closed coneighbor of u in G.

Definition 4.[8] The coneighbor matrix $\operatorname{con}(G)$ or $c o n=\left[c_{i j}\right]$ of a labeled graph G of order p and with vertex set $V(G)$, $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a $p \times p$ matrix in which $c_{i j}=1$ if u_{i} and u_{j} are coneighbor, and 0 if they are not.

Definition 5.[5] The Kronecker product of two matrices $M_{(m \times n)} \otimes N_{(l \times k)}$ is the $(m \times l) \times(n \times k)$ matrix is given by

$$
M_{m \times n} \otimes N_{l \times k}=\left[\begin{array}{ccc}
m_{11} N & \ldots & m_{1 n} N \\
: & \ddots & : \\
m_{m 1} N & \ldots & m_{m n} N
\end{array}\right]
$$

Theorem 1.[5] The sum of degrees of the vertices of a graph is equal to twice the number of its edges. That is $\sum_{u \in G} \operatorname{deg}(u)=2 q$.

In this paper, we use the symbol Δ_{1} and Δ_{2} is the number of the sets of pairs of coneighbor vertices in a graph G_{1} and G_{2}, respectively.

3 Coneighbor Products on Graphs

In this section, we define some new products on undirected graphs and present some properties and results of these new products.

Definition 6.Let G_{1} and G_{2} be two graphs, the coneighbor Cartesian product of graphs G_{1} and G_{2} is the graph denoted by $G_{1} C^{\times} \quad G_{2}$ whose vertex set is $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ in G_{1} and $v=\left(v_{1}, v_{2}\right)$ in G_{2} are adjacent in $G_{1} C^{\times} G_{2}$ if and only if either:

1. u_{1} is coneighbor to u_{2} in G_{1} and $v_{1} \equiv v_{2}$ in G_{2}, or $2 . u_{1} \equiv u_{2}$ in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}.

The following results can be proved easily.
Proposition 1.Let G_{1} and G_{2} be two graphs with vertex sets p_{1}, p_{2} respectively, then the following statements are fulfilled.

1. $p\left(G_{1} C^{\times} G_{2}\right)=p_{1} \times p_{2}$.
2. $G_{1} C^{\times} G_{2} \cong G_{2} C^{\times} G_{1}$.
3.If G_{1} and G_{2} are coneighbor graphs, then $G_{1} C^{\times} G_{2}$ is coneighbor graph.
4.If G_{1} and G_{2} are coneighbor bipartite graphs, then $G_{1} C^{\times} G_{2}$ is disconnected.
5.If one of G_{1} or G_{2} is non-coneighbor graph, then $G_{1} C^{\times} G_{2}$ is disconnected.
6.If G_{1} and G_{2} are non-coneighbor graphs, then $G_{1} \sqrt{C^{\times}} G_{2}$ is null graph of order $p_{1} \times p_{2}$.

In the following theorem, we calculate the sum of degrees of coneighbor vertices.
Theorem 2. Let G be a coneighbor graph and $u \in G$, then

$$
\sum_{u \in G} \operatorname{deg}(C N(u))=\operatorname{deg}(u) \Delta,
$$

where Δ is the number of pairs of coneighbor sets containing u.
Proof. The proof is obvious when $C N(u)=\phi$. Let G be a graph such that $C N(u)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, then they have the same neighborhoods, so the degree of each coneighbor vertex is equal to the number of neighborhoods. that is, $\operatorname{deg}(u)=$ $\operatorname{deg}\left(u_{i}\right)=c 1 \leq i \leq n$. Also, we have $\Delta=n$ and hence

$$
\sum_{u \in G} \operatorname{deg}(C N(u))=\operatorname{deg}(u) \Delta=n c .
$$

Theorem 3. If (u, v) in $G_{1} C^{\times} G_{2}$, then

$$
N_{G_{1}}^{N} C^{\times} \quad(u, v)=\left\{C N_{G_{1}}(u) \times\{v\}\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\} .
$$

 in G_{1} and $v_{j} \cong v$ or $u_{i} \cong u$ and v_{j} is coneighbor with v in G_{2}. That is, if $N{ }_{G_{1}} C_{C^{\times}}(u, v)=\left\{C N_{G_{1}}(u) \times\{v\}\right\} \cup\{\{u\} \times$ $\left.C N_{G_{2}}(v)\right\}$.

Theorem 4. The size of $G_{1} C^{\times} G_{2}$ is given by
$q\left(G_{1} \triangle C^{\times} \quad G_{2}\right)=p_{1} \Delta_{2}+p_{2} \Delta_{1}$.
Proof. By Theorem 3, we have $N{ }_{G_{1}} C^{\times} \quad(u, v)=\left\{C N_{G_{1}}(u) \times\{v\}\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\}$ Therefore,

$$
\begin{gathered}
\left|N_{G_{1}} C^{\times} C_{G_{2}}(u, v)\right|=\left|C N_{G_{1}}(u)\right|+\left|C N_{G_{2}}(v)\right| \\
\operatorname{deg}{ }_{G_{1}} C_{C^{\times}}(u, v)=\operatorname{deg}\left(C N_{G_{1}}(u)\right)+\operatorname{deg}\left(C N_{G_{2}}(v)\right) .
\end{gathered}
$$

Hence,

$$
\begin{aligned}
& \sum_{u \in G_{1}} \sum_{v \in G_{2}} d e g \underbrace{}_{G_{1}} \varliminf_{G^{\prime}}^{\times}(u, v)=\sum_{v \in G_{2}} \sum_{u \in G_{1}} \operatorname{deg}\left(C N_{G_{1}}(u)\right) \\
&+\sum_{u \in G_{1}} \sum_{v \in G_{2}} \operatorname{deg}\left(C N_{G_{2}}(v)\right)
\end{aligned}
$$

$\mathbf{G}_{1}\left[\mathbf{C}^{\times} \mathbf{G}_{2}\right.$

$$
\sum_{u \in G_{1}} \sum_{v \in G_{2}} d e g \underbrace{}_{G_{1}} C^{\times}(u, v)=p_{2} \sum_{u \in G_{1}} \operatorname{deg}\left(C N_{G_{1}}(u)\right)+p_{1} \sum_{v \in G_{2}} \operatorname{deg}\left(C N_{G_{2}}(v)\right)
$$

By Theorem 1 and 2, we have

$$
2 q\left(G_{1} \boxed{C^{\times}} G_{2}\right)=p_{2} \operatorname{deg}_{G_{1}}(u) \Delta_{1}+p_{1} \operatorname{deg}_{G_{2}}(v) \Delta_{2}
$$

If u and v are coneighbor vertices in G_{1} or G_{2}, then there exists an edge between them in $G_{1} C^{\times} G_{2}$, so we have $2 q\left(G_{1} C^{\times} G_{2}\right)=2 p_{1} \Delta_{2}+2 p_{2} \Delta_{1}$.
Hence, $q\left(G_{1}\left(C^{\times}\right) G_{2}\right)=p_{1} \Delta_{2}+p_{2} \Delta_{1}$.

Proposition 2. The coneighbor matrix of $G_{1} \sqrt{C^{\times}} G_{2}$ is given by

$$
\operatorname{con}\left(G_{1} \boxed{C^{\times}} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes I_{p_{2}}\right)+\left(I_{p_{1}} \otimes \operatorname{con}\left(G_{2}\right)\right)
$$

Proof. Directly by Definition 6, we get the result.

Therefore, $\operatorname{con}\left(G_{1}\right) \otimes I_{p_{2}}$ is equal to a (0,1)-matrix of size $\left(p_{1} \times p_{2}\right) \times\left(p_{1} \times p_{2}\right)$ and each entry one in $\operatorname{con}\left(G_{1}\right)$ replaced by $I_{p_{2}}$ and $I_{p_{1}} \otimes \operatorname{con}\left(G_{2}\right)$ is equal to a matrix of $\operatorname{size}\left(p_{1} \times p_{2}\right) \times\left(p_{1} \times p_{2}\right)$ and each entry one in the main diagonal of $I_{p_{1}}$ replaced by the $\operatorname{con}\left(G_{2}\right)$. Hence, $\operatorname{con}\left(G_{1} \boxed{C^{\times}} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes I_{p_{2}}\right)+\left(I_{p_{1}} \otimes \operatorname{con}\left(G_{2}\right)\right)=A\left(G_{1} \boxed{C^{\times}} G_{2}\right)$ is the adjacency matrix of $G_{1} \triangle C^{\times} G_{2}$ of size $\left(p_{1} \times p_{2}\right) \times\left(p_{1} \times p_{2}\right)$.
For example, Consider the graphs $G_{1}=P_{3}$ and $G_{2}=C_{4}$ are shown in below. Where $p\left(G_{1} C^{\times} G_{2}\right)=p_{1} \times p_{2}=3 \times 4=12$ and $q\left(G_{1} \sqrt{C^{\times}} G_{2}\right)=p_{1} \Delta_{2}+p_{2} \Delta_{1}=3(2)+4(1)=10$.
The graph $G_{1} C^{\times} G_{2}$ is illustrated below:

Definition 7. Let G_{1} and G_{2} be two graphs, the coneighbor tensor product of graphs G_{1} and G_{2} is the graph denoted by $G_{1} C^{*} G_{2}$ whose vertex set is $V_{1} \times V_{2}$ and two vertices $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ in G_{2} are adjacent in $G_{1} C^{*}$ G G_{2} if $\left[u_{1}\right.$ is coneighbor to u_{2} in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}].

The proof of the following results are obvious.
Proposition 3. Let G_{1} and G_{2} be two graphs, then the following statements are true:
1.p $\left(G_{1} \boxed{C^{*}} G_{2}\right)=p_{1} \times p_{2}$.
2. $G_{1} C^{*} G_{2} \cong G_{2}\left(C^{*}\right) G_{1}$.
3.If G_{1} and G_{2} are coneighbor graphs, then $G_{1} \mid C^{*} G_{2}$ need not be a coneighbor graph.
4.If G_{1} and G_{2} are coneighbor bipartite graphs, then $G_{1} C^{*} G_{2}$ is disconnected.
5.If one of G_{1} or G_{2} is non-coneighbor graph, then $G_{1} \boxed{C^{*}} G_{2}$ is disconnected.
6.If G_{1} and G_{2} are non-coneighbor graphs, then $G_{1} C^{*} G_{2}$ is null graph of order $p_{1} \times p_{2}$.

Theorem 5. If $(u, v) \in G_{1} C^{*} G_{2}$, then

$$
N_{G_{1}} \square_{C^{*}}(u, v)=\left\{C N_{G_{1}}(u) \times C N_{G_{2}}(v)\right\} .
$$

Proof. From Definition 7, we have $\left(u_{i}, v_{j}\right) \in N_{G_{1}} C^{*}{ }_{G_{2}}(u, v), 1 \leq i \leq p_{1}, 1 \leq j \leq p_{2}$, if and only if u_{i} is coneighbor with u in G_{1} and v_{j} is coneighbor with v in G_{2}. That is, if and only if $\left(u_{i}, v_{j}\right) \in N_{G_{1}} C_{C^{*}}(u, v)=\left\{C N_{G_{1}}(u) \times C N_{G_{2}}(v)\right\}$.

Theorem 6. The size of $G_{1} \boxed{C^{*}} G_{2}$ is given by $q\left(G_{1} \boxed{C^{*}} G_{2}\right)=2 \Delta_{1} \Delta_{2}$.
Proof.By Theorem 5, we have

$$
N_{G_{1} C^{*}}^{C_{G_{2}}}(u, v)=\left\{C N_{G_{1}}(u) \times C N_{G_{2}}(v)\right\}
$$

Hence, we have

$$
\left|N_{G_{1}} C^{*} G_{G_{2}}(u, v)\right|=\left|C N_{G_{1}}(u)\right|\left|C N_{G_{2}}(v)\right| .
$$

Therefore,

$$
\operatorname{deg}{ }_{G_{1}}^{C^{*}}(u, v)=\operatorname{deg}\left(C N_{G_{1}}(u)\right) \operatorname{deg}\left(C N_{G_{2}}(v)\right) .
$$

This implies that

$$
\sum_{u \in G_{1}} \sum_{v \in G_{2}} \operatorname{deg} \underbrace{}_{G_{1}} C_{C^{*}}(u, v)=\sum_{u \in G_{1}} \operatorname{deg}\left(C N_{G_{1}}(u)\right) \sum_{v \in G_{2}} \operatorname{deg}\left(C N_{G_{2}}(v)\right)
$$

By Theorem 1 and 2, we have

$$
2 q\left(G_{1} C^{*} G_{2}\right)=\operatorname{deg}_{G_{1}}(u) \Delta_{1} \operatorname{deg}_{G_{2}}(v) \Delta_{2}
$$

If u and v are coneighbor vertices in G_{1} or G_{2}, then there exists an edge between them in $G_{1} C^{*} G_{2}$, so we have $2 q\left(G_{1} C^{*} G_{2}\right)=2 \Delta_{2} 2 \Delta_{1}$.
Hence, $q\left(G_{1} C^{*} G_{2}\right)=2 \Delta_{1} \Delta_{2}$.
Proposition 4. The coneighbor matrix of G_{1} C C^{*} is given by

$$
\operatorname{con}\left(G_{1} \boxed{C^{*}} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes \operatorname{con}\left(G_{2}\right)\right)
$$

Proof. Follows directly from Definition 7.
From Proposition 4, we deduce that $\operatorname{con}\left(G_{1} \boxed{C^{*}} G_{2}\right)$ is equal to a $(0,1)$-matrix of size $\left(p_{1} \times p_{2}\right) \times\left(p_{1} \times p_{2}\right)$ and each entry one in $\operatorname{con}\left(G_{1}\right)$ replaced by $\operatorname{con}\left(G_{2}\right)$. Hence, $\operatorname{con}\left(G_{1} C^{*} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes \operatorname{con}\left(G_{2}\right)\right)=A\left(G_{1} C^{*} G_{2}\right)$ is the adjacency matrix of $G_{1} \boxed{C^{*}} G_{2}$ of size $\left(p_{1} \times p_{2}\right) \times\left(p_{1} \times p_{2}\right)$. In the following example, we calculate the size of $G_{1} C^{*} G_{2}$ using Theorem 6.
Example 1.Consider the graphs $G_{1}=P_{3}$ and $G_{2}=C_{4}$, then $G_{1} C^{*} G_{2}$ is described below.

$$
\text { Where } p\left(G_{1} C^{*} G_{2}\right)=p_{1} p_{2}=3 \times 4=12 \text { and } q\left(G_{1} \boxed{C^{*}} G_{2}\right)=2 \Delta_{1} \Delta_{2}=2(1)(2)=4 \text {. }
$$

Definition 8.Let G_{1} and G_{2} be two graphs, the coneighbor strong product of graphs G_{1} and G_{2} is the graph denoted by $G_{1} C^{\circ} G_{2}$ whose vertex set is $V_{1} \times V_{2}$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} C^{\circ} G_{2}$ if one of the following conditions hold:

1. u_{1} is coneighbor to u_{2} in G_{1} and $v_{1} \equiv v_{2}$ in G_{2}, or
2. $u_{1} \equiv u_{2}$ in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}, or
3. u_{1} is coneighbor to u_{2} in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}.

The following results are clear.
Proposition 5.Let G_{1} and G_{2} be two graphs, then:

1. $p\left(G_{1} C^{\circ} G_{2}\right)=p_{1} \times p_{2}$.
$2 . G_{1} C^{\circ} G_{2} \cong G_{2} C^{\circ} G_{1}$.
3.If G_{1} and G_{2} are coneighbor graphs, then $G_{1} C^{\circ} G_{2}$ need not be a coneighbor graph.
4.If G_{1} and G_{2} are coneighbor bipartite graphs, then $G_{1} C^{\circ} G_{2}$ is disconnected.

5.If one of G_{1} or G_{2} is non-coneighbor graph, then $G_{1} C^{\circ} G_{2}$ is disconnected.
6.If G_{1} and G_{2} are non-coneighbor graphs, then $G_{1} C^{\circ} G_{2}$ is null graph of order $p_{1} \times p_{2}$.

Theorem 7.For each vertex (u, v) in $G_{1} C^{\circ} G_{2}$, we have

$$
N_{G_{1}} C^{\circ}{ }_{G_{2}}(u, v)=\left\{C N_{G_{1}}(u) \times\{v\}\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\} \cup\left\{C N_{G_{1}}(u) \times C N_{G_{2}}(v)\right\} .
$$

Proof. The proof follows from Theorem 3 and 5.
Theorem 8.The size of $G_{1} \triangle C^{\circ} G_{2}$ is given by $q\left(G_{1} C^{\circ} G_{2}\right)=p_{1} \Delta_{2}+p_{2} \Delta_{1}+2 \Delta_{1} \Delta_{2}$.
Proof.From Theorem 4 and 6, we get the result.
Proposition 6.The coneighbor matrix of $G_{1} C^{\circ} G_{2}$ is given by

$$
\operatorname{con}\left(G_{1} C^{\circ} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes I_{p_{2}}\right)+\left(I_{p_{1}} \otimes \operatorname{con}\left(G_{2}\right)\right)+\left(\operatorname{con}\left(G_{1}\right) \otimes \operatorname{con}\left(G_{2}\right)\right)
$$

Proof. Follows from Proposition 2 and 4.
The following example describes $G_{1} C^{\circ} G_{2}$.
Example 2. Let $G_{1}=P_{3}$ and $G_{2}=C_{4}$, we have
$q\left(G_{1} C^{\circ} G_{2}\right)=p_{1} \Delta_{2}+p_{2} \Delta_{1}+2 \Delta_{1} \Delta_{2}=3(2)+4(1)+2(1)(2)=15$.
The graph $G_{1} C^{\circ} \quad G_{2}$ is shown in below.
Definition 9. Let G_{1} and G_{2} be two graphs, the coneighbor composition product of graphs G_{1} and G_{2} is the graph denoted by $G_{1} C^{c} \quad G_{2}$ whose vertex set is $V_{1} \times V_{2}$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} C^{c} G_{2}$ if and only if either:

1. u_{1} is coneighbor to u_{2} in G_{1}, or
2. $u_{1} \equiv u_{2}$ in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}.

From Definition 9, we obtain the following results:
Proposition 7. Let G_{1} and G_{2} be two graphs, then
$1 . p\left(G_{1} \boxed{C^{c}} G_{2}\right)=p_{1} \times p_{2}$.
2. $G_{1} C^{c} G_{2} \not \equiv G_{2} C^{c} G_{1}$.
3.If G_{1} and G_{2} are coneighbor graphs, then $G_{1} C^{c} \quad G_{2}$ need not be a coneighbor graph.
4.If one of G_{1} or G_{2} is non-coneighbor graph, then $G_{1} \sqrt{C^{c}} G_{2}$ is disconnected.
5.If one of G_{1} or G_{2} is non-coneighbor graph, then $G_{1} C^{c} G_{2}$ may not be a coneighbor graph.
6.If G_{1} and G_{2} are non-coneighbor graphs, then $G_{1} C^{c} G_{2}$ is null graph of order $p_{1} \times p_{2}$.

Theorem 9. For each vertex (u, v) in $G_{1} C^{c} \quad G_{2}, N N_{G_{1}} C_{C^{c}}(u, v)=\left\{C N_{G_{1}}(u) \times V\left(G_{2}\right)\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\}$.

Proof. From Definition 9, we have a vertex $\left(u_{i}, v_{j}\right) \in N_{G_{1}}^{C_{C^{c}}}(u, v), 1 \leq i \leq p_{1}, 1 \leq j \leq p_{2}$, if and only if u_{i} is coneighbor with u in G_{1} for each vertex in G_{2} or $u_{i} \cong u$ and v_{j} is coneighbor with v in G_{2}. That is, if and only if $\left(u_{i}, v_{j}\right) \in N_{G_{1}} C^{c} \int_{G_{2}}(u, v)=\left\{C N_{G_{1}}(u) \times V\left(G_{2}\right)\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\}$.

Theorem 10. The size of $G_{1} C^{c} G_{2}$ is given by

$$
q\left(G_{1} C^{c} G_{2}\right)=p_{2}^{2} \Delta_{1}+p_{1} \Delta_{2}
$$

Proof. By Theorem 9, we have

$$
N_{G_{1}} C^{c} G_{G_{2}}(u, v)=\left\{C N_{G_{1}}(u) \times V\left(G_{2}\right)\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\}
$$

Hence,

$$
\left|N_{G_{1}} C_{C^{c}}^{G_{2}}(u, v)\right|=p_{2}\left|C N_{G_{1}}(u)\right|+\left|C N_{G_{2}}(v)\right| .
$$

Therefore,

$$
\operatorname{deg}_{G_{1}}^{C^{c} G_{G_{2}}}(u, v)=p_{2} \operatorname{deg}\left(C N_{G_{1}}(u)\right)+\operatorname{deg}\left(C N_{G_{2}}(v)\right)
$$

Consequently, we have

$$
\sum_{u \in G_{1}} \sum_{v \in G_{2}} d e g{ }_{G_{1}} \int_{C^{c}}(u, v)=\sum_{v \in G_{2}} \sum_{u \in G_{1}} \operatorname{deg}\left(C N_{G_{1}}(u)\right)+\sum_{u \in G_{1}} \sum_{v \in G_{2}} \operatorname{deg}\left(C N_{G_{2}}(v)\right) .
$$

By Theorem 1 and 2, we obtain that

$$
2 q\left(G _ { 1 } \longdiv { C ^ { c } } G _ { 2 }\right)=p_{2}^{2} \operatorname{deg}_{G_{1}}(u) \Delta_{1}+p_{1} \operatorname{deg}_{G_{2}}(v) \Delta_{2}
$$

If u and v are coneighbor vertices in G_{1} or G_{2}, then there exists an edge between them in $G_{1} C^{c} G_{2}$, so we have $2 q\left(G_{1}{C^{c}}^{c} G_{2}\right)=2 p_{2}^{2} \Delta_{1}+2 p_{1} \Delta_{2}$. Hence, $q\left(G_{1} C^{c} G_{2}\right)=p_{2}^{2} \Delta_{1}+p_{1} \Delta_{2}$.

$\mathbf{G} \sqrt{\mathbf{C}^{c}} \mathbf{G}_{2}$

Proposition 8. The coneighbor matrix of $G_{1} C^{c} G_{2}$ is given by

$$
\operatorname{con}\left(G_{1} C^{c} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes J_{p_{2}}\right)+\left(I_{p_{1}} \otimes \operatorname{con}\left(G_{2}\right)\right)
$$

Proof.Follows from Definition 9.
From the above proposition, we conclude that $\operatorname{con}\left(G_{1}\right) \otimes J_{p_{2}}$ is equal to a $(0,1)$-matrix of size $\left(p_{1} \times p_{2}\right) \times\left(p_{1} \times p_{2}\right)$ and each entry one in $\operatorname{con}\left(G_{1}\right)$ replaced by $J_{p_{2}}$ and $I_{p_{1}} \otimes \operatorname{con}\left(G_{2}\right)$ is equal to a matrix of size $\left(p_{1} \times p_{2}\right) \times\left(p_{1} \times p_{2}\right)$ and each entry one in the main diagonal of $I_{p_{1}}$ replaced by the $\operatorname{con}\left(G_{2}\right)$. Hence, $\operatorname{con}\left(G_{1} \boxed{C^{c}} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes J_{p_{2}}\right)+\left(I_{p_{1}} \otimes \operatorname{con}\left(G_{2}\right)\right)=A\left(G_{1} \boxed{C^{c}} G_{2}\right)$ is the adjacency matrix of $G_{1} C^{c} G_{2}$ of size $\left(p_{1} \times p_{2}\right) \times\left(p_{1} \times p_{2}\right)$.

In the following examples we describe $G_{1} \boxed{C^{c}} G_{2}$ and calculate their sizes.
Example 3. Consider the graphs $G_{1}=G_{2}=C_{4}$.
We have, $p\left(G_{1}{C^{c}}^{c} G_{2}\right)=p_{1} p_{2}=(4)(4)=16$ and $q\left(G_{1} \boxed{C^{c}} G_{2}\right)=p_{2}^{2} \Delta_{1}+p_{1} \Delta_{2}=16(2)+4(2)=40$. Then, $G_{1} C^{c} G_{2}$ as shown in below: In the following example, we deduce that $P_{3} C^{c} C_{4} \not \equiv C_{4} C^{c} P_{3}$.
Example 4.Consider the graphs $G_{1}=P_{3}$ and $G_{2}=C_{4}$ shown in below.
Then, $p\left(G_{1} \boxed{C^{c}} G_{2}\right)=p_{1} p_{2}=(3)(4)=12$ and $q\left(G_{1} \boxed{C^{c}} G_{2}\right)=p_{2}^{2} \Delta_{1}+p_{1} \Delta_{2}=16(1)+3(2)=22$. Then, $G_{1} C^{c} G_{2}$ as shown in below:

Example 5.Let $G_{1}=C_{4}$ and $G_{2}=P_{3}$, then we have

$$
p\left(G_{1} C^{c} G_{2}\right)=p_{1} p_{2}=(4)(3)=12 \text { and } q\left(G_{1} \boxed{C^{c}} G_{2}\right)=p_{2}^{2} \Delta_{1}+p_{1} \Delta_{2}=2(9)+4(1)=22
$$

$\mathrm{G}_{1} \mathrm{C}^{\mathbf{c}} \mathrm{G}_{2}$

$\mathbf{G}_{1}{\widetilde{\mathbf{C}^{\mathrm{c}}} \mathbf{G}_{\mathbf{2}} .}$

Definition 10.Let G_{1} and G_{2} be two graphs, the coneighbor skew product of graphs G_{1} and G_{2} is the graph denoted by $G_{1} C^{\diamond} G_{2}$ whose vertex set is $V_{1} \times V_{2}$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} C^{\odot} G_{2}$ if and only if either:

1. u_{1} is coneighbor to u_{2} in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}, or
2. $u_{1} \equiv u_{2}$ in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}.

From Definition 10, we get the following results:
Proposition 9.Let G_{1} and G_{2} be two graphs, then the following statements are true:

1. $p\left(G_{1} C^{\diamond} G_{2}\right)=p_{1} \times p_{2}$.
2. $G_{1} C^{\diamond} G_{2} \not \approx G_{2} C^{\diamond} G_{1}$.
3.If G_{1} and G_{2} are coneighbor graphs, then $G_{1} C^{\diamond} G_{2}$ is coneighbor graph.
4.If G_{1} and G_{2} are coneighbor or non-coneighbor graphs, then $G_{1} C^{\diamond} G_{2}$ is disconnected.
5.If G_{2} is non-coneighbor graph, then $G_{1} C^{\diamond} G_{2}$ is null graph of order $p_{1} \times p_{2}$.
6.If G_{1} and G_{2} are non-coneighbor graphs, then $G_{1} C^{\diamond} G_{2}$ is null graph of order $p_{1} \times p_{2}$.

Theorem 11. For each vertex (u, v) in $G_{1} C^{\diamond} G_{2}, N_{G_{1}} C_{C_{2}}^{\diamond}(u, v)=\left\{\operatorname{CN}_{G_{1}}(u) \times C N_{G_{2}}(v)\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\}$.

Proof. From Definition 10, a vertex $\left(u_{i}, v_{j}\right) \in N{ }_{G_{1} C^{\diamond}}(u, v), 1 \leq i \leq p_{1}, 1 \leq j \leq p_{2}$, if and only if u_{1} is coneighbor to u_{2} in G_{1} and v_{1} is coneighbor to v_{2} in G_{2} or $u_{1} \equiv u_{2}$ in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}. That is, if and only if $\left(u_{i}, v_{j}\right) \in N_{G_{1}} C^{\diamond} \quad(u, v)=\left\{C N_{G_{1}}(u) \times C N_{G_{2}}(v)\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\}$.
Theorem 12. The size of $G_{1} C^{\diamond} G_{2}$ is given by

$$
q\left(G_{1} C^{\diamond} G_{2}\right)=2 \Delta_{1} \Delta_{2}+p_{1} \Delta_{2}
$$

Proof. By Theorem 11, we have $N{ }_{G_{1}} C^{\diamond} G_{G_{2}}(u, v)=\left\{C N_{G_{1}}(u) \times C N_{G_{2}}(v)\right\} \cup\left\{\{u\} \times C N_{G_{2}}(v)\right\}$
Hence,

$$
\left|N_{G_{1}}{C^{\diamond}}_{G_{2}}(u, v)\right|=\left|C N_{G_{1}}(u)\right|\left|C N_{G_{2}}\right|+\left|C N_{G_{2}}(v)\right|
$$

Therefore,

$$
\operatorname{deg}{ }_{G_{1}} C^{\diamond} G_{G_{2}}(u, v)=\operatorname{deg}\left(C N_{G_{1}}(v)\right) \operatorname{deg}\left(C N_{G_{2}}(v)\right)+\operatorname{deg}\left(C N_{G_{2}}(v)\right)
$$

As a result, we have

$$
\begin{gathered}
\sum_{u \in G_{1}} \sum_{v \in G_{2}} \operatorname{deg}{\underset{G_{1}}{ } C^{\diamond}}^{C_{2}}(u, v)=\sum_{v \in G_{2}} \sum_{u \in G_{1}} \operatorname{deg}\left(C N_{G_{1}}(v)\right) \operatorname{deg}\left(C N_{G_{2}}(v)\right) \\
\quad+\sum_{u \in G_{1}} \sum_{v \in G_{2}} \operatorname{deg}\left(C N_{G_{2}}(v)\right)
\end{gathered}
$$

By Theorem 1 and 2, we get

$$
2 q\left(G_{1} \square C^{\diamond} G_{2}\right)=\operatorname{deg}_{G_{1}}(u) \Delta_{1} \operatorname{deg}_{G_{2}}(u) \Delta_{2}+p_{1} \operatorname{deg}_{G_{2}}(v) \Delta_{2}
$$

If u and v are coneighbor vertices in G_{1} or G_{2}, then there exists an edge between them in $G_{1} C^{\diamond} G_{2}$, so we have $2 q\left(G_{1} \boxed{C^{\diamond}} G_{2}\right)=4 \Delta_{1} \Delta_{2}+2 p_{1} \Delta_{2}$. Hence, $q\left(G_{1} \boxed{C^{\diamond}} G_{2}\right)=2 \Delta_{1} \Delta_{1}+p_{1} \Delta_{2}$.
Proposition 10. The coneighbor matrix of $G_{1} \triangle C^{\diamond} G_{2}$ is given by

$$
\operatorname{con}\left(G_{1} C^{\diamond} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes \operatorname{con}\left(G_{2}\right)\right)+\left(I_{p_{1}} \otimes \operatorname{con}\left(G_{2}\right)\right)
$$

Proof. Follows from Definition 10.
It is not difficult to show that $P_{3} C^{\diamond} C_{4} \not \equiv C_{4} C^{\diamond} P_{3}$.
Example 6. consider the following graphs.
We have $p\left(G_{1} C^{\diamond} G_{2}\right)=p_{1} p_{2}=(4)(5)=20$ and $q\left(G_{1} \square C^{\diamond} G_{2}\right)=p_{1} \Delta_{2}+2 \Delta_{1} \Delta_{2}=4(4)+2(2)(4)=32$.
The graph $G_{1} C^{\diamond} G_{2}$ is given below:
Definition 11.Let G_{1} and G_{2} be two graphs, the coneighbor skew product of graphs G_{1} and G_{2} is the graph denoted by $G_{1} C^{\star} G_{2}$ whose vertex set is $V_{1} \times V_{2}$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} C^{\star} G_{2}$ if and only if
either:

1. u_{1} is coneighbor to u_{2} in G_{1} and v_{1} is coneighbor to v_{2} in G_{2}, or 2. u_{1} is coneighbor to u_{2} in G_{1} and $v_{1} \equiv v_{2}$ in G_{2}.

In $G_{1} C^{\diamond} G_{2}$, the following statements are true:

1. $p\left(G_{1} \square C^{*}\right)=p_{1} \times p_{2}$.
$2 . G_{1} C^{\star} G_{2} \not \approx G_{2} C^{\star} G_{1}$.
3.If G_{1} and G_{2} are coneighbor or non-coneighbor graphs, then $G_{1} C^{\star} G_{2}$ is disconnected.
4.If G_{1} is non-coneighbor graph, then $G_{1} C^{\bullet} G_{2}$ is null graph of order $p_{1} \times p_{2}$.
5.If G_{1} and G_{2} are non-coneighbor graphs, then $G_{1} C^{\star} G_{2}$ is null graph of order $p_{1} \times p_{2}$.

Theorem 13. For each vertex (u, v) in $G_{1} C^{\star} G_{2}, N_{G_{1}} \square_{C^{\bullet}}(u, v)=\left\{\operatorname{CN}_{G_{1}}(u) \times C N_{G_{2}}(v)\right\} \cup\left\{C N_{G_{1}}(u) \times\{v\}\right\}$.
Proof. From Definition 11, a vertex $\left(u_{i}, v_{j}\right) \in N \underset{G_{1} C^{\bullet}}{ }(u, v), 1 \leq i \leq p_{1}, 1 \leq j \leq p_{2}$, if and only if u_{i} is coneighbor to u in G_{1} and v_{j} is coneighbor to v in G_{2} or u_{i} is coneighbor to u in G_{1} and $v_{j} \equiv v_{2}$ in G_{2}. That is, if and only if $\left(u_{i}, v_{j}\right) \in N_{G_{1}} C^{\bullet} \quad(u, v)=\left\{\operatorname{CN}_{G_{1}}(u) \times C N_{G_{2}}(v)\right\} \cup\left\{C N_{G_{1}}(u) \times\{v\}\right\}$.

Theorem 14. The size of $G_{1} C^{\star} G_{2}$ is given by
$q\left(G_{1} \square C^{\star} G_{2}\right)=2 \Delta_{1} \Delta_{2}+p_{2} \Delta_{1}$.

Proof. By Theorem 13, we have

$$
\stackrel{N}{G_{1} C^{\bullet}}{ }_{G_{2}}(u, v)=\left\{C N_{G_{1}}(u) \times C N_{G_{2}}(v)\right\} \cup\left\{C N_{G_{1}}(u) \times\{v\}\right\} .
$$

Hence,

$$
\left\lvert\, \begin{aligned}
N_{G_{1}} C^{\bullet} & (u, v)\left|=\left|C N_{G_{1}}(u)\right|\right| C N_{G_{2}}\left|+\left|C N_{G_{1}}(u)\right| .\right.
\end{aligned}\right.
$$

Consequently,

$$
\operatorname{deg}_{G_{1}} C^{\star}(u, v)=\operatorname{deg}\left(C N_{G_{1}}(v)\right) \operatorname{deg}\left(C N_{G_{2}}(v)\right)+\operatorname{deg}\left(C N_{G_{1}}(u)\right)
$$

Therefore, we have

$$
\begin{aligned}
\sum_{u \in G_{1}} \sum_{v \in G_{2}} d e g \underbrace{}_{G_{1}} \square^{\bullet} & (u, v)=\sum_{v \in G_{2}} \sum_{u \in G_{1}} \operatorname{deg}\left(C N_{G_{1}}(v)\right) \operatorname{deg}\left(C N_{G_{2}}(v)\right) \\
& +\sum_{u \in G_{1}} \sum_{v \in G_{2}} \operatorname{deg}\left(C N_{G_{1}}(u)\right)
\end{aligned}
$$

By Theorem 1 and 2, we have

$$
2 q\left(G_{1} \longrightarrow C^{\bullet} G_{2}\right)=\operatorname{deg}_{G_{1}}(u) \Delta_{1} \operatorname{deg}_{G_{2}}(u) \Delta_{2}+p_{2} \operatorname{deg}_{G_{1}}(u) \Delta_{1}
$$

If u and v are coneighbor vertices in G_{1} or G_{2}, then there exists an edge between them in $G_{1} C^{\star} G_{2}$, so we have $2 q\left(G_{1} C^{\star} G_{2}\right)=4 \Delta_{1} \Delta_{2}+2 p_{2} \Delta_{1}$. Hence, $q\left(G_{1} C^{\star} G_{2}\right)=2 \Delta_{1} \Delta_{1}+p_{2} \Delta_{1}$.

Proposition 11. The coneighbor matrix of $G_{1} C^{\star} G_{2}$ is given by
$\operatorname{con}\left(G_{1} C^{\star} G_{2}\right)=\left(\operatorname{con}\left(G_{1}\right) \otimes \operatorname{con}\left(G_{2}\right)\right)+\left(\operatorname{con}\left(G_{1}\right) \otimes I_{p_{2}}\right)$.
Proof. Follows directly from Definition 11.
It is easy to show that $P_{3} C^{\star} C_{4} \not \not C_{4} C^{\star} P_{3}$.
Example 7. Consider the graphs $G_{1}=G_{2}=P_{3}$ as shown below

Then $p\left(G_{1} C^{\star} G_{2}\right)=p_{1} p_{2}=(3)(3)=9$ and $q\left(\left(G_{1} C^{\star} G_{2}\right)=p_{2} \Delta_{1}+2 \Delta_{1} \Delta_{2}=3(1)+2(1)(1)=5\right.$. The graph $G_{1} C^{\star} G_{2}$ is shown below:

4 Conclusion

In this paper, we introduced and studied some new products in theory of undirected graphs and presented some properties of new products, also showed that the size of their new products. Some examples are explained.

References

[1] B.Rangaswami and K. Ranganathan. A textbook of graph theory. Springer Science and Business Media (2012).
[2] I.Wilfried, S. Klavzar and D. F. Rall. Topics in graph theory: Graphs and their Cartesian product. CRC Press, (2008).
[3] Y. Shibata and Y. Kikuchi. Graph products based on the distance in graphs.IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences 83 (2000), 459-464.
[4] D. M. Schneider, M. Steeg and F. H. Young. Linear Algebra. New York: Macmillan, (1982).
[5] F. Harary. Graph Theory, Addison-Wesley, Reading, MA, (1969).
[6] F. Harary and G. W. Wilcox. Boolean operations on graphs. Mathematica Scandinavica (1967), 41-51.
[7] R. H.Hammack, W.Imrich, S. Klav $\AA \not{ }^{3} / 4$ ar, W. Imrich and S. Klav $\AA \not{ }^{3} / 4$ ar. Handbook of product graphs . Boca Raton CRC press 2 (2011).
[8] I. Nechirvan Badal. On the coneighbor eigenvalues and coneighbor energy of a graph.General Letters in Mathematics 9 (2020), 67-73.
[9] E. M. El-Kholy, E. S. Lashin and S. N. Daoud, New operations on graphs and graph foldings, International Mathematical Forum, 7 (2012).

[^0]: * Corresponding author e-mail: aliasbkhalaf@uod.ac

