On the Shortest Distance in the Plane $\mathbb{R}_{\pi 3}^{2}$

Z. Akça \& S. Nazlı
Eskişehir Osmangazi University, Department of Mathematics and Computer Science, 26480 Eskişehir, Turkey.

Received: 18 October 2022 , Accepted: 2 December 2022
Published online: 20 December 2022.

Abstract: In this paper, we study the shortest distance of a point to the line and area of a triangle in Iso-taxicab Geometry.
Keywords: Distance; non-Euclidean geometry.

1 Introduction

The Minkowski distance is a metric in a normed vector space which can be considered as a generalization of both the Euclidean distance and the taxicab distance. Taxicab geoemetry is a geometry whose usual distance function or metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences of their cartesian coordinates in [4], [8]. Iso-taxicab geometry is a non-Euclidean geometry defined by K. O. Sowell.in 1989 in [7]. In this geometry presented by Sowell three distance functions arise depending upon the relative positions of the points A and B. There are three axes at the origin; the x-axis, the y-axis and the y^{\prime}-axis, having 60^{0} angle which each other. These tree axes separate the plane into six regions. The iso-taxicab trigonometric functions in isotaxicab plane with three axes were given in [5], [6]. A family of distances, $d_{\pi n}$, that includes Taxicab, Chinese-Checker and Iso-taxi distances, as special cases introduced and the group of isometries of the plane with $d_{\pi n}$ metric is the semidirect product of $D_{2 n}$ and $T(2)$ was shown in [3]. The trigonometric functions in $\mathbb{R}_{\pi 3}^{2}$ and the versions in the plane $\mathbb{R}_{\pi 3}^{2}$ of some Euclidean theorems were given in [1], [2].

The definition of $d_{\pi n}$-distances family is given as follows;
Definition 1.Let $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ be any two points in \mathbb{R}^{2}, a family of $d_{\pi n}$ distances is defined by

$$
\begin{aligned}
& d_{\pi n}(A, B)=\frac{1}{\sin \frac{\pi}{n}}\left(\left|\sin \frac{k \pi}{n}-\sin \frac{(k-1) \pi}{n}\right|\left|x_{1}-x_{2}\right|+\left|\cos \frac{(k-1) \pi}{n}-\cos \frac{k \pi}{n}\right|\left|y_{1}-y_{2}\right|\right) \\
& \text { where } \begin{cases}1 \leq k \leq\left[\frac{n-1}{2}\right], k \in \mathbb{Z}, & \tan \frac{(k-1) \pi}{n} \leq\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right| \leq \tan \frac{k \pi}{n} \\
k=\left[\frac{n+1}{2}\right] \quad, \tan \frac{\left[\frac{n-1}{2}\right] \pi}{n} \leq\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right|<\infty \text { or } x_{1}=x_{2}\end{cases}
\end{aligned}
$$

For $n=3$ and $k=1$ or $k=2$, we obtain the formula of $d_{\pi 3}$-distance between the points A and B according to the inclination in the plane $\mathbb{R}_{\pi 3}^{2}$ as the following:

$$
\begin{aligned}
& d_{\pi 3}(A, B)=\frac{1}{\sin \frac{\pi}{3}}\left(\left|\sin \frac{k \pi}{3}-\sin \frac{(k-1) \pi}{3}\right|\left|x_{1}-x_{2}\right|+\left|\cos \frac{(k-1) \pi}{3}-\cos \frac{k \pi}{3}\right|\left|y_{1}-y_{2}\right|\right) \\
& \text { where }\left\{\begin{array}{l}
k=1,0 \leq\left|\frac{y_{2-}-y_{1}}{x_{2}-x_{1}}\right| \leq \tan \frac{\pi}{3} \\
k=2, \tan \frac{\pi}{3} \leq\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right|<\infty \text { or } x_{1}=x_{2}
\end{array}\right.
\end{aligned}
$$

or

$$
d_{\pi 3}(A, B)= \begin{cases}\left|x_{1}-x_{2}\right|+\frac{1}{\sqrt{3}}\left|y_{1}-y_{2}\right|, & 0 \leq\left|\frac{y_{2}-y_{1}}{x_{1}-x_{1}}\right| \leq \sqrt{3} \\ \frac{2}{\sqrt{3}}\left|y_{1}-y_{2}\right| & , \sqrt{3} \leq\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right|<\infty \text { or } x_{1}=x_{2}\end{cases}
$$

2 Distance and Area in the plane $\mathbb{R}_{\pi 3}^{2}$

Now we give the shortest distance of a point to the line and area of a triangle to the plane $\mathbb{R}_{\pi 3}^{2}$.
Theorem 1.The shortest distance of a point $P_{0}=\left(x_{0}, y_{0}\right)$ to the line l given by

$$
a x+b y+c=0
$$

in the plane $\mathbb{R}_{\pi 3}^{2}$ is

$$
d_{\pi 3}\left(P_{0}, l\right)=\rho\left(\frac{-1}{m}\right) d_{E}\left(P_{0}, l\right) .
$$

Proof.Let X be the point where the line segment drawn from the point P_{0} to the line l touches the line l. The line segment $[P X]$ length is the shortest distance from the point P_{0} to line l. Also, if the slope of the line l is m then the slope of the line segment $[P X]$ is $\left(\frac{-1}{m}\right)$. The shortest distance from the point P_{0} to the line l in the plane $\mathbb{R}_{\pi 3}^{2}$ is

$$
d_{\pi 3}\left(P_{0}, l\right)=\rho\left(\frac{-1}{m}\right) d_{E}\left(P_{0}, l\right) .
$$

If calculations are made for this equation, the shortest distance from the point P_{0} to the line l in the plane $\mathbb{R}_{\pi 3}^{2}$ is

$$
d_{\pi_{3}}\left(P_{0}, l\right)=\left\{\begin{array}{ll}
\left(\frac{1}{\sqrt{1+\left(\frac{-1}{m}\right)^{2}}}+\frac{\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}} \frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}},\right. & 0 \leq\left|\frac{-1}{m}\right| \leq \sqrt{3} \\
\frac{2\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}}, & \sqrt{3} \leq\left|\frac{-1}{m}\right| \\
\frac{2}{\sqrt{3}}, & \left|\frac{-1}{m}\right| \rightarrow \infty
\end{array} .\right.
$$

Theorem 2.Let the base and height of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ be c_{1} and h_{1}. Let the base and length of the same triangle in \mathbb{R}^{2} be c and h. Let the slope of the base of the triangle in \mathbb{R}^{2} be m, then the area of the triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is

$$
S= \begin{cases}\frac{\sqrt{3}}{4} c_{1} h_{1}, & m=0 \\ \frac{3 \sqrt{1+m^{2}}}{4(\sqrt{3}|m|+1)} c_{1} h_{1}, & m=\infty \\ \frac{3\left(1+m^{2}\right)}{4(\sqrt{3}+|m|)} c_{1} h_{1}, & 0<m \leq \frac{1}{\sqrt{3}} \\ \frac{3\left(1+m^{2}\right)}{2(\sqrt{3}+|m|)(\sqrt{3}|m|+1)} c_{1} h_{1}, & \frac{1}{\sqrt{3}}<|m| \leq \sqrt{3} \\ \frac{3\left(1+m^{2}\right)}{4|m|(\sqrt{3}|m|+1)} c_{1} h_{1}, & \sqrt{3} \leq|m|, m \neq \infty .\end{cases}
$$

Proof.According to the position of m the following eight main cases are possible:
Case 1) If the base of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is parallel to the x-axis, that is, $m=0$, the slope of the height is ∞. In this case;

$$
S=\frac{1}{2} c h=\frac{\sqrt{3}}{4} c_{1} h_{1}
$$

is found.

Case 2) If the base of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is parallel to the y-axis, that is, $m=\infty$, the slope of the height is 0 . In this case;

$$
c_{1}=\frac{2}{\sqrt{3}} c \text { and } h_{1}=\left(\frac{1}{\sqrt{1+\left(\frac{-1}{m}\right)^{2}}}+\frac{\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}}\right) h,
$$

$$
\begin{aligned}
S & =\frac{1}{2} c h \\
& =\frac{3 \sqrt{1+m^{2}}}{4(\sqrt{3}|m|+1)} c_{1} h_{1}
\end{aligned}
$$

is found.

Case 3) If the slope of the base of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is $0<m \leq \frac{1}{\sqrt{3}}$ (the angle θ between the base and the x-axis is $0<\theta \leq \frac{\pi}{6}$ and the angle θ between the height and the x-axis is $\frac{\pi}{2}<\theta \leq \frac{2 \pi}{3}$) in this case;

$$
c_{1}=\left(\frac{1}{\sqrt{1+m^{2}}}+\frac{|m|}{\sqrt{3} \sqrt{1+m^{2}}}\right) c \text { and } h_{1}=\left(\frac{1}{\sqrt{1+\left(\frac{-1}{m}\right)^{2}}}+\frac{\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}}\right) h
$$

$$
\begin{aligned}
S & =\frac{1}{2} c h \\
& =\frac{3\left(1+m^{2}\right)}{4|m|(\sqrt{3}|m|+1)} c_{1} h_{1},
\end{aligned}
$$

is found.

Case 4) If the slope of the base of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is $\frac{1}{\sqrt{3}}<m \leq \sqrt{3}$ (the angle θ between the base and the x-axis is $\frac{\pi}{6}<\theta \leq \frac{\pi}{3}$ and the angle θ between the height and the x-axis is $\frac{2 \pi}{3}<\theta \leq \frac{5 \pi}{6}$) in this case;

$$
c_{1}=\left(\frac{1}{\sqrt{1+m^{2}}}+\frac{|m|}{\sqrt{3} \sqrt{1+m^{2}}}\right) c \text { and } h_{1}=\left(\frac{2\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}}\right) h,
$$

$$
\begin{aligned}
S & =\frac{1}{2} c h \\
& =\frac{3\left(1+m^{2}\right)}{4(\sqrt{3}+|m|)} c_{1} h_{1}
\end{aligned}
$$

is found.

Case 5) If the slope of the base of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is $\sqrt{3}<m<\infty$ (the angle θ between the base and the x-axis is $\frac{\pi}{3}<\theta \leq \frac{\pi}{2}$ and the angle θ between the height and the x-axis is $\frac{5 \pi}{6}<\theta \leq \pi$) in this case;

$$
c_{1}=\left(\frac{2|m|}{\sqrt{3} \sqrt{1+m^{2}}}\right) c \text { and } h_{1}=\left(\frac{1}{\sqrt{1+\left(\frac{-1}{m}\right)^{2}}}+\frac{\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}}\right) h,
$$

$$
\begin{aligned}
S & =\frac{1}{2} c h \\
& =\frac{3\left(1+m^{2}\right)}{4|m|(\sqrt{3}|m|+1)} c_{1} h_{1}
\end{aligned}
$$

is found.

Case 6.) If the slope of the base of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is $\infty<m<-\sqrt{3}$ (the angle θ between the base and the x-axis is $\frac{\pi}{2}<\theta \leq \frac{2 \pi}{3}$ and the angle. θ between the height and the x-axis is $\pi<\theta \leq \frac{7 \pi}{6}$) in this case;

$$
c_{1}=\left(\frac{2|m|}{\sqrt{3} \sqrt{1+m^{2}}}\right) c \text { and } h_{1}=\left(\frac{1}{\sqrt{1+\left(\frac{-1}{m}\right)^{2}}}+\frac{\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}}\right) h,
$$

$$
\begin{aligned}
S & =\frac{1}{2} c h \\
& =\frac{3\left(1+m^{2}\right)}{4|m|(\sqrt{3}|m|+1)} c_{1} h_{1}
\end{aligned}
$$

is found.

Case 7.) If the slope of the base of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is $-\sqrt{3}<m<\frac{-1}{\sqrt{3}}$ (the angle θ between the base and the x-axis is $\frac{2 \pi}{3}<\theta \leq \frac{5 \pi}{6}$ and the angle θ between the height and the x-axis is $\frac{7 \pi}{6}<\theta \leq \frac{4 \pi}{3}$) in this case;

$$
c_{1}=\left(\frac{\sqrt{3}+|m|}{\sqrt{3} \sqrt{1+m^{2}}}\right) c \text { and } h_{1}=\left(\frac{1}{\sqrt{1+\left(\frac{-1}{m}\right)^{2}}}+\frac{\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}}\right) h,
$$

$$
\begin{aligned}
S & =\frac{1}{2} c h \\
& =\frac{3\left(1+m^{2}\right)}{2(\sqrt{3}+|m|)(\sqrt{3}|m|+1)} c_{1} h_{1}
\end{aligned}
$$

is found.

Case 8.) If the slope of the base of a triangle in the plane $\mathbb{R}_{\pi 3}^{2}$ is $-\frac{-1}{\sqrt{3}}<m<0$ (the angle θ between the base and the x-axis is $\frac{5 \pi}{6}<\theta \leq \pi$ and the angle θ between the height and the x-axis is $\frac{4 \pi}{3}<\theta \leq \frac{3 \pi}{2}$), in this case;

$$
c_{1}=\left(\frac{1}{\sqrt{1+m^{2}}}+\frac{|m|}{\sqrt{3} \sqrt{1+m^{2}}}\right) c \text { and } h_{1}=\left(\frac{2\left|\frac{-1}{m}\right|}{\sqrt{3} \sqrt{1+\left(\frac{-1}{m}\right)^{2}}}\right) h,
$$

$$
\begin{aligned}
S & =\frac{1}{2} c h \\
& =\frac{3\left(1+m^{2}\right)}{4(\sqrt{3}+|m|)} c_{1} h_{1}
\end{aligned}
$$

is found.

References

[1] Z. Akça, S. Nazlı,.On the versions in the plane $\mathbb{R}_{\pi 3}^{2}$ of some Euclidean theorems, New Trends in Mathematical Sciences, Vol.10, (2022),.20-27.
[2] Z. Akça, S. Nazlı, On The Trigonometric Functions in $\mathbb{R}_{\pi 3}^{2}$, Konuralp Journal of Mathematics, Vol. 8, (2020), 429-437.
[3] A. Bayar, R. Kaya, On Isometries of $\mathbb{R}_{\pi n}^{2}$, Hacettepe Journal of Mathematics and Statistics, Vol. 40 (5) (2011), 673-679.
[4] A. Bayar, S. Ekmekçi, and M. Özcan, "On Trigonometric Functions and Cosine and Sine Rules in Taxicab Plane," International Electronic Journal Of Geometry, vol. 2, no. 1, pp. 17-24, 2009.
[5] I. Kocayusufoglu, T. Ada, On The Iso-taxicab Trigonometry, Applied Sciences, Vol. 8 (2006), 101-111.
[6] I. Kocayusufoglu, Trigonometry on Iso-taxicab Geometry, Mathematical and Computational Applications, Vol. 5, No. 3 (2002),.201212.
[7] K. O. Sowell, Taxicab Geometry-a New Slant, Mathematics Magazine, Vol. 62, (1989), 238-248.
[8] M. Özcan, S. Ekmekçi, and A. Bayar, "The Taxicab Lengths under Rotations," The Pi Mu Epsilon Journal, vol. 11, no. 7, pp. 381-384, 2002.

