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Abstract: The literature offers varying and in general incompatible definitions of the cross-correlation function Rxy(n,m) and its
jointly wide-sense stationary special case Rxy(m). The choice of definition has consequences for results involving the cross-spectral
density function S̃xy(ω), and the more general Z-transform density Šxy(z). In some stochastic processing systems involving simple
additive noise or even additive noise combined with non-linear operations, these varying definitions lead to identical results. In some
other systems involving nonlinear and linear parallel operations, including those involving system identification problems, results
differ.

1 Introduction

The literature offers varying and in general incompatible definitions of the cross-correlation function Rxy(n,m) and its
jointly wide-sense stationary (Definition 6 page 20) special case Rxy(m). The choice of definition has consequences for results

involving the cross-spectral density function S̃xy(ω), which is defined as the Discrete-time Fourier Transform of Rxy(m),

as well as the more general Šxy(z), which is defined as the Z-Transform of Rxy(m):

Definition 1.[19, page 265], [12, page 52], [2, page 50], [4, page 118]

Šxy(z) ≜ ZRxy(m) ≜
∑
m∈Z

Rxy(m)z−m

︸ ︷︷ ︸
Z-Transform of Rxy(m)

S̃xy(ω) ≜ F̆Rxy(m) ≜
∑
m∈Z

Rxy(m)e−iωm

︸ ︷︷ ︸
Discrete-time Fourier Transform of Rxy(m)

2 Definitions

Here is a very limited overview of definitions of Rxy(m) in the literature:

References that put the conjugate ∗ on y:

• Papoulis [19, page 263] Rxy(m) ≜ E{x(m) y∗(0)}
• Cadzow [7, page 341] rxy(m) ≜ E[x(m) y∗(0)]

• MatLab [16, 17] Rxy(m) ≜ E{xn+my∗n}
References that put the conjugate ∗ on x:

• Kay [12, page 52] rxy[m] ≜ E{x∗[0]y[m]}

• Weisstein [25, page 594]1 f ⋆ g ≜
∫ ∞

−∞
f̄(τ)g(t+ τ) τ
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• Leuridan et al. [15, page 2](7) GXY1 ≜
∑

X∗
1Y

References that use no conjugate:

• Bendat and Piersol [4, page 111] Rxy(m) ≜ E[x(0) y(m)]

• Helstrom [10, page 369] Rxy(t1, t2) ≜ E[x(t1) y(t2)]

• Proakis and Manolakis [20, page A4] γxy(t1, t2) ≜ E(Xt1Yt2)

• Shin and Hammond [22, page 280] Rxy(τ) ≜ E[x(t)y(t+ τ)]

• Bracewell [5, page 46]2 g∗ ⋆ h ≜
∫ ∞

−∞
g∗(u)h(u+ x) u

In this paper, each sequence (Definition 7 page 20) mentioned hereafter is assumed to be an element of the space of
all absolutely square summable sequences ℓ2C (Definition 8 page 20). Furthermore, the random sequences Lx(n)Mn∈Z and
Ly(n)Mn∈Z are assumed to be jointly wide-sense stationary (Definition 6 page 20).

In terms of the expectation operator E (Definition 4 page 19), there are a total of eight choices for defining the cross-
correlation Rxy(m) of complex-valued jointly wide-sense stationary (Definition 6 page 20) sequences Lx(n)Mn∈Z and Ly(n)Mn∈Z.
There are eight because each of the two sequences may be defined with or without the conjugate operator ∗, and one
sequence may lead or lag the other (2 × 2 × 2 = 8). Definition 2 (next) provides a formalized list of the eight possible
definitions.

Definition 2.

(1). Papoulis: Rxy(m) ≜ E[x (m)y∗(0 )] (5). Bendat-Piersol:3 Rxy(m) ≜ E[x (0) y (m)]

(2). Kay: Rxy(m) ≜ E[x∗(0) y (m)] (6). alt-BP: Rxy(m) ≜ E[x (m)y (0 )]

(3). alt-Papoulis: Rxy(m) ≜ E[x (0) y∗(m)] (7). BP-star: Rxy(m) ≜ E[x∗(0) y∗(m)]

(4). alt-Kay: Rxy(m) ≜ E[x∗(m)y (0 )] (8). alt-BP-star: Rxy(m) ≜ E[x∗(m)y∗(0 )]

3 Results

Remark.

The 8 definitions of Rxy(m) listed in Definition 2 yield . . .
• 2 relations on the pair

(
Ryx(m),Rxy(m)

)
(Lemma 1 page 3)

• 2 relations on the pair
(
Šxy(z), Šyx(z)

)
(Proposition 1 page 3)

• 4 relations on the triple
(
Šxy(z), Ȟ(z), Šxx(z)

)
(Proposition 2 page 4)

• 3 relations on the triple
(
S̃yy(ω), H̃(ω), S̃xx(ω)

)
(Corollary 2 page 7)

• only 4 cases in which S̃xx(ω) is guarenteed to be real-valued (Corollary 1 page 4)

Remark.

Moreover, if Lx(n)M and Ly(n)M are real-valued, the 8 definitions of Rxy(m) yield . . .
• 1 relation on

(
Rxy(m),Ryx(m)

)
(Corollary 3 page 8)

• 1 relation on
(
Šxy(z), Šyx(z)

)
(Proposition 3 page 8)

• 2 relations on
(
Šxy(z), Ȟ(z), Šxx(z)

)
(Proposition 4 page 9)

• 2 relations on
(
S̃xy(ω), H̃(ω), S̃xx(ω)

)
(Corollary 4 page 10)

• 1 relation on
(
Šyy(z), Ȟ(z), Šxx(z)

)
(Proposition 4 page 9)

• 1 relation on
(
S̃yy(ω), H̃(ω), S̃xx(ω)

)
(Corollary 4 page 10)

1 Bracewell and Weisstein here use the integral operator
∫
Rx rather than the expectation operator E. That is, they use a time

average rather than an ensemble average. But in essence, the two types of operators are “the same” because both types represent
inner products. That is,

∫
x∈R f(x) g

∗(x) x ≜ ⟨f(x) | g(x)⟩1 and E [x(t) y∗(t)] ≜ ⟨x(t) | y(t)⟩2 (both are inner products, but operate in
perpendicular orientations across the ensemble plane).

2 Note that Bracewell’s “Pentagram notation for cross correlation” g∗⋆h =
∫∞
−∞ g∗(u)h(u+x) u implies g⋆h =

∫∞
−∞ g(u)h(u+x) u

(and hence in the “References that use no conjugate” category).
3 Note that Bendat and Piersol are well known and highly cited for their work related to random vibration testing. In this field,

data samples are customarily collected using an analog-to-digital converter (ADC) and as such, for this application (in contrast
to wireless communication applications involving phase discriminating PSK or QAM), are customarily real-valued. Therefore, it is
very understandable that these authors would define Rxy(m) without any conjugate operator.
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Lemma 1.Let (1)–(8) below correspond to the eight definitions of Rxy(m) in Definition 2.

(1), (2), (3), or (4) =⇒ Ryx(m) = Rxy
∗(−m) and Rxx(−m) = Rxx

∗(m) ( conjugate symmetric)

(5), (6), (7), or (8) =⇒ Ryx(m) = Rxy (−m) and Rxx(−m) = Rxx (m) ( symmetric)

Proof.

(1). Ryx(m) ≜ E [y(m) x∗(0)] by Papoulis’ definition of Rxy(m) (Definition 2 page 2)

= (E [x(0) y∗(m)])
∗

by antiautomorphic property of *-algebras (Definition 11 page 24)

= (E [x(0−m) y∗(m−m)])
∗

by wide sense stationary property

≜ Rxy
∗(−m) by Papoulis’ definition of Rxy(m) (Definition 2 page 2)

Rxx(−m) ≜ Rxy(−m)|y=x = Ryx
∗(m)|y=x = Rxx

∗(m)

(2). Ryx(m) ≜ E [y∗(0) x(m)] = (E [x∗(m) y(0)])
∗

= (E [x∗(m−m) y(0−m)])
∗ ≜ Rxy

∗(−m)

(3). Ryx(m) ≜ E [y(0) x∗(m)] = (E [x(m) y∗(0)])
∗

= (E [x(m−m) y∗(0−m)])
∗ ≜ Rxy

∗(−m)

(4). Ryx(m) ≜ E [y∗(m) x(0)] = (E [x∗(0) y(m)])
∗

= (E [x∗(−m) y(0)])
∗ ≜ Rxy

∗(−m)

(5). Ryx(m) ≜ E [y(0) x(m)] = E [x(m) y(0)] = E [x(m−m) y(0−m)] ≜ Rxy(−m)

(6). Ryx(m) ≜ E [y(m) x(0)] = E [x(0) y(m)] = E [x(0−m) y(m−m)] ≜ Rxy(−m)

(7). Ryx(m) ≜ E [y∗(0) x∗(m)] = E [x∗(m) y∗(0)] = E [x∗(m−m) y∗(0−m)] ≜ Rxy(−m)

(8). Ryx(m) ≜ E [y∗(m) x∗(0)] = E [x∗(0) y∗(m)] = E [x∗(0−m) y∗(m−m)] ≜ Rxy(−m)

Proposition 1.Let (1)–(8) correspond to the eight definitions of Rxy(m) in Definition 2.
Let H be a linear time-invariant (LTI) operator with impulse response Lh(n)M on a wide-

sense stationary sequence Lx(n)M yielding a sequence Ly(n)M ≜ LHx(n)M. Let Ȟ(z) be the
Z-Transform of Lh(n)M.

�̂�(𝑧)𝒙(𝑛) 𝒚(𝑛)

(1), (2), (3), or (4) =⇒ Šyx(z) = Šxy
∗( 1

z∗

)
and Šxx(z) = Šxx

∗( 1
z∗

)
(5), (6), (7), or (8) =⇒ Šyx(z) = Šxy

(
1
z

)
and Šxx(z) = Šxx

(
1
z

)

Proof.

(1)− (4) : Šyx(z) ≜ ZRyx(m) by definition of Šxy(z)

≜
∑
m∈Z

Ryx(m)z−m by definition of Z (Definition 10 page 21)

=
∑
m∈Z

Rxy
∗(−m)z−m by conjugate symmetry property (Lemma 1 page 3)

=

[∑
m∈Z

Rxy(−m)(z∗)−m

]∗
by antiautomorphic property of *-algebras (Definition 11 page 24)

=

∑
−p∈Z

Rxy(p)(z
∗)p

∗

where p ≜ −m =⇒ m = −p

=

∑
p∈Z

Rxy(p)(z
∗)p

∗

because Lx(n)M, Ly(n)M ∈ ℓ2C (Definition 8 page 20)

=

∑
p∈Z

Rxy(p)

(
1

z∗

)−p
∗

≜ Šxy
∗
(

1

z∗

)
by definition of Šxy(z) (Definition 1 page 1)
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(1)− (4) : Šxx
∗
(z) ≜

[
Šyx(z)

]∗
y=x

=

[
Šxy

∗
(

1

z∗

)]∗
y=x

=

[
Šxx

∗
(

1

z∗

)]∗
= Šxx

(
1

z∗

)
(5)− (8) : Šyx(z) =

∑
m∈Z

Rxy(−m)z−m =
∑
−p∈Z

Rxy(p)z
p =

∑
p∈Z

Rxy(p)

(
1

z

)−p

≜ Šxy

(
1

z

)

(5)− (8) : Šxx(z) = Šyx(z)
∣∣
y=x

= Šxy

(
1

z

)∣∣∣∣
y=x

= Šxx

(
1

z

)∣∣∣∣ = Šxx

(
1

z

)

Corollary 1.Let L(1), (2), · · · (8)M, H, Lh(n)M, Lx(n)M, and Ly(n)M be defined as in Proposition 1. Let H̃(ω) be the DTFT
(Definition 1 page 1) of Lh(n)M.

{(1), (2), (3), or (4)} =⇒ {S̃xx
∗
(ω) = S̃xx(ω) (S̃xx(ω) is real-valued) }

{(1), (2), (3), or (4)} =⇒ {S̃yx(ω) = S̃xy
∗
(ω)

{(5), (6), (7), or (8)} =⇒ {S̃yx(ω) = S̃xy(−ω)

Proof.

(1)–(4) S̃xx
∗
(ω) = Šxx

∗
(z)
∣∣∣
z=eiω

= Šxx
∗
(

1

z∗

)∣∣∣∣
z=eiω

by Proposition 1︷ ︸︸ ︷
= Šxx (z)

∣∣
z=eiω

= S̃xx(ω)

(1)–(4) S̃yx(ω) = Šyx (z)
∣∣
z=eiω

= Šxy
∗
(

1

z∗

)∣∣∣∣
z=eiω

= Šxy
∗ (

eiω
)

= S̃xy
∗
(ω)

(5)–(8) S̃yx(ω) = Šyx (z)
∣∣
z=eiω

= Šxy

(
1

z

)∣∣∣∣
z=eiω︸ ︷︷ ︸

by Proposition 1

= Šxy
(
e−iω

)
= S̃xy(−ω)

Proposition 2.Let (1)–(8) below correspond to the eight definitions of Rxy(m) in Definition 2.

(1) =⇒ Šxy(z) = Ȟ
∗( 1

z∗

)
Šxx(z) and Šyy(z) = Ȟ (z) Šxy(z) = Ȟ (z) Ȟ

∗( 1
z∗

)
Šxx(z)

(2) =⇒ Šxy(z) = Ȟ (z) Šxx(z) and Šyy(z) = Ȟ
∗( 1

z∗

)
Šxy(z) = Ȟ (z) Ȟ

∗( 1
z∗

)
Šxx(z)

(3) =⇒ Šxy(z) = Ȟ
∗
(z∗) Šxx(z) and Šyy(z) = Ȟ

(
1
z

)
Šxy(z) = Ȟ

∗
(z∗)Ȟ

(
1
z

)
Šxx(z)

(4) =⇒ Šxy(z) = Ȟ
(
1
z

)
Šxx(z) and Šyy(z) = Ȟ

∗
(z∗) Šxy(z) = Ȟ

∗
(z∗)Ȟ

(
1
z

)
Šxx(z)

(5) =⇒ Šxy(z) = Ȟ (z) Šxx(z) and Šyy(z) = Ȟ
(
1
z

)
Šxy(z) = Ȟ (z) Ȟ

(
1
z

)
Šxx(z)

(6) =⇒ Šxy(z) = Ȟ
(
1
z

)
Šxx(z) and Šyy(z) = Ȟ (z) Šxy(z) = Ȟ (z) Ȟ

(
1
z

)
Šxx(z)

(7) =⇒ Šxy(z) = Ȟ
∗
(z∗) Šxx(z) and Šyy(z) = Ȟ

∗( 1
z∗

)
Šxy(z) = Ȟ

∗
(z∗)Ȟ

∗( 1
z∗

)
Šxx(z)

(8) =⇒ Šxy(z) = Ȟ
(
1
z

)
Šxx(z) and Šyy(z) = Ȟ (z) Šxy(z) = Ȟ (z) Ȟ

(
1
z

)
Šxx(z)
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Proof.

(1). Šyt(z) ≜ ZRyt(m) by definition of Šty(z) (Definition 1 page 1)

≜ ZE [y(m) t∗(0)] by Papoulis’ definition of Rty(m) (Definition 2 page 2)

= ZE

[(∑
k∈Z

h(k) x(m− k)

)
t∗(0)

]
by linear time-invariant property of H

= Z
∑
k∈Z

h(k) E [x(m− k) t∗(0)] by linearity of E (Proposition 11 page 20)

≜ Z
∑
k∈Z

h(k)Rxt(m− k) by Papoulis’ definition of Rty(m) (Definition 2 page 2)

≜ Z [h(m) ⋆ Rxt(m)] by definition of convolution (Definition 9 page 20)

= [Zh(m)][ZRxt(m)] by convolution theorem (Proposition 13 page 23)

≜ Ȟ(z) Šxt(z) by definitions of Ȟ(z) and Šxt(z) (Definition 1 page 1)

Šxy(z) = Šyx
∗
(

1

z∗

)
(by Proposition 1) ≜ Šyt

∗
(

1

z∗

)∣∣∣∣
t≜x

= Ȟ
∗
(

1

z∗

)
Šxx

∗
(

1

z∗

)
= Ȟ

∗
(

1

z∗

)
Šxx(z)

Šyy(z) ≜ Šyt(z)
∣∣
t≜y

= Ȟ(z) Šxt (z)
∣∣
t≜y

= Ȟ(z) Šxy (z) = Ȟ(z) Ȟ
∗
(

1

z∗

)
Šxx(z)

(2). Šty(z) ≜ ZRty(m) ≜ ZE [t∗(0) y(m)] = ZE [t∗(0)(h(m) ⋆ x(m))]

= ZE

[
t∗(0)

(∑
k∈Z

h(k) x(m− k)

)]
= Z

(∑
k∈Z

h(k) E [t∗(0) x(m− k)]

)
≜ Z

(∑
k∈Z

h(k)Rtx(m− k)

)
≜ Z (h(m) ⋆ Rtx(m)) = [Z h(m)][ZRtx(m)] ≜ Ȟ(z) Štx(z)

Šxy(z) ≜ Šty
∣∣
t=x

= Ȟ(z) Štx(z)
∣∣
t=x

= Ȟ(z) Šxx(z)

Šyy(z) ≜ Šty(z)
∣∣
t≜y

= Šyt
∗
(

1

z∗

)∣∣∣∣
t≜y

= Ȟ(z) Štx(z)
∣∣
t≜y

= Ȟ(z) Šyx(z) = Ȟ(z) Šxy
∗
(

1

z∗

)

= Ȟ(z) Ȟ
∗
(

1

z∗

)
Šxx

∗
(

1

z∗

)
= Ȟ(z) Ȟ

∗
(

1

z∗

)
Šxx(z) by Proposition 1

(3). Šty(z) ≜ ZRty(m) ≜ ZE [t(0) y∗(m)] = ZE

(
t(0)

[∑
k∈Z

h(k) x(m− k)

]∗)

= ZE

[
t(0)

∑
k∈Z

h∗(k) x∗(m− k)

]
= Z

∑
k∈Z

h∗(k) E [t(0) x∗(m− k)] ≜ Z
∑
k∈Z

h∗(k)Rtx(m− k)

≜ Z [h∗(m) ⋆ Rtx(m)] = [Z h∗(m)][ZRtx(m)] = Ȟ
∗
(z∗) Štx (z) by Proposition 12 page 21

Šxy(z) ≜ Šty(z)
∣∣
t=x

= Ȟ
∗
(z∗) Štx(z)

∣∣∣
t=x

= Ȟ
∗
(z∗) Šxx(z)

Šyy(z) ≜ Šty(z)
∣∣
t=y

= Ȟ
∗
(z∗) Štx (z)

∣∣∣
t=y

= Ȟ
∗
(z∗) Šyx (z) = Ȟ

∗
(z∗) Šxy

∗
(

1

z∗

)

= Ȟ
∗
(z∗) Ȟ

(
1

z

)
Šxx

∗
(

1

z∗

)
= Ȟ

∗
(z∗) Ȟ

(
1

z

)
Šxx(z)
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(4). Šyt(z) ≜ ZRyt(m) ≜ ZE [y∗(m) t(0)] = ZE

[[∑
k∈Z

h(k) x(m− k)

]∗
t(0)

]
= Z

∑
k∈Z

h∗(k) E [x∗(m− k) t(0)] = Z
∑
k∈Z

h∗(k)Rxt(m− k) ≜ Z [h∗(m) ⋆ Rxt(m)]

= [Z h∗(m)][ZRxt(m)] = Ȟ
∗
(z∗) Šxt(z) by Proposition 12 page 21

Šxy(z) = Šyx
∗
(

1

z∗

)
≜ Šyt

∗
(

1

z∗

)∣∣∣∣
t=x

= Ȟ

(
1

z

)
Šxt

∗
(

1

z∗

)∣∣∣∣
t=x

≜ Ȟ

(
1

z

)
Šxx

∗
(

1

z∗

)
= Ȟ

(
1

z

)
Šxx(z) by Proposition 1

Šyy(z) ≜ Šyt(z)
∣∣
t=y

= Ȟ
∗
(z∗) Šxt(z)

∣∣∣
t=y

= Ȟ
∗
(z∗) Šxy(z) = Ȟ

∗
(z∗) Ȟ

(
1

z

)
Šxx(z)

(5). Šty(z) ≜ ZRty(m) ≜ ZE [t(0) y(m)]

= ZE

[
t(0)

(∑
k∈Z

h(k) x(m− k)

)]
= Z

∑
k∈Z

h(k) E [t(0) x(m− k)] ≜ Z
∑
k∈Z

h(k)Rtx(m− k)

≜ Z [h(m) ⋆ Rtx(m)] [Z h(m)][ZRtx(m)] = Ȟ(z) Štx(z)

Šxy(z) ≜ Šty(z)
∣∣
t=x

= Ȟ(z) Štx(z)
∣∣
t=x

= Ȟ(z) Šxx(z)

Šyy(z) = Šyy

(
1

z

)
≜ Šty

(
1

z

)∣∣∣∣
t=y

= Ȟ

(
1

z

)
Štx

(
1

z

)∣∣∣∣
t=y

= Ȟ

(
1

z

)
Šyx

(
1

z

)

= Ȟ

(
1

z

)
Šxy(z) = Ȟ

(
1

z

)
Ȟ(z) Šxx(z) = Ȟ(z) Ȟ

(
1

z

)
Šxx(z)

(6). Šyt(z) ≜ ZRyt(m) ≜ ZE [y(m) t(0)] = ZE

[(∑
k∈Z

h(k) x(m− k)

)
t(0)

]
= Z

∑
k∈Z

h(k) E [x(m− k) t(0)] ≜ Z
∑
k∈Z

h(k)Rxt(m− k)

≜ Z [h(m) ⋆ Rxt(m)] = Z [h(m)][ZRxt(m)] = Ȟ(z) Šxt(z)

Šxy(z) = Šyx

(
1

z

)
≜ Šyt

(
1

z

)∣∣∣∣
t=x

= Ȟ

(
1

z

)
Šxt

(
1

z

)∣∣∣∣
t=x

= Ȟ

(
1

z

)
Šxx

(
1

z

)
= Ȟ

(
1

z

)
Šxx(z)

Šyy(z) ≜ Šyt(z)
∣∣
t=y

= Ȟ(z) Šxt(z)
∣∣
t=y

= Ȟ(z) Šxy(z) = Ȟ(z) Ȟ

(
1

z

)
Šxx(z)

(7). Šty(z) ≜ ZRty(m) ≜ ZE [t∗(0) y∗(m)] = ZE

[
t∗(0)

(∑
k∈Z

h(k) x(m− k)

)∗]
= Z

∑
k∈Z

h∗(k) E [t∗(0) x∗(m− k)] ≜ Z
∑
k∈Z

h∗(k)Rtx(m− k)

≜ Z [h∗(m) ⋆ Rtx(m)] = [Z h∗(m)][ZRtx(m)] = Ȟ
∗
(z∗) Štx(z)

Šxy(z) ≜ Šty(z)
∣∣
t=x

= Ȟ
∗
(z∗) Štx(z)

∣∣∣
t=x

= Ȟ
∗
(z∗) Šxx(z)

Šyy(z) = Šyy

(
1

z

)
≜ Šty

(
1

z

)∣∣∣∣
t=y

= Ȟ
∗
(

1

z∗

)
Štx

(
1

z

)∣∣∣∣
t=y

= Ȟ
∗
(

1

z∗

)
Šyx

(
1

z

)

= Ȟ
∗
(

1

z∗

)
Šxy(z) = Ȟ

∗
(

1

z∗

)
Ȟ

∗
(z∗) Šxx(z) = Ȟ

∗
(z∗) Ȟ

∗
(

1

z∗

)
Šxx(z)
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(8). Šyt(z) ≜ ZRyt(m) ≜ ZE [y∗(m) t∗(0)] = ZE

[(∑
k∈Z

h∗(k) x∗(m− k)

)
t∗(0)

]
= Z

∑
k∈Z

h∗(k) E [x∗(m− k) t∗(0)] ≜ Z
∑
k∈Z

h∗(k)Rxt(m− k)

≜ Z [h(m) ⋆ Rxt(m)] = Z [h(m) ⋆ Rxt(m)] = [Z h(m)][ZRxt(m)]

= Ȟ(z) Šxt(z)

Šxy(z) = Šyx

(
1

z

)
≜ Šyt

(
1

z

)∣∣∣∣
t=x

= Ȟ

(
1

z

)
Šxt

(
1

z

)∣∣∣∣
t=x

= Ȟ

(
1

z

)
Šxx

(
1

z

)
= Ȟ

(
1

z

)
Šxx(z)

Šyy(z) ≜ Šyt(z)
∣∣
t=y

= Ȟ(z) Šxt(z)
∣∣
t=y

= Ȟ(z) Šxy(z) = Ȟ(z) Ȟ

(
1

z

)
Šxx(z)

Remark.Note that in several cases, the results listed in Proposition 2 can be “simplified” (as measured by the number of
glyphs required to render it on a page) by the use of Proposition 1. For example, (1) in Proposition 2 can be simplified
from

Šxy(z) = Ȟ
∗ ( 1

z∗

)
Šxx(z) to Šyx(z) = Ȟ(z) Šxx(z).

However, such simplification arguably obfuscates the relations comparisons listed in Remark 3.

Corollary 2.Let (1)–(8) below correspond to the eight definitions of Rxy(m) in Definition 2.

(1) =⇒ S̃xy(ω) = H̃
∗
( ω)S̃xx(ω) and S̃yy(ω) = H̃ ( ω)S̃xy(ω) = |H̃ ( ω)|2 S̃xx(ω)

(2) =⇒ S̃xy(ω) = H̃ ( ω)S̃xx(ω) and S̃yy(ω) = H̃
∗
( ω)S̃xy(ω) = |H̃ ( ω)|2 S̃xx(ω)

(3) =⇒ S̃xy(ω) = H̃
∗
(−ω)S̃xx(ω) and S̃yy(ω) = H̃ (−ω)S̃xy(ω) = |H̃ (−ω)|2 S̃xx(ω)

(4) =⇒ S̃xy(ω) = H̃ (−ω)S̃xx(ω) and S̃yy(ω) = H̃
∗
(−ω)S̃xy(ω) = |H̃ (−ω)|2 S̃xx(ω)

(5) =⇒ S̃xy(ω) = H̃ ( ω)S̃xx(ω) and S̃yy(ω) = H̃ (−ω)S̃xy(ω) = H̃ ( ω) H̃ (−ω)S̃xx(ω)

(6) =⇒ S̃xy(ω) = H̃ (−ω)S̃xx(ω) and S̃yy(ω) = H̃ ( ω)S̃xy(ω) = H̃ ( ω) H̃ (−ω)S̃xx(ω)

(7) =⇒ S̃xy(ω) = H̃
∗
(−ω)S̃xx(ω) and S̃yy(ω) = H̃

∗
( ω)S̃xy(ω) = H̃

∗
( ω) H̃

∗
(−ω)S̃xx(ω)

(8) =⇒ S̃xy(ω) = H̃ (−ω)S̃xx(ω) and S̃yy(ω) = H̃ ( ω)S̃xy(ω) = H̃ ( ω) H̃ (−ω)S̃xx(ω)
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Proof.

(1). S̃xy(ω) = Šxy(z)
∣∣
z=eiω

= Ȟ
∗
(

1

z∗

)
Šxx(z)

∣∣∣∣
z=eiω

by Šxy(z) result (Proposition 2 page 4)

= Ȟ
∗ (

eiω
)
Šxx
(
eiω
)

(evaluation around unit circle in z-plane)

= H̃
∗
(ω) S̃xx(ω) by definition of DTFT (Definition 1 page 1)

S̃yy(ω) = Šyy(z)
∣∣
z=eiω

= Ȟ(z) Šxy(z)
∣∣
z=eiω

by Šxy(z) result (Proposition 2 page 4)

= Ȟ
(
eiω
)
Šxy
(
eiω
)

(evaluation around unit circle in z-plane)

= H̃(ω) S̃xy(ω) by definition of DTFT (Definition 1 page 1)

S̃yy(ω) = Šyy(z)
∣∣
z=eiω

= Ȟ(z) Ȟ
∗
(

1

z∗

)
Šxx

∗
(

1

z∗

)∣∣∣∣
z=eiω

by Šxy(z) result (Proposition 2 page 4)

= Ȟ
(
eiω
)
Ȟ

∗
(

1

e−iω

)
Šxx

∗
(

1

e−iω

)
= Ȟ

(
eiω
)
Ȟ

∗ (
eiω
)
Šxx

∗ (
eiω
)

= H̃ (ω) H̃
∗
(ω) S̃xx

∗
(ω) =

∣∣∣H̃ (ω)
∣∣∣2 S̃xx∗(ω)

=
∣∣∣H̃ (ω)

∣∣∣2 S̃xx(ω) because S̃xx(ω) is real-valued (Corollary 1 page 4)

The other seven sets of proofs follow in like manner.

4 Real-valued x(n) and y(n)

Corollary 3.Let (1)–(8) below correspond to the eight definitions of Rxy(m) in Definition 2.

If Lx(n)M and Ly(n)M are real-valued, then{
each of (1)–(8) =⇒ Rxy

∗(m) = Rxy (m) and Rxx
∗(m) = Rxx(m) ( real-valued) and

each of (1)–(8) =⇒ Ryx(m) = Rxy(−m) and Rxx(−m) = Rxx(m) ( symmetric) .

}

Proof.This follows directly from the real-valued hypothesis, Definition 2, and Lemma 1

Proposition 3.Let (1)–(8) below correspond to the eight definitions of Rxy(m) in Definition 2.

If Lx(n)M and Ly(n)M are real-valued, then

each of (1)–(8) =⇒ Šxy(z) = Šxy
∗
(z∗) = Šyx

(
1
z

)
and Šxx(z) = Šxx

∗
(z∗) = Šxx

(
1
z

)
.
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Proof.

Šxy
∗
(z∗) ≜

[∑
m∈Z

Rxy(m)(z∗)−m

]∗
by definition of Šxy (Definition 1 page 1)

=
∑
m∈Z

Rxy
∗(m)z−m by antiautomorphic property of *-algebras (Definition 11 page 24)

=
∑
m∈Z

Rxy(m)z−m by real-valued hypothesis

≜ Šxy(z) by definition of Šxy(z) (Definition 1 page 1)

≜
∑
m∈Z

Rxy(m)z−m by definition of Šxy(z) (Definition 1 page 1)

=
∑
m∈Z

Ryx(−m)z−m by real-valued hypothesis and Lemma 1 page 3

=
∑
−p∈Z

Ryx(p)z
p where p ≜ −m

=
∑
p∈Z

Ryx(p)z
p because Lx(n)M, Ly(n)M ∈ ℓ2C (Definition 8 page 20)

=
∑
p∈Z

Ryx(p)

(
1

z

)−p

≜ Šyx

(
1

z

)
by definition of Šyx(z) (Definition 1 page 1)

Proposition 4.Let (1)–(8) below correspond to the eight definitions of Rxy(m) in Definition 2.

If Lx(n)M and Ly(n)M are real-valued, then
(1),(4),(6), or (8) =⇒ Šxy(z) = Ȟ

(
1
z

)
Šxx(z) and Šyy(z) = Ȟ (z) Šxy(z) and

(2),(3),(5), or (7) =⇒ Šxy(z) = Ȟ(z) Šxx(z) and Šyy(z) = Ȟ
(
1
z

)
Šxy(z) and

each of (1)–(8) =⇒ Šyy(z) = Ȟ(z) Ȟ
(
1
z

)
Šxx(z) = Ȟ(z) Ȟ

∗ ( 1
z∗

)
Šxx(z) .
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Proof.

(1). Šxy(z) = Šxy
∗
(z∗) by Proposition 3

= Ȟ

(
1

z

)
Šxx

∗
(z∗) by Proposition 2 page 4

= Ȟ

(
1

z

)
Šxx(z) by Proposition 3

Šyy(z) = Ȟ(z) Šxy(z) by Proposition 2 page 4

= Ȟ(z) Ȟ

(
1

z

)
Šxx(z) by Šxy(z) result

= Ȟ(z) Ȟ
∗
(

1

z∗

)
Šxx(z) by Lemma 5 page 23

(2). Šxy(z) = Ȟ(z) Šxx(z) by Proposition 2 page 4

Šyy(z) = Šyy
∗
(z∗) by Proposition 3

= Ȟ

(
1

z

)
Šxy

∗
(z∗) by Proposition 2 page 4

= Ȟ

(
1

z

)
Šxy (z) by Proposition 3

= Ȟ(z) Ȟ

(
1

z

)
Šxx(z) by Šxy(z) result

Šyy(z) = Šyy
∗
(z∗) by Proposition 3

= Ȟ
∗
(z∗) Ȟ

∗
(

1

z∗

)
Šxx

∗
(z∗) by Proposition 3

= Ȟ
∗
(z∗) Ȟ

∗
(

1

z∗

)
Šxx(z) by Proposition 3

= Ȟ(z) Ȟ
∗
(

1

z∗

)
Šxx(z) by Lemma 5 page 23

Corollary 4.Let (1)–(8) below correspond to the eight definitions of Rxy(m) in Definition 2.

If Lx(n)M and Ly(n)M are real-valued, then

(1),(4),(6), or (8) =⇒ S̃xy(ω) = H̃
∗
(ω)S̃xx(ω) and S̃yy(ω) = H̃ (ω)S̃xy(ω) and

(2),(3),(5), or (7) =⇒ S̃xy(ω) = H̃ (ω)S̃xx(ω) and S̃yy(ω) = H̃
∗
(ω)S̃xy(ω) and

each of (1)–(8) =⇒ S̃yy(ω) =
∣∣∣H̃(ω)∣∣∣2 S̃xx(ω) .
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Proof.

(1). S̃xy(ω) = Šxy(z)
∣∣
z=eiω

by definition of DTFT (Definition 1 page 1)

= Ȟ

(
1

z

)
Šxx(z)

∣∣∣∣
z=eiω

by Proposition 4

= Ȟ
(
e−iω

)
Šxx
(
eiω
)

= H̃(−ω) S̃xx(ω) by definition of DTFT (Definition 1 page 1)

= H̃
∗
(ω) S̃xx(ω) by Lemma 6 page 24

The remainder of the proof for Corollary 4 follows in similar fashion.

5 Case studies

It has been suggested by the giants that the usefulness of a mathematical idea can be measured by

• how useful it is in applications4 and
• how well it connects and is connected to the larger web of mathematical ideas.5

As such, this section which presents applications, may prove useful in gauging the usefulness of the preceding sections.

5.1 Case study: Additive noise

Proposition 5.Let S be the system illustrated to the right, where T is an operator
that is not necessarily linear. +𝒙(𝑛) 𝒚(𝑛)

𝒗(𝑛)

 (A). x(n) is WSS and

(B). x(n) and v(n) are uncorrelated and

(C). v(n) is zero-mean

 =⇒



Rxy(m) = Rxx(m) and

Šxy(z) = Šxx(z) and

S̃xy(ω) = S̃xx(ω) and

Ryy(m) = Rxx(m) + Švv(z) and

Šyy(z) = Šxx(z) + Švv(z) and

S̃yy(ω) = S̃xx(ω) + S̃vv(ω)


for all
(1)–(8)

Proof.

(1). Rxy(m) ≜ E [x(m) y∗(0)] by (A) and Papoulis’ definition of Rxy (Definition 2 page 2)

≜ E
(
x(m)[x(0) + v(0)]

∗)
by definition of y

= E [x(m) x∗(0)] + E [x(m) v∗(0)] by linearity of E (Proposition 11 page 20)

= E [x(m) x∗(0)] + E [x(m)] E [v∗(0)] by uncorrelated hypothesis (B)

= E [x(m) x∗(0)] + E [x(m)]�����:0
E [v∗(0)] by zero-mean hypothesis (C)

= Rxx(m) by definition of Rxx (Definition 2 page 2)

4 “I regard as quite useless the reading of large treatises of pure analysis: too large a number of methods pass at once before the
eyes. It is in the works of applications that one must study them; one judges their ability there and one apprises the manner of
making use of them.” —Joseph Louis Lagrange (1736–1813). [23, page xi]

5 “The “seriousness” of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the
significance of the mathematical ideas which it connects. We may say, roughly, that a mathematical idea is “significant” if it can
be connected, in a natural illuminating way, with a large complex of other mathematical ideas.” —G.H. Hardy (1877–1947). [9]
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Ryy(m) ≜ E [y(m) y∗(0)] by (A) and Papoulis’ definition of Ryy

≜ E [(x(m) + v(m))(x(0) + v(0))∗] by definition of y

= E [x(m) x∗(0)] + E [x(m) v∗(0)] + E [v(m) x∗(0)] + E [v(m) v∗(0)]

= E [x(m) x∗(0)] + Ex(m) E v∗(0) + Ev(m) E x∗(0) + E [v(m) v∗(0)] by uncorrelated hypothesis (B)

= E [x(m) x∗(0)] + Ex(m)����:0
Ev∗(0) +����:0

Ev(m) E x∗(0) + E [v(m) v∗(0)] by zero-mean hypothesis (C)

= Rxx(m) + Rvv(m) by Papoulis’ definition of Rxx

(2). Rxy(m) ≜ E [x∗(0) y(m)] ≜ E (x∗(0)[x(m) + v(m)]) = E [x∗(0) x(m)] + E [x∗(0) v(m)] = Rxx(m)

(3). Rxy(m) ≜ E [x(0) y∗(m)] ≜ E
(
x(0)[x(m) + v(m)]

∗)
= E [x(0) x∗(m)] + E [x(0) v∗(m)] = Rxx(m)

(4). Rxy(m) ≜ E [x∗(m) y(0)] ≜ E (x∗(m)[x(0) + v(0)]) = E [x∗(m) x(0)] + E [x∗(m) v(0)] = Rxx(m)

(5). Rxy(m) ≜ E [x(0) y(m)] ≜ E (x(0)[x(m) + v(m)]) = E [x(0) x(m)] + E [x(0) v(m)] = Rxx(m)

(6). Rxy(m) ≜ E [x(m) y(0)] ≜ E (x(m)[x(0) + v(0)]) = E [x(m) x(0)] + E [x(m) v(0)] = Rxx(0)

(7). Rxy(m) ≜ E [x∗(0) y∗(m)] ≜ E (x∗(0)[x∗(m) + v∗(m)]) = E [x∗(0) x(m)] + E [x∗(0) v∗(m)] = Rxx(m)

(8). Rxy(m) ≜ E [x∗(m) y∗(0)] ≜ E (x∗(m)[x∗(0) + v∗(0)]) = E [x∗(m) x(0)] + E [x∗(m) v∗(0)] = Rxx(m)

(2). Ryy(m) ≜ E [y∗(0) y(m)] ≜E ([x(0)+v(0)]∗[x(m)+v(m)]) =Rxx(m)+���: 0
Rxv(m)+���: 0

Rvx(m)+Rvv(m) = Rxx(m) + Rvv(m)

(3). Ryy(m) ≜ E [y(0) y∗(m)] ≜E ([x(0)+v(0)][x(m)+v(m)]∗) =Rxx(m)+���: 0
Rxv(m)+���: 0

Rvx(m)+Rvv(m) = Rxx(m) + Rvv(m)

(4). Ryy(m) ≜ E [y∗(m) y(0)] ≜E ([x(m)+v(m)]∗[x(0)+v(0)]) =Rxx(m)+���: 0
Rxv(m)+���: 0

Rvx(m)+Rvv(m) = Rxx(m) + Rvv(m)

(5). Ryy(m) ≜ E [y(0) y(m)] ≜E ([x(0)+v(0)][x(m)+v(m)]) =Rxx(m)+���: 0
Rxv(m)+���: 0

Rvx(m)+Rvv(m) = Rxx(m) + Rvv(m)

(6). Ryy(m) ≜ E [y(m) y(0)] ≜E ([x(m)+v(m)][x(0)+v(0)]) =Rxx(m)+���: 0
Rxv(m)+���: 0

Rvx(m)+Rvv(m) = Rxx(m) + Rvv(m)

(7). Ryy(m) ≜ E [y∗(0) y∗(m)] ≜E ([x(0)+v(0)]∗[x(m)+v(m)]∗) =Rxx(m)+���: 0
Rxv(m)+���: 0

Rvx(m)+Rvv(m) = Rxx(m) + Rvv(m)

(8). Ryy(m) ≜ E [y∗(m) y∗(0)] ≜E ([x(m)+v(m)]∗[x(0)+v(0)]∗) =Rxx(m)+���: 0
Rxv(m)+���: 0

Rvx(m)+Rvv(m) = Rxx(m) + Rvv(m)

5.2 Case study: Dual additive noise

Proposition 6.Let S be the system illustrated to the right.
+

+

𝒔(𝑛)

𝒚(𝑛)

𝒗(𝑛)

𝒘(𝑛)

𝒓(𝑛)

𝒙(𝑛)


(A). x(n) and t(n) are wide sense stationary and

(B). x(n) and t(n) are uncorrelated and

(C). t(n) and v(n) are uncorrelated and

(D). t(n) and v(n) are uncorrelated and

(E). v(n) and t(n) are zero-mean

 =⇒


Rsy(m) = Rrx(m) and

Šsy(z) = Šrx(z) and

S̃sy(ω) = S̃rx(ω)

 for all
(1)–(8)
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Proof.

(1). Rsy(m) ≜ E [s(m) y∗(0)] by Papoulis’ definition of Rxy (Definition 2 page 2)

≜ E
(
[t(m) + t(m)][x(0) + v(0)]

∗)
by definition of S

= E [t(m) x∗(0)] + E [t(m) v∗(0)] + E [t(m) x∗(0)] + E [t(m) v∗(0)]

= E [t(m) x∗(0)] + E t(m) E v∗(0)

+ E t(m) E x∗(0) + E t(m) E v∗(0) by uncorrelated hypotheses (B), (C), and (D)

= E [t(m) x∗(0)] + E t(m)����:0
Ev∗(0)

+����:0
E t(m) E x∗(0) +����:0

E t(m) E v∗(0) by zero-mean hypothesis (E)

≜ Rrx(m) by definition of Rrx (Definition 2 page 2)

(2). Rsy(m) ≜ E [s∗(0) y(m)] = E
(
[t(0) + t(0)]

∗
[x(m) + v(m)]

)
=Rrx(m)+���: 0

Rrv(m)+����: 0
Rwx(m)+����: 0

Rwv(m) ≜ Rrx(m)

(3). Rsy(m) ≜ E [s(0) y∗(m)] = E
(
[t(0) + t(0)][x(m) + v(m)]

∗)
=Rrx(m)+���: 0

Rrv(m)+����: 0
Rwx(m)+����: 0

Rwv(m) ≜ Rrx(m)

(4). Rsy(m) ≜ E [s∗(m) y(0)] = E
(
[t(m) + t(m)]

∗
[x(0) + v(0)]

)
=Rrx(m)+���: 0

Rrv(m)+����: 0
Rwx(m)+����: 0

Rwv(m) ≜ Rrx(m)

(5). Rsy(m) ≜ E [s(0) y(m)] = E ([t(0) + t(0)][x(m) + v(m)]) =Rrx(m)+���: 0
Rrv(m)+����: 0

Rwx(m)+����: 0
Rwv(m) ≜ Rrx(m)

(6). Rsy(m) ≜ E [s(m) y(0)] = E ([t(m) + t(m)][x(0) + v(0)]) =Rrx(m)+���: 0
Rrv(m)+����: 0

Rwx(m)+����: 0
Rwv(m) ≜ Rrx(m)

(7). Rsy(m) ≜ E [s∗(0) y∗(m)] = E
(
[t(0) + t(0)]

∗
[x(m) + v(m)]

∗)
=Rrx(m)+���: 0

Rrv(m)+����: 0
Rwx(m)+����: 0

Rwv(m) ≜ Rrx(m)

(8). Rsy(m) ≜ E [s∗(m) y∗(0)] = E
(
[t(m) + t(m)]

∗
[x(0) + v(0)]

∗)
=Rrx(m)+���: 0

Rrv(m)+����: 0
Rwx(m)+����: 0

Rwv(m) ≜ Rrx(m)

5.3 Case study: Parallel operators

Proposition 7.Let S be the system illustrated to the right, where T is not
necessarily linear. Let

Lh(n)M ≜ H δ̄(n) ≜
∑
m∈Z

h(m)δ̄(n−m)

be the impulse response of H.

𝐓

𝐇

𝒙(𝑛)

𝒚(𝑛) ≜ 𝐓𝒙(𝑛)

𝒘(𝑛) ≜ 𝐇𝒙(𝑛)

{
(A). x(n) is WSS and

(B). H is LTI

}
=⇒


Šwy(z) = Ȟ(z) Šxy(z) for (1),(3),(5),(6) and

S̃wy(ω) = H̃(ω) S̃xy(ω) for (1),(3),(5),(6) and

Šwy(z) = Ȟ
∗
(z∗) Šxy(z) for (2),(4),(7),(8) and

S̃wy(ω) = H̃
∗
(−ω) S̃xy(ω) for (2),(4),(7),(8)



Proof.

(1). Rwy(m) ≜ E [t(m) y∗(0)] by (A) and Papoulis’ definition of Rwy (Definition 2 page 2)

≜ E ([H x](m) y∗(0)) by definition of S

= HE (x(m) y∗(0)) by LTI hypothesis (B)

≜ HRxy(m) by Papoulis’ definition of Rwy (Definition 2 page 2)

=
∑
n∈Z

h(n)Rxy(m− n) by definition of impulse response Lh(n)M

= [h ⋆Rxy](m) by definition of convolution (Definition 9 page 20)
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(2). Rwy(m) ≜ E [t∗(0) y(m)] ≜ E
(
[H x]

∗
(0) y(m)

)
= H∗ (E [x∗(0) y(m)]) ≜ H∗ Rxy(m) = [h∗ ⋆Rxy](m)

(3). Rwy(m) ≜ E [t(0) y∗(m)] ≜ E ([H x](0) y∗(m)) = H (E [x(0) y∗(m)]) ≜ HRxy(m) = [h ⋆Rxy](m)

(4). Rwy(m) ≜ E [t∗(m) y(0)] ≜ E
(
[H x]

∗
(m) y(0)

)
= H∗ (E [x∗(m) y(0)]) ≜ H∗ Rxy(m) = [h∗ ⋆Rxy](m)

(5). Rwy(m) ≜ E [t(0) y(m)] ≜ E ([H x](0) y(m)) = H (E [x(0) y(m)]) ≜ HRxy(m) = [h ⋆Rxy](m)

(6). Rwy(m) ≜ E [t(m) y(0)] ≜ E ([H x](m) y(0)) = H (E [x(m) y(0)]) ≜ HRxy(m) = [h ⋆Rxy](m)

(7). Rwy(m) ≜ E [t∗(0) y∗(m)] ≜ E
(
[H x]

∗
(0) y∗(m)

)
= H∗ (E [x∗(0) y∗(m)]) ≜ H∗ Rxy(m) = [h∗ ⋆Rxy](m)

(8). Rwy(m) ≜ E [t∗(m) y∗(0)] ≜ E
(
[H x]

∗
(m) y∗(0)

)
= H∗ (E [x∗(m) y∗(0)]) ≜ H∗ Rxy(m) = [h∗ ⋆Rxy](m)

(1), (3), (5), (6). Šwy(z) ≜ ZRwy(m) = Z [h ⋆Rxy](m) = Ȟ(z) Šxy(z)

(2), (4), (7), (8). Šwy(z) ≜ ZRwy(m) = Z [h∗ ⋆Rxy](m) = Ȟ
∗
(z∗) Šxy(z) by Proposition 12 page 21

(1), (3), (5), (6). S̃wy(ω) ≜ F̆Rwy(m) = F̆ [h ⋆Rxy](m) = H̃(ω) S̃xy(ω)

(2), (4), (7), (8). S̃wy(ω) ≜ F̆Rwy(m) = F̆ [h∗ ⋆Rxy](m) = H̃
∗
(−ω) S̃xy(ω) by Proposition 12 page 21

5.4 Case study: Operator with measurement noise

Lemma 2.Let S be the system illustrated to the right, where T is not
necessarily linear. 𝐓 +𝒙(𝑛) 𝒚(𝑛)

𝒗(𝑛)

𝒒 = 𝐓𝒙 (A). x(n) is wide sense stationary and

(B). x(n) and v(n) are uncorrelated and

(C). v(n) is zero-mean

 =⇒


Rxy(m) = Rxq(m) and

Šxy(z) = Šxq(z) and

S̃xy(ω) = S̃xq(ω)

 for all
(1)–(8)

Proof.

Rxy(m) ≜ E [x(m) y∗(0)] by definition of Rxy (Definition 2 page 2)

≜ E [x(m)(q(0) + v(0))∗] by definition of S

= E [x(m) q∗(0) + p(m) v∗(0)] by distributive property of (C,+, ·, 0, 1)
= E [x(m) q∗(0)] + E [x(m) v∗(0)] by linearity of E (Proposition 11 page 20)

= E [x(m) q∗(0)] + [E x(m)][E v∗(0)] by uncorrelated hypothesis (B)

= E [x(m) q∗(0)] + E [p(m)]�����:0
E [v∗(0)] by zero-mean hypothesis (C)

= Rxq(m) by definition of Rxq (Definition 2 page 2)

(2). Rxy(m) ≜ E [x∗(0) y(m)] ≜ E (x∗(0)[q(m) + v(m)]) ≜ E [x∗(0) q(m)] + E [x∗(0)]�����:0
[E v(m))] = Rxq(m)

(3). Rxy(m) ≜ E [x(0) y∗(m)] ≜ E
(
x(0)[q(m) + v(m)]

∗) ≜ E [x(0) q∗(m)] + E [x∗(0)]������:0
[E v∗(m))] = Rxq(m)

(4). Rxy(m) ≜ E [x∗(m) y(0)] ≜ E (x∗(m)[q(0) + v(0)]) ≜ E [x∗(m) q(0)] + E [x∗(m)]�����:0
[E v(0))] = Rxq(m)

(5). Rxy(m) ≜ E [x(0) y(m)] ≜ E (x(0)[q(m) + v(m)]) ≜ E [x(0) q(m)] + E [x(0)]�����:0
[E v(m))] = Rxq(m)

(6). Rxy(m) ≜ E [x(m) y(0)] ≜ E (x(m)[q(0) + v(0)]) ≜ E [x(m) q(0)] + E [x(m)]�����:0
[E v(0))] = Rxq(m)

(7). Rxy(m) ≜ E [x∗(0) y∗(m)] ≜ E
(
x∗(0)[q(m) + v(m)]

∗) ≜ E [x∗(0) q∗(m)] + E [x∗(0)]������:0
[E v∗(m))] = Rxq(m)

(8). Rxy(m) ≜ E [x∗(m) y∗(0)] ≜ E
(
x∗(m)[q(0) + v(0)]

∗) ≜ E [x∗(m) q∗(0)] + E [x∗(m)]�����:0
[E v∗(0))] = Rxq(m)
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Lemma 3.Let S be the system illustrated to the right, where T is not
necessarily linear.

𝐓

+ 𝒙(𝑛)

𝒚(𝑛)

𝒘(𝑛)

𝒑(𝑛)

 (A). x(n) is WSS and

(B). u(n) is zero-mean and

(C). x(n) and u(n) are uncorrelated

 =⇒


Rxy(m) = Rpy(m) and

Šxy(z) = Špy(z) and

S̃xy(ω) = S̃py(ω)

 for all
(1)–(8)

Proof.

Rxy(m) ≜ E [x(m) y∗(0)] by definition of Rpy (Definition 2 page 2)

≜ E ([p(m) + u(m)] y∗(0)) by definition of S

= E [p(m) y∗(0) + u(m) y∗(0)] by distributive property of (C,+, ·, 0, 1)
= E [p(m) y∗(0)] + E [u(m) y∗(0)] because E is a linear operator (Proposition 11 page 20)

= E [p(m) y∗(0)] + E [u(m)] E [y∗(0)] by uncorrelated hypothesis (C)

= E [p(m) y∗(0)] + E [u(m)]�����:0
E [y∗(0)] by zero-mean hypothesis (B)

≜ Rpy(m) by definition of Rxy (Definition 2 page 2)

(2). Rxy(m) ≜ E [x∗(0) y(m)] ≜ E
(
[p(0) + u(0)]

∗
y(m)

)
= E [p∗(0) y(m)] +�����:0

E [u∗(0)] E [y(m)] = Rpy(m)

(3). Rxy(m) ≜ E [x(0) y∗(m)] ≜ E ([p(0) + u(0)] y∗(m)) = E [p(0) y∗(m)] +�����:0
E [u∗(0)] E [y∗(m)] = Rpy(m)

(4). Rxy(m) ≜ E [x∗(m) y(0)] ≜ E
(
[p(m) + u(m)]

∗
y(0)

)
= E [p∗(m) y(0)] +�����:0

E [u∗(m)] E [y(0)] = Rpy(m)

(5). Rxy(m) ≜ E [x(0) y(m)] ≜ E ([p(0) + u(0)] y(m)) = E [p(0) y(m)] +����:0
E [u(0)] E [y(m)] = Rpy(m)

(6). Rxy(m) ≜ E [x(m) y(0)] ≜ E ([p(m) + u(m)] y(0)) = E [p(m) y(0)] +�����:0
E [u(m)] E [y(0)] = Rpy(m)

(7). Rxy(m) ≜ E [x∗(0) y∗(m)] ≜ E
(
[p(0) + u(0)]

∗
y∗(m)

)
= E [p∗(0) y∗(m)] +�����:0

E [u∗(0)] E [y∗(m)] = Rpy(m)

(8). Rxy(m) ≜ E [x∗(m) y∗(0)] ≜ E
(
[p(m) + u(m)]

∗
y∗(0)

)
= E [p∗(m) y∗(0)] +�����:0

E [u∗(m)] E [y∗(0)] = Rpy(m)

Proposition 8(measurement additive noise cross-correlation). Let
S be the system illustrated to the right, where T is not necessarily linear.

𝐓

+ +

𝒙(𝑛) 𝒚(𝑛)

𝒘(𝑛) 𝒗(𝑛)

𝒑(𝑛)
𝒒(𝑛)


(A). x(n) is WSS and

(B). u(n) is zero-mean and

(C). v(n) is zero-mean and

(D). x(n), t(n), v(n) are uncorrelated

 =⇒


Rpq(m)=Rpy(m)=Rxq(m)=Rxy(m) and

Špq(z)= Špy(z) = Šxq(z) = Šxy(z) and

S̃pq(ω)= S̃py(ω) = S̃xq(ω) = S̃xy(ω)

 for all
(1)–(8)
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Proof.

Rpq(m) = Rpy(m) by Lemma 2 page 14

Rpq(m) = Rxq(m) by Lemma 3 page 15

Rxy(m) ≜ E [x(m) y∗(0)] by definition Rxy (Definition 2 page 2)

≜ E ([p(m) + t(m)] y∗(0)) by definition S

= E [p(m) y∗(0) + t(m) y∗(0)]

= E [p(m) y∗(0)] + E [t(m) y∗(0)] by linearity of E (Proposition 11 page 20)

= E [p(m) y∗(0)] +
�������:0
E [t(m) y∗(0)] by uncorrelated hypothesis (D)

= Rpy(m) by definition of Rpy (Definition 2 page 2)

(2). Rxy(m) ≜ E [x∗(0) y(m)] ≜ E
(
[p(0) + t(0)]

∗
y(m)

)
= E [p∗(0) y(m)] +�����:0

[E t∗(0)][E y(m)] = Rpy(m)

(3). Rxy(m) ≜ E [x(0) y∗(m)] ≜ E ([p(0) + t(0)] y∗(m)) = E [p(0) y∗(m)] +����:0
[E t(0)][E y∗(m)] = Rpy(m)

(4). Rxy(m) ≜ E [x∗(m) y(0)] ≜ E
(
[p(m) + t(m)]

∗
y(0)

)
= E [p∗(m) y(0)] +�����:0

[E t∗(m)][E y(0)] = Rpy(m)

(5). Rxy(m) ≜ E [x(0) y(m)] ≜ E ([p(0) + t(0)] y(m)) = E [p(0) y(m)] +����:0
[E t(0)][E y(m)] = Rpy(m)

(6). Rxy(m) ≜ E [x(m) y(0)] ≜ E ([p(m) + t(m)] y(0)) = E [p(m) y(0)] +�����:0
[E t(m)][E y(0)] = Rpy(m)

(7). Rxy(m) ≜ E [x∗(0) y∗(m)] ≜ E
(
[p(0) + t(0)]

∗
y∗(m)

)
= E [p∗(0) y∗(m)] +�����:0

[E t∗(0)][E y∗(m)] = Rpy(m)

(8). Rxy(m) ≜ E [x∗(m) y∗(0)] ≜ E
(
[p(m) + t(m)]

∗
y∗(0)

)
= E [p∗(m) y∗(0)] +�����:0

[E t∗(m)][E y∗(0)] = Rpy(m)

5.5 Case study: Parallel operators with measurement noise

Proposition 9.Let S be the system illustrated to the right, where T
is an operator that is not necessarily linear.

𝐓

𝐇

+

+

+𝒑(𝑛)

𝒙(𝑛) 𝒔(𝑛)

𝒚(𝑛)

𝒗(𝑛)

𝒖(𝑛) 𝒘(𝑛)

𝒓(𝑛)

𝒒(𝑛)


(A). H is LTI and

(B). x(n) is WSS and

(C). u and v are zero-mean and

(D). p, u, v are uncorrelated

 =⇒


Šsy(z) = Ȟ(z) Šxy(z) for (1),(3),(5),(6) and

S̃sy(ω) = H̃(ω) S̃xy(ω) for (1),(3),(5),(6) and

Šsy(z) = Ȟ
∗
(z∗) Šxy(z) for (2),(4),(7),(8) and

S̃sy(ω) = H̃
∗
(−ω) S̃xy(ω) for (2),(4),(7),(8)


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Proof.

(1), (3), (5), (6). Šsy(z) = Šrq(z) by Proposition 6 page 12 and (B), (C) and (D)

= Ȟ(z) Špq(z) by Proposition 7 page 13 and (A)

= Ȟ(z) Šxq(z) by Lemma 3 page 15

= Ȟ(z) Šxy(z) by Lemma 2 page 14

(1), (3), (5), (6). S̃sy(ω) = Šsy(z)
∣∣
z=eiω

by definition of Z (Definition 10 page 21)

= Ȟ(z) Šxy(z)
∣∣
z=eiω

by previous result (1)

= H̃(ω) S̃xy(ω)

(2), (4), (7), (8). Šsy(z) = Šrq(z) by Proposition 6 page 12 and (B), (C) and (D)

= Ȟ
∗
(z∗) Špq(z) by Proposition 7 page 13 and (A)

= Ȟ
∗
(z∗) Šxq(z) by Lemma 3 page 15

= Ȟ
∗
(z∗) Šxy(z) by Lemma 2 page 14

(2), (4), (7), (8). S̃sy(ω) = Šsy(z)
∣∣
z=eiω

by definition of Z (Definition 10 page 21)

= Ȟ
∗
(z∗) Šxy(z)

∣∣∣
z=eiω

by previous result (1)

= H̃
∗
(−ω) S̃xy(ω) by Proposition 12 page 21

5.6 Case study: Non-linear system identification

𝐓

�̂�

+

+𝒑(𝑛)

𝒙(𝑛)

𝒚(𝑛)

𝒗(𝑛)

𝒖(𝑛)

𝒓(𝑛)

𝒒(𝑛)

Fig. 1 Least Square estimation (Proposition 10 page 18)

Remark.The defintion of “best” or “optimal” is given by a cost function C(Ĥ). There are several possible cost functions.

One possibility is to define an error p(n) ≜ q(n) − t(n). We note that if Ĥ is closely tuned to match T, then not only

should p(n) be close to 0 for all n ∈ Z, but the auto-correlation R̂ee(m) of p(n) should also be close to 0 for all m ∈ Z.
Moreover by extension, the auto-spectral density S̃vv(ω) ≜ F̆ R̂ee(m) should also be close to 0. As such, we can define an

arguably relevant cost function for the system S of Figure 1 (page 17) in terms of S̃xx, S̃yy and S̃xy. In the case of Papoulis’s

Rxy(m), the development of such a cost function C(Ĥ) might look something like this:

(1). Crq

(
Ĥ
)

≜ F̆ E
(
[t(n)− q(n)][t(0)− q(0)]

∗)
by definition of Crq (Definition 3 page 18)

= F̃ [E [t(n) t∗(0)]− E [t(n) q∗(0)]− E [q(n) t∗(0)] + E [q(n) q∗(0)]] by linearity of E (Proposition 11 page 20)

≜ F̃ [Rrr(m)− Rrq(m)− Rqr(m) + Rqq(m)] by definition of Rxy (Definition 2 page 2)

≜ S̃rr(ω)− S̃rq(ω)− S̃qr(ω) + S̃qq(ω) by definition of S̃xy (Definition 1 page 1)

Taking cue from the result of Remark 5.6, we arrive at a definition of cost:
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Definition 3.Let S be a system defined as in Figure 1 (page 17). Define the following cost functions for spectral
least-squares estimates:

Crq(Ĥ) ≜ S̃rr(ω)− S̃rq(ω)− S̃qr(ω) + S̃qq(ω)

Remark.Note that by Corollary 1 (page 4), S̃qr = S̃rq
∗
for (1)–(4). . . and thus the cost function C for (1)–(4) is real-valued.

This in general is not true for (5)–(8). This in itself provides an argument, however weak that argument may be, for not
selecting any of (5)–(8) as a standard for the definition of Rxy(m).

Now for each of the eight Rxy(m) definitions, we can transform the expression of Crq(Ĥ) as given by Definition 3 into

expressions involving Ĥ (next lemma). In doing so, one might hope to be in a good position to take partial derivatives of

the real and imaginary parts of Ĥ to find an optimal least-squares-like solution for Ĥ.

Lemma 4.Let Crq(Ĥ) be defined as in Definition 3. Let (1)–(8) below correspond to the eight definitions of Rxy(m) in
Definition 2.

(1). Crq

(
Ĥ
)
=

by Definition 3 and Corollary 1 page 4︷ ︸︸ ︷
S̃rr(ω)− S̃rq(ω)− S̃rq

∗
(ω) + S̃qq(ω) =

by Corollary 2 page 7 and Proposition 9 page 16︷ ︸︸ ︷
S̃pp(ω)

∣∣∣Ĥ(ω)∣∣∣2 − S̃py(ω) Ĥ(ω)− S̃py
∗
(ω) Ĥ

∗
(ω) + S̃qq(ω)

(2). Crq

(
Ĥ
)
= S̃rr(ω)− S̃rq(ω)− S̃rq

∗
(ω) + S̃qq(ω) = S̃pp(ω)

∣∣∣Ĥ(ω)∣∣∣2 − S̃py(ω) Ĥ
∗
(−ω)− S̃py

∗
(ω) Ĥ(−ω) + S̃qq(ω)

(3). Crq

(
Ĥ
)
= S̃rr(ω)− S̃rq(ω)− S̃rq

∗
(ω) + S̃qq(ω) = S̃pp(ω)

∣∣∣Ĥ(−ω)
∣∣∣2 − S̃py(ω) Ĥ(ω)− S̃py

∗
(ω) Ĥ

∗
(ω) + S̃qq(ω)

(4). Crq

(
Ĥ
)
= S̃rr(ω)− S̃rq(ω)− S̃rq

∗
(ω) + S̃qq(ω) = S̃pp(ω)

∣∣∣Ĥ(−ω)
∣∣∣2 − S̃py(ω) Ĥ

∗
(−ω)− S̃py

∗
(ω) Ĥ(−ω) + S̃qq(ω)

(5). Crq

(
Ĥ
)
= S̃rr(ω)− S̃rq(ω)− S̃rq(−ω) + S̃qq(ω) = S̃pp(ω) Ĥ(ω) Ĥ(−ω)− S̃py(ω) Ĥ(ω)− S̃py(−ω) Ĥ(−ω) + S̃qq(ω)

(6). Crq

(
Ĥ
)
= S̃rr(ω)− S̃rq(ω)− S̃rq(−ω) + S̃qq(ω) = S̃pp(ω) Ĥ(ω) Ĥ(−ω)− S̃py(ω) Ĥ(ω)− S̃py(−ω) Ĥ(−ω) + S̃qq(ω)

(7). Crq

(
Ĥ
)
= S̃rr(ω)− S̃rq(ω)− S̃rq(−ω) + S̃qq(ω) = S̃pp(ω) Ĥ

∗
(ω) Ĥ

∗
(−ω)− S̃py(ω) Ĥ(ω)− S̃py(−ω) Ĥ

∗
(ω) + S̃qq(ω)

(8). Crq

(
Ĥ
)
= S̃rr(ω)− S̃rq(ω)− S̃rq(−ω) + S̃qq(ω) = S̃pp(ω) Ĥ(ω) Ĥ(−ω)− S̃py(ω) Ĥ

∗
(−ω)− S̃py(−ω) Ĥ(−ω) + S̃qq(ω)

For the Papoulis Rxy(m) definition (1), the Crq expression demonstrated in Lemma 4 is very useful. In particular, we can

set the partial derivatives ∂
∂ ĤR

Ĥ(ω) and ∂
∂ ĤI

Ĥ(ω) of the real and imaginary parts of Ĥ(ω) to zero and solve the resulting

two equations to find an optimal Ĥ (as in Proposition 10 page 18).

However, this becomes troublesome in the case when encountering Ĥ(−ω) and the impulse response of Ĥ is complex-

valued—in which case in general Ĥ(−ω) ̸= Ĥ
∗
(ω).

Note that except for (1), all of the expressions demonstrated in Lemma 4 contain an Ĥ(−ω) and/or Ĥ
∗
(−ω).

This trouble provides an argument, however a weak one it might be, for choosing (1) as the standard definition of Rxy(m).

Proposition 10.Let S be the system illustrated in Figure 1 page 17.
(A). x, u, and v are WSS and

(B). x, u, and v are uncorrelated and

(C). u and v are zero-mean and

(D). Ĥ is LTI

 =⇒

argmin
Ĥ

Crq(Ĥ) =
S̃xy

∗
(ω)

S̃xx(ω)− S̃uu(ω)
for (1)



Proof.

(1). 0 =
∂

∂ ĤR

Crq

[
Ĥ(ω)

]
= 2 ĤR(ω) S̃pp(ω)− S̃py(ω)− S̃py

∗
(ω) +

�
���

��*0
∂

∂ ĤR

S̃qq(ω) =⇒ ĤR(ω) =
Re S̃py

∗
(ω)

S̃pp(ω)

0 =
∂

∂ ĤI

Crq

[
Ĥ(ω)

]
= 2 ĤI(ω) S̃pp(ω)− i S̃py(ω) + i S̃py

∗
(ω) +

��
����*0

∂

∂ ĤR

S̃qq(ω) =⇒ ĤI(ω) =
Im S̃py

∗
(ω)

S̃pp(ω)
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=⇒ Ĥ(ω) ≜ ĤR(ω) + i ĤI(ω)
Re S̃py

∗
(ω)

S̃pp(ω)
+

i Im S̃py
∗
(ω)

S̃pp(ω)

=
S̃py

∗
(ω)

S̃pp(ω)

=
S̃xy

∗
(ω)

S̃xx(ω)− S̃uu(ω)
by Proposition 5 page 11

It follows immediately from Proposition 10 that, for (1) and in the special case of no input noise (u(n) = 0), the standard

estimate6 Ĥ1 is the optimal least-squares estimate of H̃ (next).

Corollary 5.Let S be the system illustrated in Figure 1 page 17.{
(1). hypotheses of Proposition 10 and

(2). u(n) = 0

}
=⇒

{
Ĥ(ω) = Ĥ1(ω) ≜

S̃xy
∗
(ω)

S̃xx(ω)

}
for (1)

6 Which one?

Which definition of Rxy(m) should we use? Any one of them is perfectly acceptable—as long as a clear definition is
provided and that definition is used consistently. That being said, note the following:

1.The expectation operator E (XY∗) is an inner product. As such, it would seem the most natural to follow the convention
of other inner product definitions and thus put the conjugate ∗ on y (i.e. follow Papoulis):

• ⟨x(t) | y(t)⟩ ≜
∫
t∈R

x(t) y∗(t) t

• ⟨x(n) | y(n)⟩ ≜
∑
n∈Z

x(n) y∗(n)

• ⟨X |Y⟩ ≜ E (XY∗)
2.If we view Rxy(m) as an analysis of y in terms of x (or as a projection of y onto x), then it would seem more natural
to put the conjugate on x (i.e. follow Kay). This is what is done in Fourier analysis when projecting a function f(t)
onto the set of basis functions

{
eiωn|ω ∈ R

}
, as in

F̆ [y(n)](ω) ≜
〈
y(n) | eiωn

〉
(project y(n) onto eiωn for some ω ∈ R)

≜
∑
n∈Z

y(n)
[
e+iωn

]∗
≜
∑
n∈Z

y(n)e−iωn

But arguably, a “projection of y onto x” would better be served by the use of Ryx(m) rather than Rxy(m).
3.As demonstrated in Section 5.6 (page 17), the Papoulis definition (1) is arguably more convenient for performing
least-squares-like optimization.

Appendix A Random Sequences

Definition 4.[19, page 104], [2, page 30], [4, page 49] Let (Ω,E,P) be a probability space and X a random variable on
(Ω,E,P) with probability density function pX.

The expectation operator Ex on X is defined as Ex X ≜
∫
x∈F

xpX(x) x.

6 [2, pages 98–100], [3, pages 106–109], [4, pages 187–190]

© 2023 BISKA Bilisim Technology

http://books.google.com/books?vid=ISBN0471058874&pg=PA98
http://books.google.com/books?vid=ISBN0471570559&pg=PA106
http://books.google.com/books?vid=ISBN1118210824&pg=PA187


JACM 8, No. 1, 1-25 (2023) / www.ntmsci.com/jacm 20

Proposition 11(Linearity of E). [19, page 107], [2, page 30], Let X be a random variable on a probability space
(Ω,E,P).

Ex(aX+bY+c) = (aEx X) + (bEx Y) + c ∀a,b,c∈R ( linear)

Proof.

Exy(aX+bY+c) ≜
∫
x∈R

∫
y∈R

[ax+ by + c]px y(x, y) y x by definition of E (Definition 4 page 19)

=

∫
x∈R

∫
y∈R

axpx y(x, y) y x+

∫
x∈R

∫
y∈R

bypx y(x, y) y x+

∫
x∈R

∫
y∈R

cpx y(x, y) y x

=

∫
x∈R

ax

∫
y∈R

px y(x, y) y︸ ︷︷ ︸
px(x)

x+

∫
y∈R

by

∫
x∈R

px y(x, y) x︸ ︷︷ ︸
py(y)

y+c

∫
y∈R

∫
x∈R

px y(x, y) x y︸ ︷︷ ︸
1

= a

∫
x∈R

xpx(x) x︸ ︷︷ ︸
EX

+ b

∫
y∈R

ypy(y) y︸ ︷︷ ︸
EY

+ c

= (aEx X) + (bEy Y) + c

Definition 5.[19, page 220], [4, pages 109–111], [2, page 3] Let Lx(n)Mn∈Z be a random sequence.

Lx(n)M is wide sense stationary (WSS) if
(1). Ex(n) = Ex(k) ∀n, k ∈ Z and

(2). E [x(n+m) x(n)] = E [x(k +m) x(k)] ∀n, k,m ∈ Z

Definition 6.[19, page 221] Let Lx(n)Mn∈Z and Ly(n)Mn∈Z be random sequences.

Lx(n)M and Ly(n)M are jointly wide sense stationary (J-WSS) if
(1). Lx(n)M is wide sense stationary Definition 5 and

(2). Ly(n)M is wide sense stationary Definition 5 and

(3). E [x(n+m) y(n)] = E [x(k +m) y(k)] ∀n, k,m ∈ Z

Appendix B Operations on Sequences

B.1 Convolution operation

Definition 7.[6, page 1], [24, page 23], [11, page 31] Let XY be the set of all functions from a set Y to a set X. Let Z
be the set of integers.

A function f in XY is a sequence over X if Y = Z.
A sequence may be denoted in the form LxnMn∈Z or simply as LxnM.

Definition 8.[13, page 347] Let (C,+, ·, 0, 1) be the field of complex numbers.

The space of all absolutely square summable sequences ℓ2C over C is defined as

ℓ2C ≜

{
LxnMn∈Z|

∑
n∈Z

|xn|2 < ∞

}

Definition 9.

The convolution operation ⋆ is defined as

LxnM ⋆ LynM ≜ L
∑
m∈Z

xmyn−mMn∈Z ∀LxnMn∈Z,LynMn∈Z∈ℓ2C
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B.2 Z-transform

Definition 10.7 Let Lx(n)Mn∈Z be a sequence.

The z-transform Z of Lx(n)M is defined as

[ZLx(n)M](z) ≜
∑
n∈Z

x(n)z−n ∀Lx(n)M∈ℓ2C

Proposition 12.Let X(z) ≜ Zx(n) be the z-transform of x(n).

{
x̌(z) ≜ ZLx(n)M

}︸ ︷︷ ︸
(Definition 10 page 21)

=⇒



(1). ZLα x(n)M = α x̌(z) ∀LxnM∈ℓ2C and

(2). ZLx[n− k]M = z−k x̌(z) ∀LxnM∈ℓ2C and

(3). ZLx(−n)M = x̌

(
1

z

)
∀LxnM∈ℓ2C and

(4). ZLx∗(n)M = x̌∗ (z∗) ∀LxnM∈ℓ2C and

(5). ZLx∗(−n)M = x̌∗
(

1

z∗

)
∀LxnM∈ℓ2C



7 Laurent series: [1, page 49]
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Proof.

αZ x̌(z) ≜ αZLx(n)M by definition of x̌(z)

≜ α
∑
n∈Z

x(n)z−n by definition of Z operator

≜
∑
n∈Z

(α x(n))z−n by distributive property

≜ ZLα x(n)M by definition of Z operator

z−k x̌(z) = z−k ZLx(n)M by definition of x̌(z) (left hypothesis)

≜ z−k
n=+∞∑
n=−∞

x(n)z−n by definition of Z (Definition 10 page 21)

=

n=+∞∑
n=−∞

x(n)z−n−k

=

m−k=+∞∑
m−k=−∞

x[m− k]z−m where m ≜ n+ k =⇒ n = m− k

=

m=+∞∑
m=−∞

x[m− k]z−m

=

n=+∞∑
n=−∞

x[n− k]z−n where n ≜ m

≜ ZLx[n− k]M by definition of Z (Definition 10 page 21)

ZLx∗(n)M ≜
∑
n∈Z

x∗(n)z−n by definition of Z (Definition 10 page 21)

≜

(∑
n∈Z

x(n)(z∗)−n

)∗

by definition of Z (Definition 10 page 21)

≜ x̌∗(z∗) by definition of Z (Definition 10 page 21)

ZLx(−n)M ≜
∑
n∈Z

x(−n)z−n by definition of Z (Definition 10 page 21)

=
∑

−m∈Z
x[m]zm where m ≜ −n =⇒ n = −m

=
∑
m∈Z

x[m]zm because Lx(n)M, LznM ∈ ℓ2C (Definition 8 page 20)

=
∑
m∈Z

x[m]

(
1

z

)−m

≜ x̌

(
1

z

)
by definition of Z (Definition 10 page 21)

ZLx∗(−n)M ≜
∑
n∈Z

x∗(−n)z−n by definition of Z (Definition 10 page 21)

=
∑

−m∈Z
x∗[m]zm where m ≜ −n =⇒ n = −m

=
∑
m∈Z

x∗[m]zm because Lx(n)M, LznM ∈ ℓ2C (Definition 8 page 20)

=
∑
m∈Z

x∗[m]

(
1

z

)−m

=

(∑
m∈Z

x[m]

(
1

z∗

)−m
)∗

≜ x̌∗
(

1

z∗

)
by definition of Z (Definition 10 page 21)
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Proposition 13(Convolution Theorem). Let ⋆ be the convolution operator (Definition 9 page 20).

Z (LxnM ⋆ LynM)︸ ︷︷ ︸
sequence convolution

= (ZLxnM) (ZLynM)︸ ︷︷ ︸
series multiplication

∀LxnMn∈Z,LynMn∈Z∈ℓ2C

Proof.

[Z(x ⋆ y)](z) ≜ Z

(∑
m∈Z

xmyn−m

)
by Definition 9 page 20

≜
∑
n∈Z

∑
m∈Z

xmyn−mz−n by Definition 10 page 21

=
∑
n∈Z

∑
m∈Z

xmyn−mz−n

=
∑
m∈Z

∑
n∈Z

xmyn−mz−n

=
∑
m∈Z

∑
k∈Z

xmykz
−(m+k) where k = n−m ⇐⇒ n = m+ k

=

[∑
m∈Z

xmz−m

][∑
k∈Z

ykz
−k

]
≜ (ZLxnM) (ZLynM) by Definition 10 page 21

Lemma 5.Let H be a linear time-invariant operator with impulse response Lh(n)M. Let Ly(n)M ≜ LHx(n)M.
(A). Lx(n)M and Ly(n)M are real-valued and

(B). Lx(n)M and Lh(n)M are in ℓ2C and

(C). Lx(n)M ̸= L· · · , 0, 0, 0, · · ·M and

(D). Lh(n)M is linear time-invariant

 =⇒
{

(1). Lh(n)M is real-valued and

(2). Ȟ(z) = Ȟ
∗
(z∗)

}

Proof. 1.Let hR(n) and hI(n) be the real-part and imaginary-part, respectively, of h(n).
2.lemma:

∑
m∈Z hI(m) x(n−m) = 0∑

m∈Z
hR(m) x(n−m) + i

∑
m∈Z

hI(m) x(n−m)

=
∑
m∈Z

h(m) x(n−m) by definitions of hR and hI item (1)

= y(n) because H is LTI hypothesis (D)

= y∗(n) because y is real-valued hypothesis (A)

=

(∑
m∈Z

h(m) x(n−m)

)∗

because H is LTI hypothesis (D)

=
∑
m∈Z

h∗(m) x∗(n−m) by antiautomorphic property (Definition 11 page 24)

=
∑
m∈Z

h∗(m) x(n−m) because y is real-valued hypothesis (A)

=
∑
m∈Z

hR(m) x(n−m)− i
∑
m∈Z

hI(m) x(n−m) by definitions of hR and hI item (1)

=⇒
∑
m∈Z

hI(m) x(n−m) = 0

3.Notes:
(a)Without hypothesis (C), it is trivial to satisfy (2) lemma.
(b)Without hypothesis (B), it is simple to satisfy (2) lemma with

h(n) = L· · · , 0, 0, 0, i,−i, 0, 0, 0, · · ·M and x(n) = L· · · , 1, 1, 1, · · ·M

© 2023 BISKA Bilisim Technology



JACM 8, No. 1, 1-25 (2023) / www.ntmsci.com/jacm 24

(c)Without hypothesis (D), it is trivial to satisfy (2) lemma with Hx(n) ≜ Re

(∑
m∈Z

h(m) x(n−m)

)
4.Proof that h(n) is real-valued :

(2) lemma =⇒ ȞI(z) X̌(z) = 0 by Convolution Theorem (Proposition 13 page 23)

=⇒ ȞI(z) = 0 because x(n) ̸= L· · · , 0, 0, 0, · · ·M hypothesis (C)

=⇒ hI(n) = L· · · , 0, 0, 0, · · ·M
=⇒ h(n) ≜ hR(n) + i hI(n) is real-valued

5.Proof that Ȟ(z) = Ȟ
∗
(z∗):

Ȟ(z) ≜ ZLx(n)M by definition of Ȟ(z)

= ZLx∗(n)M because x(n) is real-valued (item (4) page 24)

= Ȟ
∗
(z∗) by Proposition 12

Lemma 6.Let H̃(ω) be the DTFT (Definition 1 page 1) of a sequence h(n).{
h(n) is real-valued

}
=⇒

{
H̃(−ω) = H̃

∗
(ω) ( conjugate symmetric)

}

Proof.

H̃(−ω) ≜
∑
n∈Z

h(n)e−i(−ω)n by definition of H̃(ω) (Definition 1 page 1)

=
∑
n∈Z

h(n)eiωn

=

[∑
n∈Z

h∗(n)eiωn

]∗
by antiautomorphic property of *-algebras (Definition 11 page 24)

=

[∑
n∈Z

h(n)e−iωn

]∗
by real-valued hypothesis

≜ H̃
∗
(ω) by definition of H̃(ω) (Definition 1 page 1)

Appendix C Normed Algebras

Definition 11.[21, page 178], [8, page 241 ] xsym]∗ Let A be an algebra.

The pair (A, ∗) is a ∗-algebra, or “star-algebra”, if
1. (x+ y)

∗
= x∗ + y∗ ∀x,y∈A (distributive) and

2. (αx)∗ = ᾱx∗ ∀x∈A, α∈C ( conjugate linear) and

3. (xy)∗ = y∗x∗ ∀x,y∈A (antiautomorphic) and

4. x∗∗ = x ∀x∈A ( involutory)

The operator ∗ is called an involution on the algebra A.

Definition 12(Hermitian components). [18, page 430], [21, page 179], [8, page 242 ] Let (X, ∥·∥) be a ∗-algebra
(Definition 11 page 24).

For x ∈ X, the real part of x is defined as Re x ≜
1

2

(
x+ x∗

)
For x ∈ X, the imaginary part of x is defined as Im x ≜

1

2i

(
x− x∗

)

Example 1.[14, pages 106–107] Let C be the set of complex numbers and ∗ : C → C the conjugate operator. The pair
(C, ∗) is an ∗-algebra.
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