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Abstract: In this paper, we investigate the Veronesean arc, the non-Veronesean arc by converting a point expressed in Cartesian
coordinates to homogeneous coordinates in left nearfield plane of order 9 where a k−arc in a finite projective or affine plane is a set of
k points no three of which are collinear. And also, we examine that whether founded complete (7,2)-Non-Veronesean arc satisfy Pascal’s
Theorem in the left nearfield projective plane of order 9. Six of (7,2)-Non-Veronesean arc’s all points which are {1,4,11,21,35,38}
points line on same conic. But it is determined that (7,2)-Non-Veronesean arc does not satisfy Pascal’s Theorem.
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1 Introduction

A projective plane π consist of a set P of points and a set L of subsets of P , called lines, such that every pair of points
is contained in exactly one line, every two distinct lines intersect in exactly one point, and there exist four points in such
a position that they pairwise define six distinct lines. A subplane of a projective plane π is a set B of points and lines
which is itself a projective plane, relative to the incidence relation given in π .

It is well known that there exist at least four non-isomorphic projective planes of order 9. The known four distinct
projective planes of order 9 are extensively studied by Room et. al [15]. These are Desarguesian plane, the left nearfield
plane, the right nearfield plane and Hughes plane. The last three planes of order 9 are called "miniquaternion planes"
because they can be coordinatized by the miniquaternion near field. O. Veblen et. al. discovered these miniquaternion
planes in 1907 [20] .

In a finite projective plane π (not necessarily Desarguesian) a set K of k (k ≥ 3) points such that no three points of K are
collinear (on a line) is called a k-arc. If the plane π has order p then k ≤ p+ 2 , however the maximum value of k can
only be achieved if p is even. In a plane of order p , a (p+1)-arc is called an oval and, if p is even, a (p+2)-arc is called
a hyperoval. A general reference for ovals is Hirschfeld’s study [17]. There are known plenty of examples of arcs in
projective planes; see [3,7].

In [2], an algorithm ( implemented in C#) to determine and classify Fano subplanes of the projective plane of order 9
coordinatized by elements of a left nearfield of order 9 is given. In [3,7], all complete (k,2)-arcs containing complete
quadrangles which generate the Fano planes in the projective plane whose algebraic structure is the left nearfield of order
9 are examined. The Veronesean varieties have been studied by many scientists for years, while the beginning has been
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studied as classical real or complex varieties. In finite fields, they have proven to be very useful tools in finite geometry.
The simplest Veronesean varieties are the quadric Veroneseans Vn of index n. Four different types of representations of
finite quadratic Veroneseans can be found in the literature. In 1976, Tallini introduced a characterization which uses the
the intersection properties of the so-called conic planes (planes of PG(5,q) meeting V2 in a conic) of V2 [16] . It was only
valid for q odd. Then Thas and Van Maldeghem [18] studied on this and generalized this to arbitrary q > 2 and arbitrary
index n. In meanwhile Ferri studied on the characterization such that for q odd and q ≥ 5, the sizes of the intersections of
V2 with hyperplanes and planes of PG(5,q) [8]. For this case, Hirschfeld and Thas [11] showed that its valid, when q = 3
and then Thas and Van Maldeghem [18] generalized this situation to q ̸= 2. The set of all conics contained in Vn and the
tangent lines to these to axiomatize Vn in PG(n(n+ 3)/2,q) such that q is odd [14]. Hirschfeld and Thas generalized
Mazzocca and Melone’s results to arbitrary q [13]. In the meantime, Thas et. al. continued to work on it, generalized and
completed several characterizations of the finite quadric Veronesean [18]. Also, they classified the objects which satisfy
the original set of Mazzocca and Melone’s axioms in 2004 [17] by useing the unique representation of PG(n,q) in
PG(d,q),d ≥ n(n + 3)/2, such that points and lines of PG(n,q) correspond to points and plane ovals of PG(d,q),
respectively, with q ̸= 2, and with the condition that the point set of PG(d,q) corresponding to the point set of PG(n,q)
generates PG(d,q) [17]. In 2005, they characterized the finite Veronesean Hn ⊆ PG(n(n + 2),q) of all Hermitian
varieties of PG(n,q2) as the unique representation of PG(n,q2) in PG(d,q),d?n(n + 2), where points and lines of
PG(n,q2) are represented by points and ovoids of solids, respectively, of PG(d,q), with the only condition that the point
set of PG(d,q) corresponding to the point set of PG(n,q2) generates PG(d,q) [19]. In 2008, Dentice et. al. extended
analogous theorems of Mazzocca and Melone [6; 14] and Thas et. al. for finite projective spaces by classifying all
Veronesean caps of projective spaces of finite dimension over skewfields [17]. In 2012, Akca et al. generalized and
classified lax Veronesean embeddings of projective spaces [1]. Pascal’s theorem which is named as the hexagrammum
mysticum theorem, states that if six arbitrary points are selected on the cone (in the appropriate affine plane, it can be an
ellipse, parabola, or hyperbola), and the sequence is connected by line segments to form a hexagon. The three pairs of
opposite sides of the hexagon (which can be extended if necessary) meet at three points on a straight line. These straight
lines are called the Pascal lines of the hexagon [5]. Let A,B,C,D,E and F be the six vertices of a hexagon such that no
three of them are collinear. Then, the intersection points of opposite sides P = AB∩DE , Q = BC∩EF , R = CD∩AF
are collinear if and only if the points A,B,C,D,E and F lie on an oval. The if-statement is Pascal’s Theorem , the
converse is known as the Braikenridge-Maclaurin Theorem. The line through P, Q, R is called Pascal’s line. Our aim is to
determine whether the arcs are Veronesean and satify Pascal’s Theorem between complete (k,2)-arcs in NFPG(2,q).

2 Constructing of NFPG(2,9)

The set F with the binary operations + and · is called a Left Nearfield if the following conditions hold:

(i) (F ,+) is an abelian group
(ii) For ∀a,b,c ∈ F , (a ·b) · c = a · (b · c)

(iii) For ∀a,b,c ∈ F, a · (b+ c) = (a ·b)+(a · c)
(iv) For ∀a ∈ F, F contains an element 1 such that 1 ·a = a ·1 = a
(v) For every non-zero element a of F, there exist an element a−1 such that a ·a−1 = a−1 ·a = 1.

The original construction of Hall planes was based on a Hall quasifield (also called a Hall system) [9; 10]. To build a Hall
quasifield, start with a Galois field F = GF(pn), for p a prime and a quadratic irreducible polynomial f (t) = t2 − rt − s
over F . We consider an algebraic system (S,⊕,⊙) over the Galois field (F3,+, ·) of order 3. The nine elements of S are
a+λb, a, b ∈ F3, λ /∈ F3. Addition in S is defined by the rule

(a+λb)⊕ (c+λd) = (a+ c)+λ (b+d)
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and multiplication by

(a+λb)⊙ (c+λd) =

{
ca+λ (da) if b = 0
ca−db(a2 +1)+λ (cb−da) if b ̸= 0

where a, b, c, d ∈ F3, λ /∈ F3 and f (t) = t2+1 is an irreducible polynom on F3. For the sake of the shortness if we use ab
instead of a+λb in addition and multiplication equations, then addition and multiplication tables are obtained as follows:

⊕ 00 01 02 10 11 12 20 21 22
00 00 01 02 10 11 12 20 21 22
01 01 02 00 11 12 10 21 22 20
02 02 00 01 12 10 11 22 20 21
10 10 11 12 20 21 22 00 01 02
11 11 12 10 21 22 20 01 02 00
12 12 10 11 22 20 21 02 00 01
20 20 21 22 00 01 02 10 11 12
21 21 22 20 01 02 00 11 12 10
22 22 20 21 02 00 01 12 10 11

⊙ 00 01 02 10 11 12 20 21 22
00 00 00 00 00 00 00 00 00 00
01 00 20 10 01 21 11 02 22 12
02 00 10 20 02 12 22 01 11 21
10 00 01 02 10 11 12 20 21 22
11 00 12 21 11 20 02 22 01 10
12 00 22 11 12 01 20 21 10 02
20 00 02 01 20 22 21 10 12 11
21 00 11 22 21 02 10 12 20 01
22 00 21 12 22 10 01 11 02 20

If we use the following equalities
00 → 0
10 → 1
20 → 2
01 → 3
11 → 4
21 → 5
02 → 6
12 → 7
22 → 8

the addition and multiplication tables in (S,⊕,⊙) can be arranged as follows:

⊕ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 6
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2
4 4 5 3 7 8 6 1 2 0
5 5 3 4 8 6 7 2 0 1
6 6 7 8 0 1 2 3 4 5
7 7 8 6 1 2 0 4 5 3
8 8 6 7 2 0 1 5 3 4

⊙ 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 1 6 8 7 3 5 4
3 0 3 6 2 5 8 1 4 7
4 0 4 8 7 2 3 5 6 1
5 0 5 7 4 6 2 8 1 3
6 0 6 3 1 7 4 2 8 5
7 0 7 5 8 3 1 4 2 6
8 0 8 4 5 1 6 7 3 2

The projective plane whose point and the lines are coordinated by elements of (S,⊕,⊙). The 91 points of P2S are the
elements of the set N = {(x,y) : x,y ∈ S}∪{(m) : m ∈ S}∪{(∞) : ∞ /∈ S}. The points of the form (x,y) are called proper
points, and the unique point (∞) and the points of the form (m) are called ideal points. The 91 lines of P2S are defined as
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follows:
D = {[m,k] : m,k ∈ S}∪{[a] : a ∈ S}∪{[∞] : ∞ /∈ S}

We have 81 lines of the form [m,k], 9 lines of the form [a] are called proper lines and the unique line [∞] is called ideal
line. And incidence relation

(x,y)◦ [m,k]⇔ y = m⊙ x⊕ k,∀m,k ∈ S
(x,y)◦ [a]⇔ x = a
(m)◦ [∞]

(∞)◦ [∞]

We convert a point expressed in Cartesian coordinates to homogeneous coordinates in left nearfield plane of order 9. We
have seen a point (x,y) in the P2S has homogeneous coordinates λ ⊙ (x,y,1) = (λ ⊙ x,λ ⊙ y,λ ⊙ 1) , λ ∈ S , λ ̸= 0.
Homogeneous coordinates of the form λ ⊙ (m,1,0) do correspond to the unique point at infinity in the P2S. We have seen
that a line [m,k] in the P2S has homogeneous coordinates µ ⊙ [m,−1,k] = [µ ⊙m,µ ⊙ (−1) ,µ ⊙ k] , µ ∈ S , µ ̸= 0.
Homogeneous coordinates of the form µ ⊙ [x,0,1] do correspond to all lines [a], a ̸= 0, a ∈ S in the P2S. Homogeneous
coordinates of the form [0,0,µ] do correspond to the unique line [∞] at infinity in the P2S. A line in the P2S has general
equation y = m⊙ x⊕ k. Suppose (x1,x2,x3) , x3 ̸= 0 are the homogeneous coordinates of a point (x,y) on the line; hence
x−1

3 ⊙ x1 = x and x−1
3 ⊙ x2 = y. Substituting for x and y in the line equation and multiplying through by x3 , yields the

conditions for (x1,x2,x3) to be the homogeneous coordinates of a point on the line :

m⊙ x1 ⊕ (−1)⊙ x2 ⊕ k⊙ x3 = 0

The table of all homogeneous coordinates of the 91 points and lines in the projective plane P2S defined in terms of a
coordinate system over the Hall system (S,⊕,⊙) is given, see [3].

3 Some properties of arcs

A k−arc in a finite projective or affine plane is a set of k points no three of which are collinear. A k−arc is complete if
it is not contained in a (k+ 1)− arc. A line L is secant, tangent or passant to an arc if they have 2,1 or 0 in common,
respectively. In a plane of order q, a (q+1)−arc is called an oval and if q is even, a (q+2)−arc is called a hyperoval.
When q is odd, it can be proved that (q+2)-arc do not exist. However, every conic is a (q+1)-arc, and a well-known
theorem of Segre proves that also the converse is true when q is odd.

Fano subplanes of projective plane of order 9 were found in [2]. There are 18 Fano subplanes containing
I = (1,1,1),X = (1,0,0),O = (0,0,1),P = (a,b,1) with a,b∈ F3. We give an algorithm for finding complete (k,2)−arcs
with 6 ≤ k ≤ 10 of this projective plane and apply the algorithm (implemented C#) to determine complete (k,2)−arcs in
[3,7].

For this projective plane containing Fano subplane, in [3] we found that 1 class of the complete (6,2)− arcs, 108 classes
of the complete (7,2)− arcs, 319 classes of the complete (8,2)−arcs, 11 classes of the complete (9,2)− arcs. For this
projective plane not containing Fano subplane, in [7] we found that 168 classes of the complete (7,2)−– arcs, 276
classes of the complete (8,2)− arcs, 6 classes of the complete (9,2)− arcs, 3 classes of the complete (10,2)− arcs.

A conic C is a set of q+1 points of PG(2,q) whoose coordinates (x,y,z) are the zeros of absolutely irreducible quadratic
form

Q(x,y,z) = ax2 +by2 + cz2 +dxy+ eyz+ f xz
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with a,b,c,d,e ∈ Fq. Every 5 points of an arc lie on an unique conic. An arc is called Veronesean if no 6 points of
lie on the same conic. If we take (6,2)-arc which was found in our previous study [3;7] for projective plane of order 9
containing Fano plane, there is 1 class of complete (6,2)-arc {1,6,11,21,38,58}. We have 1=(1,0,0), 6=(4,1,0), 11=
(0,0,1), 21 = (1,1,1), 38 = (0,3,1), 58 = (2,5,1) in homogenous coordinates. Firstly,

Q(x,y,z) = ax2 +by2 + cz2 +dxy+ eyz+ f xz

conic equation must be obtained and then it must be shown that whether (6,2)-arc satisfies the conic equation found or
not.
• If we start with first point 1 = (1,0,0), put this on Q(x,y,z) = ax2 +by2 + cz2 +dxy+ eyz+ f xz
Q(1,0,0) = a.12 +b.02 + c02 +d.1.0+ e.0.0+ f .1.0 = 0 ⇒ Q(1,0,0) = a.1 = 0 ⇒ a = 0
• 6 = (4,1,0)
Q(4,1,0) = a.42 +b.12 + c02 +d.4.1+ e.1.0+ f .4.0 = 0 ⇒ Q(4,1,0) = a.2+b.1+d.4 = 0
We found previous equation a = 0, putting this value,
Q(4,1,0) = 0.2 + b.1 + d.4 = 0 ⇒ b.1 + d.4 = 0 ⇒ b + d.4 + d.8 = d.8 ⇒ b + d.(4 + 8) = d.8 ⇒
b+d.0 = d.8 ⇒ b = d.8 ⇒ b.4 = d.8.4 ⇒ b.4 = d.1 ⇒ b.4 = d
• 11 = (0,0,1)
Q(0,0,1) = a.02 +b.02 + c.12 +d.0.0+ e.0.1+ f .0.1 = 0 ⇒ Q(0,0,1) = c.1 = 0 ⇒ c = 0 •21 = (1,1,1)
Q(1,1,1) = a.12 + b.12 + c.12 + d.1.1 + e.1.1 + f .1.1 = 0 ⇒ Q(1,1,1) = a.1 + b.1 + c.1 + d.1 + e.1 + f .1 = 0 ⇒
Q(1,1,1) = a+b+ c+d + e+ f = 0 We found previous equations a = 0,c = 0, b.4 = d, putting this value,
b+b.4+ e+ f = 0 ⇒ b.(1+4)+ e+ f = 0 ⇒ b.5+ e+ f = 0
• 38 = (0,3,1)
Q(0,3,1) = a.02 +b.32 + c.12 +d.0.3+ e.3.1+ f .0.1 = 0 ⇒ Q(0,3,1) = b.32 + c.12 + e.3.1 = 0 ⇒
Q(0,3,1) = b.2+ c.12 + e.3 = 0 We found previous equation c = 0, putting this value,
b.2+ e.3 = 0 ⇒ b.2+ e.3+ e.6 = e.6 ⇒ b.2+ e.(3+6) = e.6 ⇒ b.2+ e.0 = e.6 ⇒ b.2.3 = e.6.3 ⇒ b.6 = e
If we put on this equation b.6 = e on b.5+ e+ f = 0,
b.5 + b.6 + f = 0 ⇒ b.(5 + 6) + f = 0 ⇒ b.2 + f = 0 ⇒ b.2 + f + f .2 = f .2 ⇒ b.2 + f .(1 + 2) = f .2 ⇒
b.2+ f .0 = f .2 ⇒ b.2.2 = f .2.2 ⇒ b = f
We found that a = 0, b.4 = d, c = 0, b.6 = e, b = f
If we write these equations on Q(x,y,z) = ax2 + by2 + cz2 + dxy + eyz + f xz, we get
Q(x,y,z) = by2 +b.4.xy+b.6.yz+b.xz
• Last point 58 = (2,5,1)
Q(2,5,1) = b52 + b.4.2.5 + b.6.5.1 + b.1.5 ⇒ Q(2,5,1) = b.2 + b.6 + b.4 + b.5
b.2+b.6+b.4+b.5 = b.(2+6+4+5) = b.5 ⇒ b.5 ̸= 0
So our last point 58 = (2,5,1) does not satisfy our conic equation, we can say that this point not lie on
Q(x,y,z) = by2 + b.4.xy + b.6.yz + b.xz, {1,6,11,21,38,58} complete (6,2)− arc is Veronesean arc. We examined
complete (k,2)-arcs which were found in our previous study [3;7], we determined that some arcs are Veronesean but
some of them are non-Veronesean.
We want to give an example for Non-Veronesean arc:
We take {1,4,11,21,35,38,88} (7,2)−arc
We have 1 = (1,0,0), 4 = (2,1,0), 11 = (0,0,1), 21 = (1,1,1), 35 = (6,2,1), 38 = (0,3,1), 88 = (5,8,1) in
homogenous coordinates. Firstly we must find what is our

Q(x,y,z) = ax2 +by2 + cz2 +dxy+ eyz+ f xz
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conic equation must be obtained and then it must be shown that whether (7,2)-arc satisfies the conic equation found or
not.
• If we start with first point 1 = (1,0,0), put this on Q(x,y,z) = ax2 +by2 + cz2 +dxy+ eyz+ f xz ,
Q(1,0,0) = a.12 +b.02 + c.02 +d.1.0+ e.0.0+ f .1.0 = 0 ⇒ Q(1,0,0) = a.1 = 0 ⇒ a = 0
• 4 = (2,1,0)
Q(2,1,0) = a.22 +b.12 + c.02 +d.2.1+ e.1.0+ f .2.0 = 0 ⇒ Q(2,1,0) = a.1+b.1+d.2 = 0
We found previous equation a = 0, putting this value,
Q(2,1,0) = b+d.2 = 0 ⇒ b+d.2 = 0 ⇒ b+d.2+d.1 = d.1 ⇒ b+d.(2+1) = d ⇒ b+d.0 = d ⇒ b = d
• 11 = (0,0,1)
Q(0,0,1) = a.02 +b.02 + c.12 +d.0.0+ e.0.1+ f .0.1 = 0 ⇒ Q(0,0,1) = c.1 = 0 ⇒ c = 0
• 21 = (1,1,1)
Q(1,1,1) = a.12 +b.12 + c.12 +d.1.1+ e.1.1+ f .1.1 = 0 ⇒ Q(1,1,1) = a+b+ c+d + e+ f = 0
We found previous equations a = 0, b = d, c = 0, putting this values b.2+ e+ f = 0
• 35 = (6,2,1)
Q(6,2,1) = a.62 +b.22 + c.12 +d.6.2+ e.2.1+ f .6.1 = 0 ⇒ Q(6,2,1) = a.2+b.1+ c.1+d.3+ e.2+ f .6 = 0 We found
previous equations a = 0, b = d, c = 0, putting this values b.4+ e.2+ f .6 = 0
We found previous equation b.2+ e+ f = 0, if we solve these equation system:
b.4+ e.2+ f .6 = 0 ⇒ b.2+ e+ f = 0 ⇒ b.(4+2)+ e.(2+1)+ f .(6+1) = 0 ⇒ b.3+ e.0+ f .7 = 0 ⇒ b.3+ f .7 = 0 ⇒
b.3+ f .7+ f .5 = f .5 ⇒ b.3 = f .5 ⇒ b.3.7 = f ⇒ b.4 = f
If we put this value on b.2+ e+ f = 0, we get b.2+ e+b.4 = 0
b.(2+4)+ e = 0 ⇒ b.3+ e = 0 ⇒ b.3+ e+ e.2 = e.2 ⇒ b.3 = e.2 ⇒ b.3.2 = e.2.2 ⇒ b.6 = e
We know that every 5 points of an arc lie on an unique conic, so we can determine this conic equation. We have these
equations:
a = 0, b = d, c = 0, b.6 = e, b.4 = f and we obtained Q(x,y,z) = by2 +b.xy+b.6yz+b.4xz
• Another point of this (7,2)−arc is 38 = (0,3,1)
Q(0,3,1) = b.32 +b.0.3+b.6.3.1+b.4.0.1 = 0 ⇒ b.2+b.1 = 0 ⇒ b.(2+1) = 0 ⇒ b.0 = 0
This 38 = (0,3,1) point satisfies Q(x,y,z) = by2 + b.xy + b.6yz + b.4xz conic equation, we can say that 6 points of
(7,2)−arc lie on the same conic, (7,2)-arc is non-Veronesean arc.
Now we examine that whether this complete (7,2)-Non-Veronesean satisfy Pascal’s Theorem: 6 of its all points which
are {1,4,11,21,35,38} points line on same conic. But,

P = [1,4]∧ [21,35] = 10
Q = [4,11]∧ [35,38] = 22
R = [11,21]∧ [1,38] = 41
P = 10, Q = 22, R = 41 are not collinear.
We can say that complete (7,2)−arc does not satisfy Pascal’s Theorem.

4 Conclusion

We take the set A = {O, I,X ,P} such that O = (0,0,1), I = (1,1,1),X = (1,0,0),P = (a,b,1) with a,b ∈ F3. We
described procedure for searching all complete (k,2)−Veronesean and Non −Veronesean arcs with 6 < k ≤ 10
containing the quadrangles A = {O, I,X ,P} such that O = (0,0,1), I = (1,1,1),X = (1,0,0),P = (a,b,1) with a ∈ F3,
b ∈ F3 − S constructing and not constructing the Fano subplanes in the left nearfield plane of order 9. For the projective
plane of order 9 containing Fano plane, there is 1 class of complete (6,2)-arc-{1,6,11,21,38,58}. We have
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1 = (1,0,0), 6 = (4,1,0), 11 = (0,0,1), 21 = (1,1,1), 38 = (0,3,1), 58 = (2,5,1) in homogenous coordinates. By
applying the conic equation

Q(x,y,z) = ax2 +by2 + cz2 +dxy+ eyz+ f xz

we can see that the point 58 = (2,5,1) does not satisfy our conic equation and this point not lie on Q(x,y,z) = by2 +

b.4.xy+b.6.yz+b.xz. So it is obtained that {1,6,11,21,38,58} complete (6,2)−arc is Veronesean arc. And also, some of
these complete (k,2)−arcs are Veronesean but some of them are non-Veronesean as {1,4,11,21,35,38,88}-(7,2)−arc
satisfying the conic equation. By applying the method the complete (k,2)-Veronesean and Non- Veronesean arcs are
determined. Lastly, it is examined that this (7,2)-Non-Veronesean arc {1,4,11,21,35,38,88} whether satisfy Pascal’s
Theorem or not. As a result this {1,4,11,21,35,38,88} Non-Veronesean does not satisfy Pascal’s Theorem.
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