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Abstract: In this paper, some new integral inequalities are obtained for functions whose n-th derivative is s-convex function in the
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1 Introduction

The classical definition of convex functions on a convex subset U of a vector space X is the statement that f : U — R is

said to be convex function if

fAx+(1=2A)y) SAf(x)+(1=2A)f()

for all x,y € U and A € [0, 1]. If this inequality reverse, then f is said to be concave on U. In the definition of convexity,
new classes of abstract convex functions can be produced with the conditions imposed on the coefficients [1,2,18,11,12,
7,9,8,10,19]. Some of these classes are as follows; Let s € (0,1] and U C R” be a s-convex set. A function f: U — R is

said to be s-convex in the first sense if
J(Ax+py) SA°f(x)+p’f(y)
forall x,y € U and A, > 0 with A* 4+ p® =1 [16]. Let s € (0,1] and U C R" be a convex set. A function f: U — R is

said to be s-convex in the second sense if the inequality

FAx+py) <A f(x)+pf(y)

holds for all x,y € U and all A,u > 0 with A + u = 1[3]. s-Convex functions in the third sense were introduced to the
literature by Kemali et al. [12]. For this new convexity class, Hermite-Hadamard type inequalities and some integral
inequalities have been studied [19,6].The functions have been stated as the following, Let s € (0,1] and U C R" be a
s-convex set. A function f: U — R is said to be s-convex function in the third sense if the inequality

FAx+py) < A5 f(x)+ s £(y) (1)
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is satisfied for all x,y € U and A, 4 > 0 such that A*+ p1* = 1. The inequality (1) is equivalent to the following inequalities:

1 1

FOxt (1=2)1y) S A F(x) + (1= A) 2 £(y)

or

FAx+(1=25)7y) S A5 F()+(1 =A%) f(3)

where A € [0,1] and x,y € U. In this paper, U C R” will be taken as a s-convex set. The classes of s-convex functions
in first, second and third senses are denoted by K!, K? and K respectively. It can be easily seen that in the case s = 1,
each type of s-convexity is reduced to the ordinary convexity of functions. There is a large number of studies on s-convex
functions and their properties, relevant inequalities mainly including Hermite-Hadamard type inequalities ( see [15,5,4,
13,17,16,?] and the references therein).

Lemma 1. [12]. I C R is a convex set and also a s-convex set.

Sarikaya et al. proved the following Lemma in [15] and some new integral inequalities for convex and concave functions

were establish by this useful lemma. In this study, the same Lemma and new Lemma will be used to get the main results.

Lemma 2.//5] Let f: 1 C R — R be n-times differentiable function on I, a,b € I° with a < b. If f") € L[a,b], then we
have the identity,

n—1 (k) b bk+] k+] n+1 b
Y (=1 76) (k+1 ] /f 1) /x"f<">(x)dx
k=0 a

where an empty sum is understood to be nil.

Throughout this paper, the following notations and conventions are used.

Let 7 and I° be the subset of R and interior of I, respectively and

a a, ifa=>b

Ly(a,b) = a1 _pprt \ /P
(7@“)(37@) else

A(a,b) =

be Arithmetic mean and Stolarsky mean (Generalized Logarithmic mean) for a,b, p be positive number with a # b,
respectively.

2 Main results

In this section, some new integral inequalities for functions whose absolute value of n-th derivative are s-convex functions
in the third sense are given.

Lemma 3. Let f : [a,b] C R — R be differentiable function on [a,b]. If f € L[a,b), then

b)—afla /f dx—/ [0 = a2 (1 =) " —abr (1 =) ab(1 = )3 | £ (tb+ (1= ) a)dr

is holds.
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Proof. If the following inequality is calculated by the partial integration method, then

(Abxf()dx-hf )—af(a /)f

1
s

here, if x =tb+ (1 — t*) s a variable replacement is done,

1 1
s s

/(tb+(1—t) a).(b— . (1—)5a)f (tb+ (1 —1*)S a)d

= /01 |:b2t—a2[S71(1—ts)%*1_abz‘s(l ) ' ab(1— )%}f(tb%-(l—t )} )dt

— (tb+(1 =) 5a)f(tb+(1—')3a /ftb+ (1=) Y a)(b—a(l— )5 Dar

b
= (O)f(6) - (@f (@)~ | f()dx

Using the Lemma 3 we get the following integral inequalities,

Theorem 1. Let f : [a,b] C R — R be differentiable function on |a,b). If | f'| is integrable on [a,b] and s-convex function

fwﬂﬂﬁ<;+ni)mwwl

in the third sense, then the following inequality is holds

1) as@~ [ siayax

Proof. Using the Lemma 3 we get,

' b)—af(a /ﬁf

(bzt—azf*1 (1) —abr (1 —r) ' +ab(1 —ts)%>f/ (tb+ (1 —ts)%a> dt
0

s
1+s

< (lal +16)? |

<

1

’(tb+(1—t ) )‘dt

1%

1
= / ‘(bzt_“sz (1) —abr* (1 - )" 4 ab(1 —t“')%>
0

b)|+(1—ﬁ)?2

1
< / [!bzt] + ‘ath (1—r) ! ) + ‘abts(l )i ‘ + ‘ab(l — )

f(@)|] i

< [ el + i [ @)+ (-0 |

= (al+16D” [V ) ;fl b+l e (;H,;)]
= (lal +|b])? { ‘+1B<;FL1>UK@@,

Corollary 1. In addition to the conditions in the Theorem 1, if we take s = 1, we get

2 (@) + 11 (0)]

< (Jal + Ip? 2

‘ww—ww—l?mw

Corollary 2. In addition to the conditions in the Theorem 1, if we take |f'(x)| <M for all x € [a,b], then we have the
following inequality,
< M (la| +[b]).

kf()—af /"f Jdx
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Theorem 2. Let f : R — R be differentiable function on [a,b], a,b € R witha < b and p € (1,0) such that % <s. If|f")?

is s-convex function in the third sense on R, then we get

‘ b)—af(a /‘f

Proof. Using Lemma 3, Holder integral inequality and s-convexity of |f’|” we have the following inequality,

o) s~ [ siajax

< ‘/ bzz—azt“‘ (1—t5)%*1 —abts(l—ts)%71—&-ab(l—ts)%)f (zb+(1—t‘9)§a) dt

x| < (755)7 (al + 16D [slF 0+ (149)B (5 +1.1) 17 @)]

1

g/ ‘bz e (=) —abr (1— %) ab (1) | (tb+(1_t )i )‘dr

p=1 1

M 2, o 2 g 2ot sp1_ syi-1 7 ”1}?{1, ! p]p

< _/0 {bt+at (1= abt 1 —1°)s " +ab(1 —1)5 } dt A (;b+(1 ) a)’ dt

= _/1 {b2t+“2’5_1(1ls)%_1+|ab|fs(1fs)'l_lJrlabl(lts)‘g}ppldt]p [/1 (f% f’(b)|p+(l—t5)% f’(a)|pdt)]p
/o 0
- s 15T 1 1

< /0[b2+2|ab|+a2}”ldt} Uo (ﬁ FO) + (1) f’(a)|”)dr}

(i) (1012 o (1))
o (o3 )
() ot (o)

Corollary 3. In addition to the conditions in the Theorem 2, if we take s = 1, we get
1
' (B)" + If’(a)|p) ’

010~ arta) - [ 7as) < (a4 (L

Corollary 4. In addition to the conditions in the Theorem 2, if we take |f'(x)|" < M for all x € R, then we have the
following inequality
’ D -asta) - [ 1w

For the integral inequalities obtained below, Lemma 2 is used.

< M7 (|| + [b])*.

Theorem 3. For n € N, let f : I C [0,00) — R be n—times differentiable function on I° and let a,b € I° with a < b. If
q q

‘f(")’ for g > 1 is s-convex in the third sense function on [a,b] and ‘f(”)‘ € Lla,b] for some fixed s € [0,1), then the

following inequality holds;

(o] ol
< (b a)L.,(a,b) T NG

n—1 f(k) (b bk+l _f(k)( k+l
,§0<_1)k[ ) (k+1)! 1 /f Jax
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Proof. Letx = 3=b + 75— @ From s-Convexity of ‘ £

)

2

q
From Lemma 2 and since ‘ ak

inequality, we get

X —
b—

, we get

=) I

is a s-convex function in the third sense and using the well known Holder integral

b—x
b—a

a X—a

b—a

x—a
b—a

b+

@]

a

f(”)(b)‘q+ [1<

nil(_l)k f(k)(b)bk+l aktl /f
= (k+
1 b
< ;/ |70 )] dx
b Ubr b l/q
< % xX"Pdx / £ (x)‘qu]
- - /4
[P Up b [ /x—a\' q x—a\" q :
il p (n _ (n)
Sn‘ _/ax"dx /a [(b—a) f (b)‘ {1 (b—a) ‘f (a)‘ dx
- q q 1/q
g bx’”’d 1/p ’f<">(b)’ b sy ‘f(")(a)‘ b Us e
— E , X m/a (x—a) x+m/a |:( a) _(.x—a) :| X
_ - q
L[t ) v ‘f(”)(b)‘ (x—a)s ! |b+’f<n>(a)’ (b )l/s (x*a)%“]b e
= — —a)*x
n! | np+1|, (b—a)l/s ;-1-1 a (b_a)l/s ;—i—l a
) q q 1/q
e [0 gt | P U LT
~ n! np+1 | (b—a)t/s 141 (b—a)l/s 141
q 1/q
1 L bl — et 1/p ’ ( ‘ (b—a)
q g4 1/q
L [se=alre) sw—awﬂwwﬂ
= E(bia) an(a7b) 1+S 1+S
I/pyn 1/q Va (n) q () N\ 1/q
— -, @ne-a' (£ ) (e + @l
a\q /4
o | O @)
= a(b—a)an(a D) s .
Corollary 5. Under the same assumptions given in Theorem 3,
(i) If we choose s = 1, then the inequality (2) becomes the following inequality,
n—1 (k) k+1 _ P
A PAN L / n Va (| 7o )" 1| ro (@) |*
pUE [ “+1 Fds| < = 0n @mate (|19 w) 1 |9 @)").
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(i) If we choose s = 1, n = 1, then the inequality (2) becomes the following inequality,

< Ly(a,b)AY4(|f' ()], |7 )|

Lo [ s

(iii) Ifwe choose s =1, n =1, g =1 ,then the inequality (2) becomes the following inequality,

< Lp(a,b)A(|f'(a)], | £ (B))-

‘f(b)l;_i(a)a B bia/abf(x)dx

Theorem 4. For n € N, let f : I C [0,00) — R be n—times differentiable function on I° and let a,b € I° with a < b. If
q

‘f(”) € L[a,b] for some fixed s € [0,1), then the

Jfollowing inequality holds;

n—1 (k) k1 (k) () g+
¥y lf (b)) — £ (a) +]/:’f<x>dx

q
for g > 1 is s-convex in the third sense function on |a,b] and ’ f(")

k=0 (k+1)!
q q 1/q
b—a) nt! S| | (a) 1
< ( n!a)Ln  (a,b) [‘ (b‘—a)‘i“ ‘ F (s,n,x> +‘f(n)(a)‘qLZ(a,b) 3)

where, F (,n,x) = [P (x—a)'sxndx.

a

Proof. From Lemma 2, using the well known Power mean integral inequality and the s-convexity in the third sense of

‘ i !

, we get
E(—nk lf“”(b)b"“ /Y (a)w] B /abf(X)dx

(k+1)!
T11/g :/abx” (z:Z)I/S (1 <z:z>1/s> ’f<n>(a)’q1 dx]
‘q

[| fln 1 n /g
_ 1 /bx,,dx'll/q M/bxn(x_a)l/sdx+’ﬂ)(‘l)/b [(b—a)l/f_(x_a)l/S}xndx]

1/q

IN
2|
s~

>

i

&

o) +

(b—a)'/s (b—a)'ls Ja

Lip, (o] el s 1
:a /‘lx"dx (b_a)l/s_(b_a)l/s /a(x—a)l/sx"dx—F’f(")(a)’ /axhdx

R WAV IO | R VA N "
(b—a)'s  (b—a)lls F(S,n,x>—|—’f (a)’ n+1j,

RSN RSN 1/q
SR [('ﬂ O[] ) (L) +\f<n><a>rw—w]

~

~—

n | on+l (b—a)ls  (b—a)l/s n+1

ntl _ il - )| = [ ()] v
rj!(ba)l—l/‘?[ b+1a+1)]1 l/q[(’f (b)’ ’f ()’ )F(i,n,x>+‘f(")(a)‘q(ba)(b +1_g +1)]

(b—a)(n+1 (b—a)l/st! b—a)(n+1

© 2022 BISKA Bilisim Technology



NTMSCI 10, No. 3, 9-18 (2022) / www.ntmsci.com BISKA 15
q
1 L 1/gr e i ‘f ‘ ‘ﬂ")(a)‘ .
= (b a) Ly, (a b)(b—a) -/ F|(—,nx ’f ‘ L) (a,b)

g1 )| — | £ ()| 1/q
= %LZT(a,b) {(‘f ((l;)‘_a)l‘j;l( )‘ )F (1 n x) ’f ) L (a, b)] .

Corollary 6. Under the same assumptions given in Theorem 4,

(1) If we choose s = 1, then the inequality (3) becomes the following inequality,

n—1 (k) )bk — a1
Z(_l)k[f = (k+1 ] /f

k=0

1/q
Sb’;aLZq a,b) [‘f (‘b_i)fz a)‘ (LY (a,b) — aL(a, b)) ‘f a‘ Lﬁ(a,b)] .

(i1) If we choose s = 1,n =1, then the inequality (3) becomes the following inequality,

FO st L <

1/
b—a () LA s(a.b) (@b +a) |7 B)|+ (2a+b) | @)1,

(iii) If we choose s = 1,n =1 ve q = 1, then the inequality (3) becomes the following inequality,

’f<b>z—£<a>a N CE

(2b+a)|f'(b)|+ (2a+b)|f(a)].

Theorem 5. For n € N, let f : I C [0,00) — R be n—times differentiable function on I° and let a,b € I° with a < b. If

q q
f(")‘ for g > 1 is s-convex in the third sense function on |a,b] and ‘f(”) € L[a,b] for some fixed s € [0,1), then the

following inequality holds;

n—1 (k) fet1 (k) () gk
Z(_l)klf (b)p*! = f®)(a) *]_/abﬂx)dx

‘ q

q 1/q
poa [0 1@ o
< P { (b—a)%“ G(s,n,q,x>+‘f (a)‘ Ly,(a,b) ,

(k+1)!

whereG( n,q,x) = fb X" (x —a)'/Sdx.

Proof. From Lemma 2, using the well known Holder integral inequality and the s-convexity in the third sense of ‘ Ak

we find,

n—1 (k) k+1 gkl
T [f (b)b (+k+ + ] / e
| oo
([ rar) . ([ x|l o) v

(L) ([ () e (- () oo o) )

IN

IN
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1/q

s —|f
:L(/ﬂbdx)lp ’ (b‘—a‘l/f ‘/ I(x— al/sdx—i-‘f ‘/x”qu
)| || ottt \\
- Lo ()

1/q

n q
(b a)'/P(b—a)'/e ‘f (b‘ a)‘f(l)(a)‘ G(i,n,q,x)+‘f(”>(a)’qLﬁq(a,b)

Corollary 7. Under the same assumptions given in Theorem 5,

(1) If we choose s = 1, then the inequality (4) becomes the following inequality,

ni:l(—l)k lf(k)(b)bkﬂ k+1] / £

(k+1)!

n:

q 1/q
’ ‘ B ‘f 4 ‘ ng+1 n qrn
< . (297} a,b) — atgt(a, )] + 1" (@) L) |
(i) If we choose s = 1,n =1, then the inequality (4) becomes the following inequality,

‘f b Sl —bia/abf(x)dx < [(1r @)1 =17 @) [L5 @.b) —atg(a.b)] + |7/ (@)| Lo(a. )] .

(iii) If we choose s = 1,n=1ve g = 1, then the inequality (4) becomes the following inequality,

‘f(b)i_ﬁ(a)“ - bia./abf(x)dx < é [(2b+a)|f'(b)] + (2a+b) |f(a)]] -

Theorem 6. For n € N, let f : I C [0,00) — R be n—times differentiable function on I° and let a,b € I° with a < b. If
q q

‘f(”)‘ for g > 1 is s-convex in the third sense function on |a,b| and ‘f(") € Lla,b] for some fixed s € [0,1), then the

following inequality holds;

n—1 (k) (p\pk+1 — a1
Z(_Uk[f = (k+1 1 /f

k=0

Up 12
(b— a) leqs ab ’f (a—l—b)’. @)

Proof. From Lemma 2, the s-concavity in the third sense of ’ £

convex functions in the third sense [19] , we get
n—1 (k) b bkl — aktl 1 b
(k+1) 1 n!
1 / b gy / ’
n! a

k=0
< i Xt b r %2 1
- n! p+1

1 bnp+1 _anp+1:| 1/p

q
and using the Hermite-Hadamard inequality for s-

’dx

IN

1/
f(") (x) ‘qu) '

(n) a+b a1/
f 21/s

1

L
2 g2 4

_ L e o (41D

! np+1 21/s
(b a)l/ﬂ 152 ) a+b

- e ) |f (S )|
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Corollary 8. Under the same assumptions given in Theorem 6,

i) If we choose s = 1, then the inequality (4) becomes the following inequality,

n—1 (k) k+1 _ r(k) a ak+1 b —a 1/ a
¥ lf (D)6 — Y (a) ]_/ Flga < E=9 <a7b>’f<n>( +b>’,

= (k+1)! » 2

ii) If we choose s = 1,n = 1, then the inequality (4) becomes the following inequality,

,(a+b
! (2)\-

’f(b)b_f(a)a 1 < Lp(a,b)

b
(b—a)l/r _(b—a)l/l’/a f(x)dx

3 Conclusion

The article considers some new integral inequalities that differ from the current results for n-times differentiable s-convex
functions in the third sense. While obtaining these integral inequalities, a new integral identity (Lemma 3) and an existing
integral identity (Lemma 2) were used. Similar studies have been done for different classes of abstract convex functions.

Researchers interested in convexity can obtain new inequalities for this new class by proving a new integral identity.
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