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Abstract: Recently, many mathematical models have been studied to better understand the coronavirus infection. Most of these
models are based on classical integer-order derivatives which cannot capture the fading memory and crossover behavior found in
many biological phenomena. Therefore, the aim of this paper is to establish the existence and uniqueness of solutions to novel
coronavirus (COVID-19) model including Caputo-Fabrizio (CF)-fractional derivative. We derive existence and uniqueness results with
the help of properties of CF-fractional calculus, fixed-point theorem and iterative method. Finally, the model is proved to have a
disease-free and an endemic equilibrium point.
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1 Introduction

A novel coronavirus has been known to cause respiratory infection, for example an unusual pneumonia, in humans[13].
This illness, with the temporary name ’COVID-19 sensitive respiratory infection ( COVID-19), is first identified in the
winter month of December 2019 in a city of 11 million people - Wuhan in Hubei Province, China [32]. The COVID-19 is
considered to be zoonotic in origin, from bats to intermediate host to humans in [33]; and its beginning is geographically
connected, but with indecision, with the Huanan Seafood Market in Wuhan in [12]. Human-to-human transmission of
COVID-19 has been established, such as through respiratory droplets [10] and there is also a suspicion of asymptomatic
infection. To control the epidemics, the government of China has ordered cancellation of huge events for the Chinese
New Year celebration, and the lockdown of Wuhan and other cities. The infection has been exported to other parts of
China and to other countries, generally via travel-related activities [29]. The ways in which infections spread are a
concern that we all have a risk in-research that helps further our understanding of infectious diseases can influence each
of our lives. One distinct community of researchers working on understanding infectious disease dynamics is the
mathematical modelling community, consisting of scientists from many different disciplines coming together to tackle a
common problem through the use of mathematical models and computer simulations.

At the present time, the mathematical models involving fractional order derivative were given clear significance because
they are more accurate and realistic as compared to the classical order models [18,24,25]. Inspired by the advancement
of fractional calculus, many researchers have focused to study the solutions of nonlinear differential equations with the
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fractional operator by developing quite a few analytical or numerical techniques to find approximate solutions [5,14,28].
These differential equations involve several fractional differential operators like Riemann-Liouville, Caputo, Hilfer etc.
[3,16,31].

Recently a new fractional derivative without any singularity in its kernel is proposed in [27,21]. The kernel of the new
fractional derivative has the form of an exponential function. On the other hand, these operators have a power law kernel
and have limitations in modeling physical problems. To conquer this difficulty, recently an alternate fractional
differential operator having a kernel with exponential decay has been introduced by Caputo and Fabrizio [9] This new
approach of fractional derivative is known as the CF- operator which has attracted many research scholars due to the fact
that it has a non-singular kernel. Also the CF-operator is most suitable for modeling some class of real-world problem
which follows the exponential decay law. With the course of time, developing a mathematical model using the CF
fractional order derivative became a notable field of research. In recent times, several mathematicians were busy in
development and simulation of differential equations of CF-fractional derivative. One can read the articles of the
aforementioned derivative to see further characteristics and applications [4,7,15,26]. However, the CF-fractional
derivative gives less noise than the power law one while the Atangana-Baleanu fractional derivative provides an excellent
description. In [20], M. A. Khan and A. Atagana introduced the mathematical modelling and dynamics of a novel corona
virus (2019-nCov) with fractional order derivative. The fractional model was solved numerically by the authors. For
more results about Covid-2019, see [1,2,8,17].

In the present paper, we apply the CF- fractional derivativewith an expoential decay kernel to a novel corona virus
model. The existence and uniqueness of the solution of the fractional model are estabilshed using fixed-point theory and
an iterative method. The paper is structured as follows: The definition of the CF-fractional derivative and some its
important properties are given in Sec. 2. The fractional model for novel coronavirus is described in Sec. 3. In Sec. 4, the
existence and uniqueness of the solutions of the model are discussed. In Sec. 5, we determine the equilibrium points of
the model and give conditions for local asymptotic stability. Lastly, some conclusion are presented in Sec. 6.

2 Prerequisites

In this section, we review the definitions and properties for the CF- fractional operators involved in this paper.

Let H1(a,b) =
{

f |L2(a,b) and f 1 ∈ (a,b)
}

, where L2(a,b) is the space of square integrable on the interval (a,b).

Definition 1. Let f ∈ H1(a,b) and ρ ∈ (0,1). Then the CF-fractional derivative [9] is defined as

CFD
ρ

t ( f (t)) =
M (ρ)

1−ρ

∫ t

a
f
′
(x)exp

[
−ρ

t − x
1−ρ

]
dx, (1)

where M (ρ) is a normalization function such that M (0) = M (1) = 1. However, if f ∈ H1(a,b), then the derivative is
defined as

CFD
ρ

t ( f (t)) =
ρM (ρ)

1−ρ

∫ t

a
( f (t)− f (x))exp

[
− t − x

1−ρ

]
dx. (2)

Remark.[9] If we let σ = 1−ρ

ρ
∈ (0,∞), then ρ ∈ 1

1+σ
∈ (0,1). In consequence, Eq. (2) can be reduced to

CFD
ρ

t ( f (t)) =
N (σ)

σ

∫ t

a
f
′
(x)exp

[
− t − x

σ

]
dx, (3)
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where N (σ) is the normalization term corresponding to M (ρ) such that N (0) = N (∞) = 1.

Remark.[9] We have the following property:

lim
σ→0

1
σ

exp
[
− t − x

σ

]
= δ (x− t), (4)

where δ (x− t) is the Dirac delta function.

The above CF-fractional derivative was later modified (see [23]) as

CFD
ρ

t ( f (t)) =
(2−ρ)M (ρ)

2(1−ρ)

∫ t

a
f
′
(x)exp

[
−ρ

t − x
1−ρ

]
dx. (5)

The fractional integral corresponding to the derivative in Eq. (5) was defined in [23] as follows:

Definition 2. Let 0 < ρ < 1. The fractional integral of order ρ of a function f is defined by

CFI
ρ

t ( f (t)) =
2(1−ρ)

(2−ρ)M (ρ)
f (t)+

2ρ

(2−ρ)M (ρ)

∫ t

0
f (x)dx, t ≥ 0. (6)

Remark.[23] From the definition in Eq. (6), the fractional integral of CF type of the function f of order 0 < ρ < 1 is a
mean between the function f and its integral of order one, i.e.,

2(1−ρ)

(2−ρ)M (ρ)
+

2ρ

(2−ρ)M (ρ)
= 1, (7)

and therefore M (ρ) = 2
2−ρ

, 0 < ρ < 1.

Using M (ρ) = 2
2−ρ

, the new CF-derivative and its integral as follows:

Definition 3. [23] let 0 < ρ < 1. The fractional CF-derivative of order ρ of a function f is given by

CFD
ρ

t ( f (t)) =
1

1−ρ

∫ t

a
f
′
(x)exp

[
−ρ

t − x
1−ρ

]
dx, t ≥ 0, (8)

and its fractional integral is defined as

CFI
ρ

t ( f (t)) = (1−ρ) f (t)+ρ

∫ t

0
f (x)dx, t ≥ 0. (9)

3 CF-fractional model for novel coronavirus (COVID-19)

In this section, we consider the coronavirus epidemic model proposed by M. A. Khan and A. Atangana in [20]. In this
model, it is assumed that the total population of people is denoted by Np which is classified further into five subgroups such
as Sp,Ep, Ip,Ap and Rp which represent respectively, the susceptible, exposed, infected (symptomatic), asymptotically
infected and the recovered or the removed people. The evolutionary dynamics of the bats, host, people and the seafood
markset (reservoir) is described through the nonlinear differential equations. Hence, the total population is Np(t) = Sp +

Ep + Ip +Ap +Rp and the original integer-order model adopted from [20] can be written as
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dSp
dt = Πp −µpSp −

ηpSp(Ip+ψAp)
Np

−ηwSPM,
dEp
dt =

ηpSp(Ip+ψAp)
Np

+ηwSpM− (1−θ)ωpEp −θpρpEp −µpEp,
dIp
dt = (1−θp)ωpEp − (τp +µp)Ip,

dAp
dt = θpρpEp − (τap +µp)Ap,

dRp
dt = τpIp + τapAp −µpRp,

dMp
dt = QpIp +ω pAp −πM.

(10)

All parameters in the model are assumed to be positive constants and the definitions are as follows. The birth and natural
death rate of the people is given by the parameters Πp and µp respectively. The susceptible people Sp will be infected
through sufficient contacts with the infected people Ip through the term given by ηpSpIp where the ηp is the disease
transmission coefficient. The transmission among the asymptomatically infected people with health people could take
place at form ψηpSpAp, where ψ the transmissibility multiple will exists and hence vanish, and if ψ = 1, then the same
will take place like Ip and ψ ∈ [0,1], when ψ = 0, no transmisibility multiple will exists and hence vanish, and if ψ = 1,
then the same will take place like Ip infection. The parameter θp is the proportion of asymptomatic infection. The
parameters ωp and ρp respectively represent the transmission rate after completing the incubation period and becomes
infected, joining the class Ip and Ap. The people in the symptomatic class Ip and asymptomatic classAp joining these
class Rp with the removal or recovery rate respectively by τp and τap. The class M which is denoted be the reservoir or
the seafood place or market. The susceptible people infected after the interaction with M, given by ηwMSp, where ηw the
disease transmission coefficient from M to Sp. The host visiting the seafood market by purchasing the items (retail
purchase) shown by b with bMIh/Nh. The parameters Qp and wp of the infected symptomatic and asymptomatically
infected respectively contributing the virus into the seafood market M. The removing rate of the virus from the seafood
market M is given by the rate π .

To obtain CF-fractional derivative model, we replace the first-order time derivatives of the left-hand side of (10) by the
CF-fractional derivative defined in Eq. (5). The proposed new CF-fractional model for novel corona virus (COVID-19)
can therefore be written as follows:



CFD
ρ1
t Sp = Πp −µpSp −

ηpSp(Ip+ψAp)
Np

−ηwSPM,

CFD
ρ2
t Ep =

ηpSp(Ip+ψAp)
Np

+ηwSpM− (1−θ)ωpEp −θpρpEp −µpEp,

CFD
ρ3
t Ip = (1−θp)ωpEp − (τp +µp)Ip,

CFD
ρ4
t Ap = θpρpEp − (τap +µp)Ap,

CFD
ρ5
t Rp = τpIp + τapAp −µpRp,

CFD
ρ6
t M = QpIp +ω pAp −πM.

(11)

with initial conditions

Sp(0) = S0, Ep(0) = E0, Ip(0) = I0, Ap(0) = A0, Rp(0) = R0, M(0) = M0. (12)

In the theoretical treatment, we will assume that the fractional orders (0 < ρi < 1, i = 1,2,3, ...6) for each of six groups
can be different.
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4 Existence and uniqueness of solutions of the model

In this section, we investigate the existence and uniqueness of the solutions of the CF-fractional model for novel corona
virus in Eq. (11) with initial conditions (12). Using fixed point theory (see, e.g., [22,19]), we can prove existence of
solutions for the model as follows.



Sp(t)−S(0) = CFI
ρ1

t

[
Πp −µpSp −

ηpSp(Ip+ψAp)
Np

−ηwSPM
]

Ep(t)−E(0) = CFI
ρ2

t

[
ηpSp(Ip+ψAp)

Np
+ηwSpM− (1−θ)ωpEp −θpρpEp −µpEp

]
Ip(t)− I(0) = CFI

ρ3
t [(1−θp)ωpEp − (τp +µp)Ip]

Ap(t)−A(0) = CFI
ρ4

t [θpρpEp − (τap +µp)Ap]

Rp(t)−R(0) = CFI
ρ5

t [τpIp + τapAp −µpRp]

M(t)−M(0) = CFI
ρ6

t [QpIp +ω pAp −πM] .

(13)

Then, for sake of brevity, we define the following kernels:

G1(t,Sp) = Πp −µpSp −
ηpSp(Ip+ψAp)

Np
−ηwSPM

G2(t,Ep) =
ηpSp(Ip+ψAp)

Np
+ηwSpM− (1−θ)ωpEp −θpρpEp −µpEp

G3(t, Ip) = (1−θp)ωpEp − (τp +µp)Ip

G4(t,Ap) = θpρpEp − (τap +µp)Ap

G5(t,Rp) = τpIp + τapAp −µpRp

G6(t,M) = QpIp +ω pAp −πM,

(14)

and the functions

Ω(ρ) =
2(1−ρ)

(2−ρ)M (ρ)
and ω(ρ) =

2ρ

(2−ρ)M (ρ)
. (15)

In proving the following theorems, we will assume that Sp,Ep, Ip,Ap,Rp and M are nonnegative bounded functions, i.e.,∥∥Sp(t)
∥∥ ≤ θ1,

∥∥Ep(t)
∥∥ ≤ θ2,

∥∥Ip(t)
∥∥ ≤ θ3,

∥∥Ap(t)
∥∥ ≤ θ4,

∥∥Rp(t)
∥∥ ≤ θ5, ∥M(t)∥ ≤ θ6, where θi, i = 1,2, ...,6 are some

positive constants. Denote 

γ1 = µ +
ηp(θ3+ψpθ4)

Np
+ηwθ6

γ2 = (1−θp)ωp +θpρp +µp

γ3 = τp +µp

γ4 = τap +µp

γ5 = µp

γ6 = Π .

(16)
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Applying the definition of the CF-fractional integral in Eq. (6) to Eq. (13), we obtain

Sp(t)−S(0) = Ω(ρ1)G1(t,Sp)+ω(ρ1)
∫ t

0 G1(y,Sp)dy,

Ep(t)−E(0) = Ω(ρ2)G2(t,Ep)+ω(ρ2)
∫ t

0 G2(y,Ep)dy,

Ip(t)− I(0) = Ω(ρ3)G3(t, Ip)+ω(ρ3)
∫ t

0 G3(y, Ip)dy,

Ap(t)−A(0) = Ω(ρ4)G4(t,Ap)+ω(ρ4)
∫ t

0 G4(y,Ap)dy,

Rp(t)−R(0) = Ω(ρ5)G5(t,Rp)+ω(ρ5)
∫ t

0 G5(y,Rp)dy,

M(t)−M(0) = Ω(ρ6)G6(t,M)+ω(ρ6)
∫ t

0 G6(y,M)dy.

(17)

Theorem 1. If the following inequality holds

0 ≤ ν = max{γi, i = 1,2, ...6}< 1, (18)

then the kernels Gi, i = 1,2, ...,6 satisfy Lipschitz conditions and are contraction mappings.

Proof. We consider the kernel G1. Let Sp and Sp1 be any two functions, then we have

∥∥G1(t,Sp)−G1(t,Sp1)
∥∥=

(
µ +

ηp(θ3 +ψpθ4)

Np
+ηwθ6

)∥∥Sp(t)−Sp1(t)
∥∥

= γ1
∥∥Sp(t)−Sp1(t)

∥∥ , (19)

where γ1 is defined in Eq. (16). Similar results for the kernels Gi, i = 2, ...,6 can be obtained using
{

Ep,Ep1
}

,
{

Ip, Ip1
}

,{
Ap,Ap1

}
,
{

Rp,Rp1
}

and {M,M1}, respectively, as follows:∥∥G2(t,Ep)−G2(t,Ep1)
∥∥= γ2

∥∥Ep(t)−Ep1(t)
∥∥ ,∥∥G3(t, Ip)−G3(t, Ip1)

∥∥= γ3
∥∥Ip(t)− Ip1(t)

∥∥ ,∥∥G4(t,Ap)−G4(t,Ap1)
∥∥= γ4

∥∥Ap(t)−Ap1(t)
∥∥ ,∥∥G5(t,Rp)−G5(t,Rp1)

∥∥= γ5
∥∥Rp(t)−Rp1(t)

∥∥ ,
∥G6(t,M)−G2(t,M1)∥= γ6 ∥M(t)−M1(t)∥ ,

where γi, i = 2, ...,6 are defined in Eq. (16). Therefore, the Lipschitz conditions are satisfied for Gi, i = 1,2, ...,6. In
addition, since 0 ≤ ν = max{γi, i = 1,2, ...6}< 1, the kernels are contractions.

From Eq. (17), the state variable can be displayed in terms of the kernels as follows:

Sp(t) = S(0)+Ω(ρ1)G1(t,Sp)+ω(ρ1)
∫ t

0 G1(y,Sp)dy,

Ep(t) = E(0)+Ω(ρ2)G2(t,Ep)+ω(ρ2)
∫ t

0 G2(y,Ep)dy,

Ip(t) = I(0)+Ω(ρ3)G3(t, Ip)+ω(ρ3)
∫ t

0 G3(y, Ip)dy,

Ap(t) = A(0)+Ω(ρ4)G4(t,Ap)+ω(ρ4)
∫ t

0 G4(y,Ap)dy,

Rp(t) = R(0)+Ω(ρ5)G5(t,Rp)+ω(ρ5)
∫ t

0 G5(y,Rp)dy,

M(t) = M(0)+Ω(ρ6)G6(t,M)+ω(ρ6)
∫ t

0 G6(y,M)dy.

(20)
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Using (20), we now introduce the following recursive formulas:

Spn(t) = Ω(ρ1)G1(t,Sp(n−1))+ω(ρ1)
∫ t

0 G1(y,Sp(n−1))dy,

Epn(t) = Ω(ρ2)G2(t,Ep(n−1))+ω(ρ2)
∫ t

0 G2(y,Ep(n−1))dy,

Ipn(t) = Ω(ρ3)G3(t, Ip(n−1))+ω(ρ3)
∫ t

0 G3(y, Ip(n−1))dy,

Apn(t) = Ω(ρ4)G4(t,Ap(n−1))+ω(ρ4)
∫ t

0 G4(y,Ap(n−1))dy,

Rpn(t) = Ω(ρ5)G5(t,Rp(n−1))+ω(ρ5)
∫ t

0 G5(y,Rp(n−1))dy,

Mn(t) = Ω(ρ6)G6(t,M(n−1))+ω(ρ6)
∫ t

0 G6(y,M(n−1))dy.

The initial components of the above recursive formulas are determined by the given initial conditions as follows:S0(t) = Sp(0), E0(t) = Ep(0), I0(t) = Ip(0),

A0(t) = Ap(0), R0(t) = Rp(0), M0(t) = M(0).
(21)

The difference between the consecutive terms for the recursive formulas can be written as

φpn(t) = Spn(t)−Sp(n−1)(t)

= Ω(ρ1)
(
G1(t,Sp(n−1))−G1(t,Sp(n−2))

)
+ω(ρ1)

∫ t
0
(
G1(y,Sp(n−1))−G1(y,Sp(n−2))

)
dy

ψpn(t) = Epn(t)−Ep(n−1)(t)

= Ω(ρ2)
(
G2(t,Ep(n−1))−G2(t,Ep(n−2))

)
+ω(ρ2)

∫ t
0
(
G2(y,Ep(n−1))−G2(y,Ep(n−2))

)
dy

χpn(t) = Ipn(t)− Ip(n−1)(t)

= Ω(ρ3)
(
G3(t, Ip(n−1))−G3(t, Ip(n−2))

)
+ω(ρ3)

∫ t
0
(
G3(y, Ip(n−1))−G3(y, Ip(n−2))

)
dy

κpn(t) = Apn(t)−Ap(n−1)(t)

= Ω(ρ4)
(
G4(t,Ap(n−1))−G4(t, Ip(n−2))

)
+ω(ρ4)

∫ t
0
(
G4(y,Ap(n−1))−G4(y,Ap(n−2))

)
dy

ϕpn(t) = Rpn(t)−Rp(n−1)(t)

= Ω(ρ5)
(
G5(t,Rp(n−1))−G5(t, Ip(n−2))

)
+ω(ρ5)

∫ t
0
(
G5(y,Rp(n−1))−G5(y,Rp(n−2))

)
dy

λn(t) = Mn(t)−M(n−1)(t)

= Ω(ρ6)
(
G6(t,M(n−1))−G6(t,M(n−2))

)
+ω(ρ6)

∫ t
0
(
G6(y,M(n−1))−G6(y,M(n−2))

)
dy.

(22)
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Note that: 

Spn(t) = ∑
n
i=1 φpi(t)

Epn(t) = ∑
n
i=1 ψpi(t)

Ipn(t) = ∑
n
i=1 χpi(t)

Apn(t) = ∑
n
i=1 κpi(t)

Rpn(t) = ∑
n
i=1 ϕpi(t)

Mn(t) = ∑
n
i=1 λi(t).

(23)

Next, we formulate the recursive inequalities for the differences φpn(t),ψpn(t),χpn(t),κpn(t),ϕpn(t) and λn as follows:∥∥φpn(t)
∥∥=

∥∥Spn(t)−Sp(n−1)(t)
∥∥

=
∥∥Ω(ρ1)

(
G1(t,Sp(n−1))−G1(t,Sp(n−2))

)∥∥
+

∥∥∥∥ω(ρ1)
∫ t

0

(
G1(y,Sp(n−1))−G1(y,Sp(n−2))

)
dy
∥∥∥∥ . (24)

Then, since the kernel G1 satisfies the Lipschitz condition with Lipschitz constant γ1, we have∥∥Spn(t)−Sp(n−1)(t)
∥∥≤ Ω(ρ1)γ1

∥∥Sp(n−1)−Sp(n−2)
∥∥

+ω(ρ1)γ1

∫ t

0

∥∥Sp(n−1)−Sp(n−2)
∥∥dy.

Thus, we obtain∥∥φpn(t)
∥∥≤ Ω(ρ1)γ1

∥∥φp(n−1)(t)
∥∥+ω(ρ1)γ1

∫ t

0

∥∥φp(n−1)(y)
∥∥dy. (25)

In a similar manner, we can obtain the following results:

∥∥ψpn(t)
∥∥≤ Ω(ρ2)γ2

∥∥ψp(n−1)(t)
∥∥+ω(ρ2)γ2

∫ t
0

∥∥ψp(n−1)(y)
∥∥dy∥∥χpn(t)

∥∥≤ Ω(ρ3)γ3
∥∥χp(n−1)(t)

∥∥+ω(ρ3)γ3
∫ t

0

∥∥χp(n−1)(y)
∥∥dy∥∥κpn(t)

∥∥≤ Ω(ρ4)γ4
∥∥κp(n−1)(t)

∥∥+ω(ρ4)γ4
∫ t

0

∥∥κp(n−1)(y)
∥∥dy∥∥ϕpn(t)

∥∥≤ Ω(ρ5)γ5
∥∥ϕp(n−1)(t)

∥∥+ω(ρ5)γ5
∫ t

0

∥∥ϕp(n−1)(y)
∥∥dy

∥λn(t)∥ ≤ Ω(ρ6)γ6
∥∥λ(n−1)(t)

∥∥+ω(ρ6)γ6
∫ t

0

∥∥λ(n−1)(y)
∥∥dy.

(26)

Theorem 2. If there exists a time t0 > 0 such that the following inequality hold:

Ω(ρi)γi +ω(ρi)γit0 < 1, for i = 1,2, ...,6, (27)

then a system of solutions exists for the CF-fractional novel corona virus model (11)-(12).
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Proof. Since the functions Sp(t),Ep(t), Ip(t),Ap(t), Rp(t) and M(t) are assumed to be bounded and each of the kernels
satisfies a Lipschitz condition, the following relations can be obtained using Eqs. (25)-(26) recursively:

∥∥φpn(t)
∥∥≤

∥∥Sp(0)
∥∥ [Ω(ρ1)γ1 +ω(ρ1)γ1t]n∥∥ψpn(t)

∥∥≤
∥∥Ep(0)

∥∥ [Ω(ρ2)γ2 +ω(ρ2)γ2t]n∥∥χpn(t)
∥∥≤

∥∥Ip(0)
∥∥ [Ω(ρ3)γ3 +ω(ρ3)γ3t]n∥∥κpn(t)

∥∥≤
∥∥Ap(0)

∥∥ [Ω(ρ4)γ4 +ω(ρ4)γ4t]n∥∥ϕpn(t)
∥∥≤

∥∥Rp(0)
∥∥ [Ω(ρ5)γ5 +ω(ρ5)γ5t]n

∥λn(t)∥ ≤ ∥M(0)∥ [Ω(ρ6)γ6 +ω(ρ6)γ6t]n .

(28)

Equation (28) shows that existence and smoothness of the functions defined in Eq. (23).

To complete the proof, we prove that the functions Spn(t),Epn(t), Ipn(t),Apn(t), Rpn(t) and Mn(t) converge to a system of
solutions of (11)-(12). We define Bpn, Cpn, Dpn, Fpn, Hpn and Jn as remainder terms after n iterations, i.e.,

Sp(t)−Sp(0) = Spn(t)−Bpn(t)

Ep(t)−Ep(0) = Epn(t)−Cpn(t)

Ip(t)− Ip(0) = Ipn(t)−Dpn(t)

Ap(t)−Ap(0) = Apn(t)−Fpn(t)

Rp(t)−Rp(0) = Rpn(t)−Hpn(t)

M(t)−M(0) = Mn(t)− Jn(t).

(29)

Then, using the triangle inequality and the Lipschitz condition for G1, we have

∥∥Bpn(t)
∥∥=

∥∥∥∥Ω(ρ1)
(
G1(t,Sp)−G1(t,Sp(n−1))

)
+ω(ρ1)

∫ t

0

(
G1(t,Sp)−G1(t,Sp(n−1))

)
dy
∥∥∥∥

= Ω(ρ1)
∥∥(G1(t,Sp)−G1(t,Sp(n−1))

)∥∥+ω(ρ1)
∫ t

0

∥∥(G1(t,Sp)−G1(t,Sp(n−1))
)

dy
∥∥

≤ Ω(ρ1)γ1
∥∥Sp −Sp(n−1)

∥∥+ω(ρ1)γ1
∥∥Sp −Sp(n−1)

∥∥ t.

Applying the above process recursively, we obtain∥∥Bpn(t)
∥∥≤ [Ω(ρ1)γ1 +ω(ρ1)γ1t]n+1

θ1. (30)

Then at t0, we obtain∥∥Bpn(t)
∥∥≤ [Ω(ρ1)γ1 +ω(ρ1)γ1t0]

n+1
θ1. (31)
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Taking the limit on Eq. (31) as n → ∞ and then using condition (27), we obtain ∥Bn(t)∥ → 0. Using the same process as
described above, we have the following relations:∥∥Cpn(t)

∥∥≤ [Ω(ρ2)γ2 +ω(ρ2)γ2t0]
n+1

θ2, (32)∥∥Dpn(t)
∥∥≤ [Ω(ρ3)γ3 +ω(ρ3)γ3t0]

n+1
θ3, (33)∥∥Fpn(t)

∥∥≤ [Ω(ρ4)γ4 +ω(ρ4)γ4t0]
n+1

θ4, (34)∥∥Hpn(t)
∥∥≤ [Ω(ρ5)γ5 +ω(ρ5)γ5t0]

n+1
θ5, (35)

∥Jn(t)∥ ≤ [Ω(ρ6)γ6 +ω(ρ6)γ6t0]
n+1

θ6. (36)

Similarly, taking the limit on Eq. (32)-(36) as n → ∞ and then using condition (27), we have
∥∥Cpn(t)

∥∥→ 0,
∥∥Dpn(t)

∥∥→ 0,∥∥Fpn(t)
∥∥→ 0,

∥∥Hpn(t)
∥∥→ 0 and

∥∥Jpn(t)
∥∥→ 0. Therefore, the existence of the system of solutions of system (11)-(12) is

proved.

We now give conditions for the system of solutions to be unique.

Theorem 3. System (11) along with the initial conditions (12) has a unique system of solutions if the following conditions
hold:

(1−Ω(ρi)γi −ω(ρiγit))> 0, for i = 1,2, ...,6. (37)

Proof. Assume that
{

Sp1(t),Ep1(t), Ip1(t),Ap1(t),Rp1(t),M1(t)
}

is another set of solution of model (11)-(12) in additiion
to the solution set

{
Sp(t),Ep(t), Ip(t),Ap(t),Rp(t),M(t)

}
proved to exist in Theorems 1 and 2. Then

Sp(t)−Sp1(t) = Ω(ρ1)(G1(t,Sp)−G1(t,Sp1))

+ω(ρ1)
∫ t

0
(G1(y,Sp)−G1(y,Sp1))dy. (38)

Taking the norm on both sides of Eq.(38) and using the triangle inequality, we obtain∥∥Sp(t)−Sp1(t)
∥∥= Ω(ρ1)

∥∥(G1(t,Sp)−G1(t,Sp1))
∥∥

+ω(ρ1)
∫ t

0

∥∥(G1(y,Sp)−G1(y,Sp1))
∥∥dy. (39)

Using the Lipschitz condition for kernel G1, we find∥∥Sp(t)−Sp1(t)
∥∥= Ω(ρ1)γ1

∥∥Sp(t)−Sp1(t)
∥∥+ω(ρ1)γ1t

∥∥Sp(t)−Sp1(t)
∥∥ . (40)

Then, rearranging Eq. (40), we obtain∥∥Sp(t)−Sp1(t)
∥∥(1−Ω(ρ1)−ω(ρ1)t)≥ 0. (41)

Finally, applying condition (37) for i = 1 to Eq. (42), we obtain∥∥Sp(t)−Sp1
∥∥= 0, (42)

and therefore Sp(t) = Sp1(t).

Applying a similar procedure to each of the following pairs
{

Ep,Ep1
}

,
{

Ip, Ip1
}

,
{

Ap,Ap1
}

,
{

Rp,Rp1
}

and {M,M1}
with inequality (37) for i = 2, ...6, respectively, we obtain

Ep(t) = Ep1(t), Ip(t) = Ip1(t), Ap(t) = Ap1(t), Rp(t) = Rp1(t), M(t) = M1(t). (43)
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Thus, the uniqueness of the system of solutions of the CF-fractional order system is proved.

5 Stability analysis

We determine the equilibrium points of the fractional order system (11) by equating its right-hand side to zero. Solving
the resulting algebric system, we obtain only two equilibrium points, namely, disease-free and an endemic equilibrium
point which are already given in [20]. From [20], we have the disease-free equilibrium point given by

E0 =
(
S0

p,0,0,0,0,0
)
=

(
Πp

µp
,0,0,0,0,0

)
, (44)

and the endemic equilibrium point, we denote it by E∗ and E∗ =
(
S∗p,E

∗
p, I

∗
p,A

∗
p,R

∗
p,M

∗
p
)
, given by



S∗p =
Πp

λ+µp

E∗
p =

λS∗p
θpρp−θpωp+µp+ωp

I∗p =
E∗

p(1−θp)ωp
µp+τp

A∗
p =

E∗
pθpρp

τap+µp

R∗
p =

A∗
pτap+I∗pτp

µp

M∗ =
A∗

pω p+I∗pQp
π

,

(45)

where the basic reproduction number R0 which is the average number of infected contacts per infected individual. R0 can
be obtained using the next generation matrix method [6,?], is written as

R0 =
θpρp(µp + τp)(πψηp +Πpωηw)+(1−θp)ωp(τap +µp)(πηpµp +ΠpQpηw)

πµp(µp + τp)(τap +µp)(θp(ρp −ωp)+µp +ωp)
. (46)

It can be noticed that the unique endemic equilibrium point E∗ exists if R0 > 1.

Consider the following fractional order linear system described by CF-fractional derivative:

CFD
ρ

t x(t) = Ax(t), (47)

where x(t) ∈ Rn, A ∈ Rn×n, and 0 < ρ < 1.

Definition 4. [11] The characteristic equation of system (47) is

det (s(I − (1−ρ)A)−ρA) = 0. (48)

Theorem 4. [11] If (I − (1−ρ)A)−ρA is invertible, then system (47) is asymptotically stable if and only if the real part
of the roots to the characteristic equation of system (47) are negative.

The linearization matrix of model (11) evaluated at the disease-free equilibrium point E0 is

J(E0) =



−µp 0 −ηp −ψηp 0 −ηwΛp
µp

0 −µp −θpρp − (1−θp)ωp ηp ψηp 0 ηwΛp
µp

0 (1−θp)ωp µp − τp 0 0 0
0 θpρp 0 −µpτap 0 0
0 0 τp τap −µp 0
0 0 Qp wp 0 −pi


(49)
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If model (11) has a commensurate order, i.e., ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = ρ6 = ρ ∈ (0,1), then the characteristic equation
of the linearized system of model (11) at E0 is

det
(
s
(
I − (1−ρ)J(E0)

)
−ρJ(E0)

)
= 0. (50)

Theorem 5.The disease-free equilibrium point E0 of model (11) with a commensurate order ρ ∈ (0,1) is asymptotically
stable if and only if real parts of the characteristic equation (50) are negative.

Proof.The proof of the theorem is similar to the above Theorem 4. Hence, the proof is omitted (for detailed information,
see [11]).

6 Conclusion

In this paper, a CF-fractional differential equation model for novel coronavirus (COVID-19) has been studied. This
fractional model is based on the use of the non-singular expoentially decreasing kernels appearing in the CF-fractional
derivative. Using fixed point theorey and an iterative method, the existence and uniqueness of solutions for the model
have been investigated. We have determined the conditions for local asymptotic stability of the disease-free equilibrium
point.
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