Almost $C(\alpha)$-manifold on M-projective curvature tensor

Tuğba Mert ${ }^{1}$ and Mehmet Atçeken ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Sivas Cumhuriyet, Sivas, Turkey
${ }^{2}$ Department of Mathematics, University of Aksaray, Aksaray, Turkey

Received: 16 February 2022, Accepted: 8 June 2022
Published online: 17 August 2022.

Abstract

In this article, the behavior of the $C(\alpha)$-manifold satisfying the conditions $R(X, Y) W^{*}=0, W^{*}(X, Y) R=0, W^{*}(X, Y) \tilde{Z}=$ $0, W^{*}(X, Y) S=0$ and $W^{*}(X, Y) \tilde{C}=0$ on the M-projective curvature tensor is investigated. The $C(\alpha)$-Manifold is characterized according to these states of the curvature tensor. Here, W^{*}, R, S, \tilde{Z} and \tilde{C} are M-projective, Riemann, Ricci, concircular and quasiconformal curvature tensors.

Keywords: M-Projective Curvature Tensor, Ricci Curvature Tensor, Concircular Curvature Tensor

1 Introduction

A new tensor field

$$
\begin{equation*}
W^{*}(X, Y) Z=R(X, Y) Z-\frac{1}{4 n}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \tag{1}
\end{equation*}
$$

is defined by Pokhariyal and Mishra in n-dimensional Riemannian manifolds [1]. The W^{*} tensor field is called the M-projective tensor field where Q is the Ricci operator and S is the Ricci tensor. The definition and properties of the M-projective curvature tensor are given by Ojha in Sasakian and Kaehler manifolds [2],[3]. In recent years, many geometers have worked on the M - projective curvature tensor [4]-[10]. Again, many authors have worked on curvature tensors in almost $C(\alpha)$-manifold [11]-[13].

Based on the many studies mentioned above, in this article, the curvature conditions of $C(\alpha)$-manifold $R(X, Y) W^{*}=0, W^{*}(X, Y) R=0, W^{*}(X, Y) \tilde{Z}=0, W^{*}(X, Y) S=0$ and $W^{*}(X, Y) \tilde{C}=0$ are searched.

Let's take an $(2 n+1)$-dimensional differentiable M manifold. If it admits a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1-form η satisfying the following conditions;

$$
\begin{gathered}
\phi^{2} X=-X+\eta(X) \xi \text { and } \eta(\xi)=1, \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \text { and } g(X, \xi)=\eta(X),
\end{gathered}
$$

for all $X, Y \in \chi(M)$ and $\xi \in \chi(M),(\phi, \xi, \eta, g)$ is called almost contact metric structure and (M, ϕ, ξ, η, g) is called almost contact metric manifold. On the $(2 n+1)$ dimensional M manifold,

$$
g(\phi X, Y)=-g(X, \phi Y),
$$

[^0]for all $X, Y \in \chi(M)$, that is, ϕ is an anti-symmetric tensor field according to the g metric. The transformation Φ defined as
$$
\Phi(X, Y)=g(X, \phi Y)
$$
for all $X, Y \in \chi(M)$, is called the fundamental 2-form of the (ϕ, ξ, η, g) almost contact metric structure, where
$$
\eta \wedge \Phi^{n} \neq 0
$$

If the R Riemann curvature tensor of the M almost contact metric manifold satisfies the condition
$R(X, Y, Z, W)=R(X, Y, \phi Z, \phi W)+\alpha\{-g(X, Z) g(Y, W)+g(X, W) g(Y, Z)+g(X, \phi Z) g(Y, \phi W)-g(X, \phi W) g(Y, \phi Z)\}$,
for all $X, Y, Z, W \in \chi(M), \exists \alpha \in \mathbb{R}$, then M is called the almost $C(\alpha)$-manifold. Also, the Riemann curvature tensor of a almost $C(\alpha)$-manifold with $c-$ constant sectional curvature is given by

$$
\begin{align*}
R(X, Y) Z & =\left(\frac{c+3 \alpha}{4}\right)\{g(Y, Z) X-g(X, Z) Y\}+\left(\frac{c-\alpha}{4}\right)\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X \tag{2}\\
& +2 g(X, \phi Y) \phi Z+\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{align*}
$$

For a $(2 n+1)$-dimensional M almost $C(\alpha)$-manifold, the following equations are provided.

$$
\begin{gather*}
S(X, Y)=\left[\frac{\alpha(3 n-1)+c(n+1)}{2}\right] g(X, Y)+\frac{(\alpha-c)(n+1)}{2} \eta(X) \eta(Y), \tag{3}\\
S(X, \xi)=2 n \alpha \eta(X) \tag{4}\\
Q X=\left[\frac{\alpha(3 n-1)+c(n+1)}{2}\right] X+\frac{(\alpha-c)(n+1)}{2} \eta(X) \xi \tag{5}\\
Q \xi=2 n \alpha \xi \tag{6}\\
Q \phi Y=\frac{r-2 n \alpha}{2 n} Q Y \tag{7}
\end{gather*}
$$

for all $X, Y, \in \chi(M)$, where Q and S are the Ricci operator and Ricci tensor of manifold M, respectively.

$2 C(\alpha)$-manifolds satisfying some important conditions on the M-projective curvature tensor

Let M be a $(2 n+1)$-dimensional almost $C(\alpha)$-manifold and R be the Riemann curvature tensor of M manifold. So, if we choose $X=\xi$ in (2), we get

$$
\begin{equation*}
R(\xi, Y) Z=\alpha[g(Y, Z) \xi-\eta(Z) Y] \tag{8}
\end{equation*}
$$

Similarly, if we choose $Z=\xi$ in (2), we get

$$
\begin{equation*}
R(X, Y) \xi=\alpha[\eta(Y) X-\eta(X) Y] \tag{9}
\end{equation*}
$$

In addition, if $Y=\xi$ is chosen in (9),

$$
R(X, \xi) \xi=\alpha[X-\eta(X) \xi]
$$

is obtained. If the inner product of both sides of (2) is taken by $\xi \in \chi(M)$, we have

$$
\eta(R(X, Y) Z)=\alpha[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]
$$

Finally, if we choose $X=\xi$ in the (1), then it reduces the form

$$
\begin{equation*}
W^{*}(\xi, Y) Z=\frac{(n+1)(\alpha-c)}{8 n}[g(Y, Z) \xi-\eta(Z) Y] \tag{10}
\end{equation*}
$$

and if we choose $Z=\xi$ in the same equation, we get

$$
W^{*}(X, Y) \xi=\frac{(n+1)(\alpha-c)}{8 n}[\eta(Y) X-\eta(X) Y] .
$$

Theorem 1. Let M be a $(2 n+1)$-dimensional almost $C(\alpha)$-manifold. If M is M-projective flat, then M is an Einstein manifold.

Proof. Let's assume that manifold M is M-projective flat. From (1), we can write

$$
W^{*}(X, Y) Z=0
$$

for each $X, Y, Z \in \chi(M)$. Then from (1), we obtain

$$
\begin{align*}
R(X, Y) Z= & \frac{1}{4 n}[S(Y, Z) X-S(X, Z) Y \\
& +g(Y, Z) Q X-g(X, Z) Q Y] \tag{11}
\end{align*}
$$

for each $X, Y, Z \in \chi(M)$. If we choose $Z=\xi$ in (11) and using (4), (9), we obtain

$$
\frac{\alpha}{2}[\eta(Y) X-\eta(X) Y]=\frac{1}{4 n}[\eta(Y) Q X-\eta(X) Q Y] .
$$

In the last equation, if we first choose $X=\xi$ and we take inner product both sides of the last equation by $Z \in \chi(M)$, then we get

$$
S(Y, Z)=2 n \alpha g(Y, Z)
$$

It is clear from the last equation that M is Einstein manifold.
Theorem 2. Let M be $(2 n+1)$-dimensional a $C(\alpha)$-manifolds. Then $W^{*}(X, Y) R=0$ if and only if either the scalar curvature of M is $r=2 n \alpha(2 n+1)$ or M reduces real space form with constant sectinal curvature.

Proof. Suppose that $W^{*}(X, Y) R=0$. Then, we have
$\left(W^{*}(X, Y) R\right)(U, V, Z)=W^{*}(X, Y) R(U, V) Z-R\left(W^{*}(X, Y) U, V\right) Z-R\left(U, W^{*}(X, Y) V\right) Z-R(U, V) W^{*}(X, Y) Z=0$.

If we choose $X=\xi$ in here, we get

$$
\begin{equation*}
\left(W^{*}(\xi, Y) R\right)(U, V, Z)=W^{*}(\xi, Y) R(U, V) Z-R\left(W^{*}(\xi, Y) U, V\right) Z-R\left(U, W^{*}(\xi, Y) V\right) Z-R(U, V) W^{*}(\xi, Y) Z=0, \tag{12}
\end{equation*}
$$

for each $Y, U, V, Z \in \chi(M)$. In (12), using (10), we obtain

$$
\begin{align*}
& \frac{(n+1)(\alpha-c)}{8 n}[g(Y, R(U, V) Z) \xi-\eta(R(U, V) Z) Y-g(Y, U) R(\xi, V) Z+\eta(U) R(Y, V) Z \tag{13}\\
& -g(Y, V) R(U, \xi) Z+\eta(V) R(U, Y) Z-g(Y, Z) R(U, V) \xi+\eta(Z) R(U, V) Y]=0
\end{align*}
$$

Substituting $U=\xi$ in (13) and using (8), (9), we conclude

$$
\begin{equation*}
\frac{(n+1)(\alpha-c)}{8 n}[R(Y, V) Z-\alpha(g(V, Z) Y-g(Y, Z) V)]=0 . \tag{14}
\end{equation*}
$$

From (14), we have

$$
\begin{equation*}
c=\alpha \tag{15}
\end{equation*}
$$

In addition, since the scalar curvature of a $C(\alpha)$-manifold with constant sectional curvature is

$$
\begin{equation*}
r=n[\alpha(3 n+1)+c(n+1)] \tag{16}
\end{equation*}
$$

if the expression (15) is also put in (16), we get

$$
r=2 n \alpha(2 n+1)
$$

On the other hand, from (14) we get

$$
R(Y, V) Z=\alpha[g(V, Z) Y-g(Y, Z) V]
$$

Thus, M is reduced to the real space form with constant sectional curvature. The converse is obvius and the proof is completed.

Let M be a $(2 n+1)$-dimensional Riemannian manifold. Then the concircular curvature tensor \tilde{Z} is defined as

$$
\begin{equation*}
\tilde{Z}(X, Y) Z=R(X, Y) Z-\frac{r}{2 n(2 n+1)}[g(Y, Z) X-g(X, Z) Y], \tag{17}
\end{equation*}
$$

for all $X, Y, Z \in \chi(M)$. If we choose $X=\xi$ in (17), we get

$$
\begin{equation*}
\tilde{Z}(\xi, Y) Z=\left(\alpha-\frac{r}{2 n(2 n+1)}\right)[g(Y, Z) \xi-\eta(Z) Y] \tag{18}
\end{equation*}
$$

and when we choose $Z=\xi$ in (18) we get

$$
\tilde{Z}(\xi, Y) \xi=\left(\alpha-\frac{r}{2 n(2 n+1)}\right)[\eta(Y) \xi-Y] .
$$

Theorem 3. Let M be $(2 n+1)$-dimensional $C(\alpha)$-manifold. Then $W^{*}(X, Y) \tilde{Z}=0$ if and only if either the scalar curvature of M is $r=2 n \alpha(2 n+1)$ or M reduces real space form with constant sectinal curvature-c.

Proof. Suppose that $W^{*}(X, Y) \tilde{Z}=0$. Then we have

$$
\left(W^{*}(X, Y) \tilde{Z}\right)(U, V, Z)=W^{*}(X, Y) \tilde{Z}(U, V) Z-\tilde{Z}\left(W^{*}(X, Y) U, V\right) Z-\tilde{Z}\left(U, W^{*}(X, Y) V\right) Z-\tilde{Z}(U, V) W^{*}(X, Y) Z=0
$$

If we choose $X=\xi$ in here, we get

$$
\begin{equation*}
\left(W^{*}(\xi, Y) \tilde{Z}\right)(U, V, Z)=W^{*}(\xi, Y) \tilde{Z}(U, V) Z-\tilde{Z}\left(W^{*}(\xi, Y) U, V\right) Z-\tilde{Z}\left(U, W^{*}(\xi, Y) V\right) Z-\tilde{Z}(U, V) W^{*}(\xi, Y) Z=0 \tag{19}
\end{equation*}
$$

for each $Y, U, V, Z \in \chi(M) . \operatorname{In}(19)$, using (10), we obtain

$$
\begin{align*}
& \frac{(n+1)(\alpha-c)}{8 n}[g(Y, \tilde{Z}(U, V) Z) \xi-\eta(\tilde{Z}(U, V) Z) Y \\
& -g(Y, U) \tilde{Z}(\xi, V) Z+\eta(U) \tilde{Z}(Y, V) Z-g(Y, V) \tilde{Z}(U, \xi) Z \tag{20}\\
& +\eta(V) \tilde{Z}(U, Y) Z-g(Y, Z) \tilde{Z}(U, V) \xi+\eta(Z) \tilde{Z}(U, V) Y]=0 .
\end{align*}
$$

Taking $U=\xi$ in (20) and using (18), we obtain

$$
\begin{align*}
& \frac{(n+1)(\alpha-c)}{8 n}\left[\tilde{Z}(Y, V) Z-\left(\alpha-\frac{r}{2 n(2 n+1)}\right)\right. \tag{21}\\
& (g(V, Z) Y-g(Y, Z) V)]=0
\end{align*}
$$

In (21), using (17) we conclude

$$
\frac{(n+1)(\alpha-c)}{8 n}[R(Y, Z) V-\alpha(g(V, Z) Y-g(Y, Z) V)]=0
$$

This proves our assertion. The converse obvious.
Theorem 4. Let M be $(2 n+1)$-dimensional a $C(\alpha)$-manifold. Then $W^{*}(X, Y) S=0$ if and only if either the scalar curvature of M is $r=2 n \alpha(2 n+1)$ or M reduces an Einstein manifold.

Proof. Suppose that $W^{*}(X, Y) S=0$. Then we can easily see that

$$
S\left(W^{*}(X, Y) Z, U\right)+S\left(Z, W^{*}(X, Y) U\right)=0
$$

If we choose $X=\xi$ in here, we get

$$
\begin{equation*}
S\left(W^{*}(\xi, Y) Z, U\right)+S\left(Z, W^{*}(\xi, Y) U\right)=0 \tag{22}
\end{equation*}
$$

In (22), using (10), we obtain

$$
\begin{equation*}
\frac{(n+1)(\alpha-c)}{8 n}[2 n \alpha \eta(U) g(Y, Z)-\eta(Z) S(Y, U)+2 n \alpha \eta(Z) g(Y, U)-\eta(U) S(Z, Y)]=0 \tag{23}
\end{equation*}
$$

Substituting $Z=\xi$ in (23), we find

$$
\begin{equation*}
\frac{(n+1)(\alpha-c)}{8 n}[-S(Y, U)+2 n \alpha g(Y, U)]=0 . \tag{24}
\end{equation*}
$$

From (24), we get

$$
c=\alpha
$$

This tell us that the scalar curvature of M is

$$
r=2 n \alpha(2 n+1) .
$$

On the other hand, from (24) we have

$$
S(Y, U)=2 n \alpha g(Y, U)
$$

which implies M reduces an Einstein manifold. This proves our assertion. The converse is obvious.

The concept of the quasi-conformal curvature tensor was defined by Yano and Sowaki as

$$
\begin{align*}
\tilde{C}(X, Y) Z & =a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
& -\frac{r}{2 n+1}\left[\frac{a}{2 n}+2 b\right][g(Y, Z) X-g(X, Z) Y], \tag{25}
\end{align*}
$$

where a and b are constants, Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of the manifold. If $\tilde{C}=0$, then this manifold is called a quasi-conformal flat. If $X=\xi$ is chosen in (25),

$$
\begin{equation*}
\tilde{C}(\xi, Y) Z=\left[\frac{b c(n+1)+\alpha(2 a+7 b n-b)}{2}-\frac{r}{2 n+1}\left(\frac{a}{2 n}+2 b\right)\right] \otimes[g(Y, Z) \xi-\eta(Z) Y], \tag{26}
\end{equation*}
$$

and if $Z=\xi$ is chosen in (26), we reach at

$$
\begin{equation*}
\tilde{C}(\xi, Y) \xi=\left[a \alpha+2 n b \alpha-\frac{r}{2 n+1}\left(\frac{a}{2 n}+2 b\right)\right][\eta(Y) \xi-Y]+b[2 n \alpha \eta(Y) \xi-Q Y] . \tag{27}
\end{equation*}
$$

Theorem 5. Let M be $(2 n+1)$-dimensional a $C(\alpha)$-manifolds. Then $W^{*}(X, Y) \tilde{C}=0$ if and only if either the scalar curvature of M is $r=2 n \alpha(2 n+1)$ or M reduces real space form with constant sectinal curvature.

Proof. Suppose that $W^{*}(X, Y) \tilde{C}=0$. Then, we have

$$
\begin{aligned}
\left(W^{*}(X, Y) \tilde{C}\right)(U, V, Z) & =W^{*}(X, Y) \tilde{C}(U, V) Z-\tilde{C}\left(W^{*}(X, Y) U, V\right) Z \\
& -\tilde{C}\left(U, W^{*}(X, Y) V\right) Z-\tilde{C}(U, V) W^{*}(X, Y) Z=0 .
\end{aligned}
$$

If we choose $X=\xi$ in here

$$
\begin{align*}
\left(W^{*}(\xi, Y) \tilde{C}\right)(U, V, Z) & =W^{*}(\xi, Y) \tilde{C}(U, V) Z-\tilde{C}\left(W^{*}(\xi, Y) U, V\right) Z \\
& -\tilde{C}\left(U, W^{*}(\xi, Y) V\right) Z-\tilde{C}(U, V) W^{*}(\xi, Y) Z=0, \tag{28}
\end{align*}
$$

for each $Y, U, V, Z \in \chi(M)$. Using (10) in (28), we get

$$
\begin{align*}
& \frac{(n+1)(\alpha-c)}{8 n}[g(Y, \tilde{C}(U, V) Z) \xi-\eta(\tilde{C}(U, V) Z) Y \\
& -g(Y, U) \tilde{C}(\xi, V) Z+\eta(U) \tilde{C}(Y, V) Z-g(Y, V) \tilde{C}(U, \xi) Z \tag{29}\\
& +\eta(V)(U) \tilde{C}(U, Y) Z-g(Y, Z) \tilde{C}(U, V) \xi+\eta(Z) \tilde{C}(U, V) Y]=0 .
\end{align*}
$$

Taking $U=\xi$ in (29) and using (26), (27), we obtain

$$
\begin{aligned}
& {\left[\frac{(n+1)(\alpha-c)}{8 n}\right] \otimes\left\{\tilde{C}(Y, Z) V-\left[\frac{b c(n+1)+\alpha(2 a+7 b n-b)}{2}-\frac{r}{2 n+1}\left(\frac{a}{2 n}+2 b\right)\right]\right.} \\
& [g(V, Z) Y-g(Y, Z) V]\}=0 .
\end{aligned}
$$

In the last equation, if (25) is written in its place and necessary adjustments are made, we get

$$
\begin{align*}
a R(Y, V) Z & =\left[\frac{\alpha(2 a+b n+b)-b c(n+1)}{2}\right][g(V, Z) Y-g(Y, Z) V] \\
& -\frac{b(\alpha-c)(n+1)}{2}[\eta(V) \eta(X) Y-\eta(Y) \eta(Z) V+g(V, Z) \eta(Y) \xi-g(Y, Z) \eta(V) \xi] \tag{30}
\end{align*}
$$

Substituting $Y \rightarrow \phi Y$ and $V \rightarrow \phi V$ in (30), we conclude

$$
R(\phi Y, \phi V) Z=\left[\frac{\alpha(2 a+b n+b)-b c(n+1)}{2}\right][g(V, Z) Y-g(Y, Z) V]
$$

This proves our assertion. The converse is obvious.

References

[1] G. P. Pokhariyal and R. S. Mishra, Curvature tensors' and their relativistics significance, Yokohama Mathematical Journal, 18 (1970), 105-108.
[2] R. Ojha, M-projectively flat Sasakian manifolds, Indian J. Pure Appl. Math., 17 (1986), 481-484.
[3] R. Ojha, A note on the M-projective curvature tensor, Indian J. Pure Appl. Math., 8 (1975), 1531-1534.
[4] S. K Chaubey, Some properties of Lp-Sasakian manifolds equipped with M-projective curvature tensor, Bulletin of Mathematical Analysis and Applications, 3 (2011), 50-58.
[5] S. K. Chaubey, R. Ojha, On the M-projective curvature tensor of a Kenmotsu manifold, Differential Geometry-Dynamical Systems, 12 (2010), 52-60.
[6] S. K. Chaubey, S. Prakash, R. Nivas, Some properties of M-projective curvature tensor in Kenmotsu manifolds, Bulletin of Mathematical Analysis and Applications, 4 (2012), 48-56.
[7] M. Devi, J. Singh, On a type of M-projective curvature tensor in Kenmotsu manifolds, International J. of Math. Sci. and Eng. Appl., 3 (2015), 37-49.
[8] S. Kenayuki, F. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
[9] J. Singh, On M-projective recurrent Riemann manifold, Int. Journal of Math. Analysis, 6 (2012), 1173-1178.
[10] Vankatesha, B. Sumangala, On M-projective curvature tensorof a generalized Sasakian space form, Acta Math. Univ. Comenianae, 2 (2013), 209-217.
[11] T. Mert, Characterization of Some Special Curvature Tensor on Almost $C(\alpha)$-Manifold, Asian Journal of Mathematics and Computer Research, 29 (1) (2022), 27-41.
[12] T. Mert, M. Atçeken, Almost $C(\alpha)$-Manifold on W_{0}^{*}-Curvature Tensor, Applied Mathematical Sciences, 15 (2021), 693-703.
[13] M. Atçeken, T.Mert, Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Mathematics, 6 (7) (2021), 7320-7332.

[^0]: * Corresponding author e-mail: tmert @cumhuriyet.edu.tr

