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Abstract: In this paper, we study different properties of δ ∗-semiopen set. We define the concept of δ ∗-semi generalized closed sets and
present some characteristics. In addition, as applications to δ ∗-semi generalized closed set, we introduce δ ∗-semi T1

2
space and obtain

some of their basic properties. Moreover, we defined the notions of δ ∗-semi symmetric space, δ ∗-semi difference sets and δ ∗-semi
kernel of sets, and investigate some of their fundamental properties. At the latest, some new types of spaces are introduced and the
relationships of these spaces are studied.
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1 Introduction

The study of semiopen sets and their properties was initiated by N. Levine [4] which is one of the well-known notion of
generalized open sets. After the work of Levine on semiopen sets, various mathematicians turned their attention to the
generalizations of various concepts of topology by considering semiopen sets instead of open sets. While open sets are
replaced by semiopen sets, new results are obtained in some occasions and in other occasions substantial generalizations
are exhibited. Njastad [7] defined the class of α-open sets. Mashhour et al [5] introduced the concept of preopen sets in
topological spaces.

In this direction, Maheshwari and Prasad [6] used semiopen sets to define and investigate three new separation axioms,
called semi-T0, semi-T1 and semi-T2. Later, Bhattacharyya and Lahiri [1] generalized the concept of closed sets to
semi-generalized closed sets with the help of semi-openness. Also, they defined the concept of a new class of topological
spaces called semi-T1

2
and further investigated the separation axioms semi-T0, semi-T1 and semi-T2. Tong [8] introduced

the nation of D-sets and used these sets to introduce a separation axiom D1 which is strictly between T0 and T1. Miguel
Caldas [2] introduce a new separation axiom semi-D1 which is strictly between semi-T0 and semi-T1 and discuss its
relations with the axioms mentioned above. In 2015, Ibrahim [3] introduced some new classes of sets used the open sets
and functions in topological spaces. He defined δ ∗-open set, δ ∗-α-open set, δ ∗-preopen set and δ ∗-semiopen set, and
investigated the relationships between them. Let (Y,δ ) be a topological spaces and let f be a function from X into Y ,
then a subset G in δ is called δ ∗-open if f−1(G) = X , or f−1(G) = φ , that is
δ ∗ = {G ∈ δ : f−1(G) = X ,or f−1(G) = φ}. The family of all δ ∗-open sets in Y is denoted by δ ∗. A subset F of Y is
called δ ∗-closed if Y \F is δ ∗-open. The family of all δ ∗-closed sets in Y is denoted by δ ∗c.

We recall the following results from [3].

Definition 1. Let f : X → Y be any function and A be any subset of a topological space (Y,δ ). Then,
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(1) the union of all δ ∗-open sets contained in A is called the δ ∗-interior of A and denoted by δ ∗-int(A).
(2) the intersection of all δ ∗-closed sets containing A is called the δ ∗-closure of A and denoted by δ ∗-cl(A).

Definition 2. Let f : X → Y be any function. A subset A of a space Y is called:

(1) δ ∗-α-open if A ⊂ δ ∗-int(δ ∗-cl(δ ∗-int(A))).
(2) δ ∗-preopen if A ⊂ δ ∗-int(δ ∗-cl((A)).
(3) δ ∗-semiopen if A ⊆ δ ∗-cl(δ ∗-int(A)).

The family of all δ ∗-semiopen sets in Y denoted by δ ∗SO.

Proposition 1. Let f : X → Y be a function. Then,

(1) for every δ ∗-open set G and for every subset A ⊆ Y we have δ ∗-cl(A)∩G ⊆ δ ∗-cl(A∩G).
(2) every δ ∗-open set is δ ∗-α-open.
(3) the concepts of δ ∗-semiopen and semiopen are independent.

2 δ ∗-semiopen Sets

In this section, we discuss some the properties of δ ∗-semiopen sets.

Theorem 1. An arbitrary union of δ ∗-semiopen sets is δ ∗-semiopen.

Proof. Let {Ai : i ∈ I} be a family of δ ∗-semiopen sets. Then for each i, Ai ⊆ δ ∗-cl(δ ∗-int(Ai)) and so

∪i∈IAi ⊆ ∪i∈I [δ
∗-cl(δ ∗-int(Ai))]

⊆ [∪i∈Iδ
∗-cl(δ ∗-int(Ai))]

⊆ [δ ∗-cl(∪i∈Iδ
∗-int(Ai))]

⊆ [δ ∗-cl(δ ∗-int(∪i∈IAi))].

Thus, ∪i∈IAi is a δ ∗-semiopen set.

Theorem 2. Let f : X →Y be a any function. If A is δ ∗-α-open in Y and B is δ ∗-semiopen in Y , then A∩B is δ ∗-semiopen
in Y .

Proof. By assumption, A ⊆ δ ∗-int(δ ∗-cl(δ ∗-int(A))) and B ⊆ δ ∗-cl(δ ∗-int(B)), then by Proposition 1, we have that

A∩B ⊆ δ ∗-int(δ ∗-cl(δ ∗-int(A)))∩δ ∗-cl(δ ∗-int(B))

⊆ δ ∗-cl[δ ∗-int(δ ∗-cl(δ ∗-int(A)))∩δ ∗-int(B)]

⊆ δ ∗-cl[δ ∗-cl(δ ∗-int(A))∩δ ∗-int(B)]

⊆ δ ∗-cl[δ ∗-cl[δ ∗-int(A)∩δ ∗-int(B)]]

= δ ∗-cl(δ ∗-int(A∩B)).

Thus, A∩B is δ ∗-semiopen.

Remark. If A is δ ∗-open in Y and B is δ ∗-semiopen in Y , then A∩B is δ ∗-semiopen in Y .

Remark. We note that the intersection of two δ ∗-semiopen sets need not be δ ∗-semiopen as can be seen from the following
example.
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Example 1. Consider X = {a,b,c} and Y = {1,2,3} with
δ = {φ ,Y,{2},{3},{2,3}}. Let f : X → Y be a function such that f (a) = f (b) = f (c) = 2, then
δ ∗ = {φ ,Y,{2},{3},{2,3}}. Let A = {1,2} and B = {1,3}, then A and B are δ ∗-semiopen but A ∩ B = {1} is not
δ ∗-semiopen.

Theorem 3. Let f : X → Y be any function and V ⊆ Y . Then, V is δ ∗-semiopen if and only if for each s ∈V , there exists
a δ ∗-semiopen set K such that s ∈ K ⊆V .

Proof. It is obvious.

Theorem 4. Let f : X → Y be a any function and A,B ⊆ Y . Then,

(1) A is δ ∗-semiopen if and only if there exists a δ ∗-open set U such that U ⊆ A ⊆ δ ∗-cl(U).
(2) B is δ ∗-semiopen if A is δ ∗-semiopen and A ⊆ B ⊆ δ ∗-cl(A).
(3) A is δ ∗-semiopen if and only if δ ∗-cl(A) = δ ∗-cl(δ ∗-int(A)).

Proof. (1) Let A be δ ∗-semiopen, then A ⊆ δ ∗-cl(δ ∗-int(A)). Take U = δ ∗-int(A), then U is δ ∗-open such that
U = δ ∗-int(A)⊆ A ⊆ δ ∗-cl(δ ∗-int(A)) = δ ∗-cl(U).

Conversely, since U ⊆ A implies that U = δ ∗-int(U) ⊆ δ ∗-int(A) and so
A ⊆ δ ∗-cl(U) = δ ∗-cl(δ ∗-int(U))⊆ δ ∗-cl(δ ∗-int(A)). Thus, A is δ ∗-semiopen.

(2) Since A is δ ∗-semiopen, then by (1) there exists a δ ∗-open set U such that U ⊆ A ⊆ δ ∗-cl(U). Since A ⊆ B, so U ⊆ B.
But δ ∗-cl(A)⊆ δ ∗-cl(U), then B ⊆ δ ∗-cl(U). Hence, U ⊆ B ⊆ δ ∗-cl(U). Thus, B is δ ∗-semiopen.

(3) Let A be δ ∗-semiopen, then A ⊆ δ ∗-cl(δ ∗-int(A)) which implies that δ ∗-cl(A) ⊆ δ ∗-cl(δ ∗-int(A)) ⊆ δ ∗-cl(A) and
hence δ ∗-cl(A) = δ ∗-cl(δ ∗-int(A)).

Conversely, since δ ∗-int(A) is δ ∗-semiopen such that δ ∗-int(A)⊆ A ⊆ δ ∗-cl(A) = δ ∗-cl(δ ∗-int(A)) and therefore A
is δ ∗-semiopen.

Definition 3. A subset F of Y is called δ ∗-semiclosed if Y \F is δ ∗-semiopen.

Theorem 5. Let f : X → Y be a any function and A,B ⊆ Y . If A is δ ∗-semiclosed and δ ∗-int(A) ⊆ B ⊆ A, then B is
δ ∗-semiclosed.

Proof. Since A is δ ∗-semiclosed, then Y \A is δ ∗-semiopen. By hypothesis δ ∗-int(A)⊆ B ⊆ A, so Y \A ⊂Y \B ⊂Y \δ ∗-
int(A). But Y \ δ ∗-int(A) = δ ∗-cl(Y \A). Therefore Y \A ⊂ Y \B ⊂ δ ∗-cl(Y \A), and hence by Theorem 4 (2), Y \B is
δ ∗-semiopen. Thus, B is δ ∗-semiclosed.

Remark. (1) An arbitrary intersection of δ ∗-semiclosed sets is δ ∗-semiclosed.
(2) The union of two δ ∗-semiclosed sets may not be δ ∗-semiclosed.

Definition 4. Let f : X → Y be any function and A ⊆ Y . Then,

(1) the union of all δ ∗-semiopen sets contained in A is called the δ ∗-semi-interior of A and denoted by δ ∗-sint(A).
(2) the intersection of all δ ∗-semiclosed sets containing A is called the δ ∗-semi-closure of A and denoted by δ ∗-scl(A).

Now, we state the following theorem without proof.

Theorem 6. Let f : X → Y be any function. For any subsets A and B of Y , we have the following:

(1) A is δ ∗-semiopen if and only if A = δ ∗-sint(A).
(2) A is δ ∗-semiclosed if and only if A = δ ∗-scl(A).
(3) If A ⊆ B, then δ ∗-sint(A)⊆ δ ∗-sint(B) and δ ∗-scl(A)⊆ δ ∗-scl(B).
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(4) δ ∗-sint(A)∪δ ∗-sint(B)⊆ δ ∗-sint(A∪B).
(5) δ ∗-sint(A∩B)⊆ δ ∗-sint(A)∩δ ∗-sint(B).
(6) δ ∗-scl(A)∪δ ∗-scl(B)⊆ δ ∗-scl(A∪B).
(7) δ ∗-scl(A∩B)⊆ δ ∗-scl(A)∩δ ∗-scl(B).
(8) δ ∗-sint(X \A) = X \δ ∗-scl(A).
(9) δ ∗-scl(X \A) = X \δ ∗-sint(A).

(10) X \δ ∗-scl(X \A) = δ ∗-sint(A).
(11) X \δ ∗-sint(X \A) = δ ∗-scl(A).
(12) x ∈ δ ∗-sint(A) if and only if there exists a δ ∗-semiopen set L such that x ∈ L ⊆ A.

Theorem 7. Let f : X →Y be any function and A be a subset of Y . Then, y∈ δ ∗-scl(A) if and only if for every δ ∗-semiopen
subset L of Y containing y ∈ Y , A∩L ̸= φ .

Proof. Let y ∈ δ ∗-scl(A) and suppose that L∩A = φ for some δ ∗-semiopen set L which contains y. Then, (Y \L) is δ ∗-
semiclosed and A ⊂ (Y \L), thus δ ∗-scl(A)⊂ (Y \L). But this implies that y ∈ Y \L, a contradiction. Thus, L∩A ̸= φ .
Conversely, let A ⊆ Y and y ∈ Y such that for each δ ∗-semiopen set L1 which contains y, L1 ∩A ̸= φ . If y /∈ δ ∗-scl(A),
there is a δ ∗-semiclosed set F such that A ⊆ F and y /∈ F . Then, (Y \F) is a δ ∗-semiopen set with y ∈ (Y \F), and thus
(Y \F)∩A ̸= φ , which is a contradiction.

Remark. Let A be any subset of Y . Then the following relation holds, δ ∗-int(A)⊆ δ ∗-sint(A)⊆ A ⊆ δ ∗-scl(A)⊆ δ ∗-cl(A)

Let H be any subset of Y . Then, the collection τH = {U ∩H : U ∈ δ ∗} is called a subspace topology on H. The pair (H,τH)

is called a subspace, and each member of τH is called a δ ∗-open set in H. For any B ⊆Y , δ ∗-intτH (B) is called δ ∗-interior
of B in H and δ ∗-clτH (B) is called δ ∗-closure of B in H.

Remark. Let f : X → Y be any function and H be a subset of Y . Then, δ ∗-clτH (B) = δ ∗-cl(B)∩H, for any B ⊆ H.

Theorem 8. Let f : X → Y be any function and A,B ⊆ Y . If A is δ ∗-preopen in Y and B is δ ∗-semiopen in Y , then

(1) A∩B is δ ∗-semiopen in A.
(2) A∩B is δ ∗-preopen in B.

Proof. By assumption, A ⊆ δ ∗-int(δ ∗-cl(A)) and B ⊆ δ ∗-cl(δ ∗-int(B)).

(1) Then,

A∩B ⊆ δ ∗-int(δ ∗-cl(A))∩δ ∗-cl(δ ∗-int(B))

⊆ δ ∗-cl[δ ∗-int(δ ∗-cl(A))∩δ ∗-int(B)]

⊆ δ ∗-cl[δ ∗-cl(A)∩δ ∗-int(B)]

⊆ δ ∗-cl[δ ∗-cl[A∩δ ∗-int(B)]]

= δ ∗-cl[A∩δ ∗-int(B)].

Hence, A∩B ⊆ δ ∗-cl(A∩δ ∗-int(B)) and so A∩B ⊆ δ ∗-cl(A∩δ ∗-int(B))∩A = δ ∗-clτA(A∩δ ∗-int(B)). Since A∩δ ∗-
int(B) is a δ ∗-open set in A, so A∩B ⊆ δ ∗-clτA(A∩ δ ∗-int(B)) = δ ∗-clτA(δ

∗-intτA(A∩ δ ∗-int(B))) ⊆ δ ∗-clτA(δ
∗-

intτA(A∩B)). Therefore, A∩B is δ ∗-semiopen in A.
(2) Now,

A∩B ⊆ δ ∗-int(δ ∗-cl(A))∩B = δ ∗-intτB [δ
∗-int(δ ∗-cl(A))∩B]

⊆ δ ∗-intτB [δ
∗-int(δ ∗-cl(A))∩δ ∗-cl(δ ∗-int(B))]
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⊆ δ ∗-intτB [δ
∗-cl[δ ∗-int(δ ∗-cl(A))∩δ ∗-int(B)]]

⊆ δ ∗-intτB [δ
∗-cl[δ ∗-cl(A)∩δ ∗-int(B)]]

⊆ δ ∗-intτB [δ
∗-cl[δ ∗-cl[A∩δ ∗-int(B)]]]

⊆ δ ∗-intτB [δ
∗-cl[δ ∗-cl[A∩B]]]

= δ ∗-intτB(δ
∗-cl(A∩B)).

Since δ ∗-intτB(δ
∗-cl(A∩B)) is δ ∗-open in B, then

δ ∗-intτB(δ
∗-cl(A∩B))∩B= δ ∗-intτB(δ

∗-cl(A∩B)∩B), and hence A∩B⊆ δ ∗-intτB(δ
∗-cl(A∩B)∩B) = δ ∗-intτB(δ

∗-
clτB(A∩B)).

Therefore, A∩B is δ ∗-preopen in B.

Theorem 9. Let f : X → Y be any function, A ⊆ B ⊆ Y and B be δ ∗-semiopen in Y . Then, A is δ ∗-semiopen in Y if and
only if A is δ ∗-semiopen in B.

Proof. Let A be δ ∗-semiopen in Y , then there is a δ ∗-open set U such that U ⊆ A ⊆ δ ∗-cl(U) implies that U ⊆ A ⊆ B.
Hence, U ⊆ A ⊆ δ ∗-cl(U)∩B = clτB(U). Since U ∩B =U is also δ ∗-open in B, then A is δ ∗-semiopen in B.

Conversely, let A be δ ∗-semiopen in B. Then there is a δ ∗-open set U in B such that U ⊆ A ⊆ clτB(U). Since U is δ ∗-open
in B, there exists a δ ∗-open set V such that U = V ∩B. Then, V ∩B = U ⊆ A ⊆ clτB(U) = clτB(V ∩B) ⊆ δ ∗-cl(V ∩B).
By Rematrk 2, V ∩B is δ ∗-semiopen, then by Theorem 4 (2), A is δ ∗-semiopen in Y .

3 δ ∗-semi T1
2

Space

In this section, we defne and study some properties of δ ∗-semi generalized closed set and δ ∗-semi T1
2

space.

Definition 5. Let f : X → Y be any function. A subset A of Y is said to be a δ ∗-semi generalized closed (briefly, δ ∗-sgc) if
δ ∗-scl(A)⊆U whenever A ⊆U and U is a δ ∗-semiopen set in Y .

Remark. It is clear that every δ ∗-semiclosed subset of Y is also a δ ∗-sgc set. The following example shows that a δ ∗-sgc
set need not be δ ∗-semiclosed.

Example 2. Consider X = {1,2,3} and Y = {a,b,c} with
δ = {Y,φ ,{a},{b,c}}. If f : X → Y is a function such that f (1) = f (2) = f (3) = a, then δ ∗SO = {Y,φ ,{a},{b,c}}.
Thus, {b} is δ ∗-sgc but it is not δ ∗-semiclosed.

Theorem 10. Let f : X → Y be any function. A subset A of Y is δ ∗-sgc if and only if δ ∗-scl({x})∩A ̸= φ holds for every
x ∈ δ ∗-scl(A).

Proof. Let L be a δ ∗-semiopen set such that A ⊆ L. Let x ∈ δ ∗-scl(A), then there exists an element z ∈ δ ∗-scl({x}) and
z ∈ A ⊆ L. It follows from Theorem 7, that L∩{x} ≠ φ and hence x ∈ L. This implies δ ∗-scl(A) ⊆ L. Thus, A is δ ∗-sgc
set in Y .
Conversely, let A be a δ ∗-sgc subset of Y and x ∈ δ ∗-scl(A) such that δ ∗-scl({x})∩A = φ . Since, δ ∗-scl({x}) is δ ∗-
semiclosed set in Y . Thus, by Definition 3, Y \ (δ ∗-scl({x})) is a δ ∗-semiopen set. Since A ⊆ Y \ (δ ∗-scl({x})) and
A is δ ∗-sgc implies that δ ∗-scl(A) ⊆ Y \ (δ ∗-scl({x})) holds, and hence x /∈ δ ∗-scl(A). This is a contradiction. Thus,
δ ∗-scl({x})∩A ̸= φ .

Theorem 11. If δ ∗-scl({x})∩A ̸= φ holds for every x ∈ δ ∗-scl(A), then δ ∗-scl(A) \A does not contain a non empty
δ ∗-semiclosed set.
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Proof. Suppose there exists a non empty δ ∗-semiclosed set F such that F ⊆ δ ∗-scl(A)\A. Let x ∈ F , then x ∈ δ ∗-scl(A).
It follows that F ∩A = δ ∗-scl(F)∩A ⊇ δ ∗-scl({x})∩A ̸= φ . Hence, F ∩A ̸= φ . This is a contradiction. Thus, F = φ .

Theorem 12. If a subset A of Y is δ ∗-sgc and A ⊆ B ⊆ δ ∗-scl(A), then B is a δ ∗-sgc set in Y .

Proof. Let A be a δ ∗-sgc set such that A ⊆ B ⊆ δ ∗-scl(A). Let L be a δ ∗-semiopen subset of Y such that B ⊆ L. Since A
is δ ∗-sgc, then δ ∗-scl(A)⊆ L. Now, δ ∗-scl(A)⊆ δ ∗-scl(B)⊆ δ ∗-scl(δ ∗-scl(A)) = δ ∗-scl(A)⊆ L, that is δ ∗-scl(B)⊆ L.
Thus, B is a δ ∗-sgc set in Y .

Theorem 13. Let f : X → Y be any function. Then, for each x ∈ Y , either {x} is δ ∗-semiclosed or Y \{x} is δ ∗-sgc.

Proof. Suppose that {x} is not δ ∗-semiclosed, then by Definition 3, Y \{x} is not δ ∗-semiopen. Let L be any δ ∗-semiopen
set such that Y \{x} ⊆ L, so L = Y . Hence, δ ∗-scl(Y \{x})⊆ L. Thus, Y \{x} is δ ∗-sgc.

Definition 6. Let f : X → Y be any function. Then, Y is called δ ∗-semi symmetric if for x,y ∈ Y such that x ∈ δ ∗-scl({y})
implies y ∈ δ ∗-scl({x}).

Example 3. Consider X = {1,2,3} and Y = {a,b,c} with
δ = {Y,φ ,{a},{b,c}}. If f : X →Y is a function such that f (1) = f (2) = f (3) = a then δ ∗SO = {Y,φ ,{a},{b,c}}. Thus,
Y is δ ∗-semi symmetric.

Theorem 14. Let f : X → Y be any function. Then, the following statements are equivalent:

(1) Y is a δ ∗-semi symmetric.
(2) {x} is δ ∗-sgc, for each x ∈ Y .

Proof. (1) ⇒ (2): Suppose that {x} ⊆ L ∈ δ ∗SO, but δ ∗-scl({x}) ̸⊆ L. Then, δ ∗-scl({x})∩Y \ L ̸= φ . Now, we take
y ∈ δ ∗-scl({x})∩Y \L, then by hypothesis x ∈ δ ∗-scl({y})⊆ Y \L and x /∈ L, which is a contradiction. Therefore, {x} is
δ ∗-sgc for each x ∈ Y .
(2)⇒ (1): Suppose that x∈ δ ∗-scl({y}), but y /∈ δ ∗-scl({x}). Then, {y}⊆Y \δ ∗-scl({x}) and hence δ ∗-scl({y})⊆Y \δ ∗-
scl({x}). Therefore, x ∈ Y \δ ∗-scl({x}) which is a contradiction and so y ∈ δ ∗-scl({x}).

Definition 7. Let f : X → Y be any function. Then, Y is said to be δ ∗-semi T1
2

if every δ ∗-sgc in Y is δ ∗-semiclosed.

Example 4. Consider X = {1,2,3} and Y = {a,b,c} with
δ = {Y,φ ,{a},{a,c}}. If f : X → Y is a function such that f (1) = f (2) = c and f (3) = b, then
δ ∗SO = {Y,φ ,{a},{a,b},{a,c}}. Then, Y is δ ∗-semi T1

2
.

Theorem 15. Let f : X → Y be any function. Then, Y is a δ ∗-semi T1
2

if and only if {x} is either δ ∗-semiclosed or
δ ∗-semiopen for each x ∈ Y .

Proof. Suppose {x} is not δ ∗-semiclosed. Then it follows from assumption and Theorem 13, that {x} is δ ∗-semiopen.
Conversely, let F be δ ∗-sgc set in Y and x be any point in δ ∗-scl(F), then {x} is δ ∗-semiopen or δ ∗-semiclosed.

(1) Suppose {x} is δ ∗-semiopen. Then by Theorem 7, we have {x}∩F ̸= φ and hence x∈F . This implies δ ∗-scl(F)⊆F ,
therefore F is δ ∗-semiclosed.

(2) Suppose {x} is δ ∗-semiclosed. Assume x /∈ F , then x ∈ δ ∗-scl(F)\F . This is not possible by Theorem 11. Thus, we
have x ∈ F . Therefore, δ ∗-scl(F) = F and hence F is δ ∗-semiclosed.

Definition 8. Let f : X → Y be any function. Then, a subset A of Y is called a δ ∗-semi Difference set (briefly, δ ∗sD-set) if
there are L,K ∈ δ ∗SO such that L ̸= Y and A = L\K.

It is true that every δ ∗-semiopen set L different from Y is a δ ∗sD-set if A= L and K = φ . So, we can observe the following.
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Remark. Every proper δ ∗-semiopen set is a δ ∗sD-set. But, the converse is not true in general as the next example shows.

Example 5. Consider X = {1,2,3,4,5} and Y = {a,b,c,d,e} with δ = {Y,φ ,{a},{a,b,c,d},{b,c,d}}. If f : X →Y is a
function such that f (1) = f (2) = f (3) = c and f (4) = f (5) = d, then
δ ∗SO = {Y,φ ,{a},{a,e},{b,c,d},{a,b,c,d},{b,c,d,e}}. If we take L = {b,c,d,e} ̸=Y and K = {b,c,d}, then L\K =

{b,c,d,e}\{b,c,d}= {e}. Thus, {e} is a δ ∗sD-set but it is not δ ∗-semiopen.

Definition 9. Let f : X → Y be any function and A be a subset of Y . Then, the δ ∗-semi kernel of A denoted by δ ∗sker(A)
is defined to be the set

δ ∗sker(A) = ∩{L ∈ δ ∗SO: A ⊆ L}.

Example 6. From example 5, let A = {b,c}, then δ ∗sker({b,c}) = {b,c,d}.

Theorem 16. Let f : X → Y be any function and x ∈ Y . Then, y ∈ δ ∗sker({x}) if and only if x ∈ δ ∗-scl({y}).

Proof. Suppose that y /∈ δ ∗sker({x}). Then, there exists a δ ∗-semiopen set K containing x such that y /∈ K. Therefore, we
have x /∈ δ ∗-scl({y}). The proof of the converse case can be done similarly.

Theorem 17. Let f : X → Y be any function and A be a subset of Y . Then, δ ∗sker(A) = {x ∈ Y : δ ∗-scl({x})∩A ̸= φ}.

Proof. Let x ∈ δ ∗sker(A) and suppose δ ∗-scl({x})∩ A = φ . Hence, x /∈ Y \ δ ∗-scl({x}) which is a δ ∗-semiopen set
containing A. This is impossible, since x ∈ δ ∗sker(A). Consequently, δ ∗-scl({x})∩ A ̸= φ . Next, let x ∈ Y such that
δ ∗-scl({x})∩A ̸= φ and suppose that x /∈ δ ∗sker(A). Then, there exists a δ ∗-semiopen set K containing A and x /∈ K.
Let y ∈ δ ∗-scl({x})∩A. Hence, K is a δ ∗-semiopen set containing y which does not contain x. By this contradiction
x ∈ δ ∗sker(A).

Theorem 18. Let f : X → Y be any function. Then, the following properties hold for the subsets A,B of Y :

(1) A ⊆ δ ∗sker(A).
(2) A ⊆ B implies that δ ∗sker(A)⊆ δ ∗sker(B).
(3) If A is δ ∗-semiopen in Y , then A = δ ∗sker(A).
(4) δ ∗sker(δ ∗sker(A)) = δ ∗sker(A).

Proof. (1), (2) and (3) are immediate consequences of Definition 9. To prove (4), first observe that by (1) and (2), we
have δ ∗sker(A) ⊆ δ ∗sker(δ ∗sker(A)). If x /∈ δ ∗sker(A), then there exists L ∈ δ ∗SO such that A ⊆ L and x /∈ L. Hence,
δ ∗sker(A)⊆ L, and so we have x /∈ δ ∗sker(δ ∗sker(A)). Thus δ ∗sker(δ ∗sker(A)) = δ ∗sker(A).

Theorem 19. Let f : X → Y be any function. Then, for any points x and y in Y the following statements are equivalent:

(1) δ ∗sker({x}) ̸= δ ∗sker({y}).
(2) δ ∗-scl({x}) ̸= δ ∗-scl({y}).

Proof. (1) ⇒ (2): Suppose that δ ∗sker({x}) ̸= δ ∗sker({y}), then there exists a point z in Y such that z ∈ δ ∗sker({x})
and z /∈ δ ∗sker({y}). From z ∈ δ ∗sker({x}) it follows that {x} ∩ δ ∗-scl({z}) ̸= φ which implies x ∈ δ ∗-scl({z}). By
z /∈ δ ∗sker({y}), we have {y}∩ δ ∗-scl({z}) = φ . Since x ∈ δ ∗-scl({z}), then δ ∗-scl({x}) ⊆ δ ∗-scl({z}) and {y}∩ δ ∗-
scl({x}) = φ . Therefore, it follows that δ ∗-scl({x}) ̸= δ ∗-scl({y}). Thus, δ ∗sker({x}) ̸= δ ∗sker({y}) implies that δ ∗-
scl({x}) ̸= δ ∗-scl({y}).
(2)⇒ (1): Suppose that δ ∗-scl({x}) ̸= δ ∗-scl({y}). Then, there exists a point z in Y such that z ∈ δ ∗-scl({x}) and z /∈ δ ∗-
scl({y}). Then, there exists a δ ∗-semiopen set containing z and therefore x but not y. Hence, y /∈ δ ∗sker({x}) and thus
δ ∗sker({x}) ̸= δ ∗sker({y}).

Theorem 20. Let f : X → Y be any function. Then, ∩{δ ∗-scl({x}) : x ∈ Y}= φ if and only if δ ∗sker({x}) ̸= Y for every
x ∈ Y .
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Proof. Necessity. Suppose that ∩{δ ∗-scl({x}) : x ∈Y}= φ . Assume that there is a point y in Y such that δ ∗sker({y}) =Y .
Let x be any point of Y . Then, x ∈ K for every δ ∗-semiopen set K containing y and hence y ∈ δ ∗-scl({x}) for any x ∈ Y .
This implies that y ∈ ∩{δ ∗-scl({x}) : x ∈ Y}. But this is a contradiction.
Sufficiency. Assume that δ ∗sker({x}) ̸= Y for every x ∈ Y . If there exists a point y in Y such that y ∈ ∩{δ ∗-scl({x}) : x ∈
Y}, then every δ ∗-semiopen set containing y must contain every point of Y . This implies that the space Y is the unique
δ ∗-semiopen set containing y. Hence, δ ∗sker({y}) = Y which is a contradiction. Therefore, ∩{δ ∗-scl({x}) : x ∈ Y}= φ .

Theorem 21. Let f : X → Y be any function and Y be δ ∗-semi T1
2
. If δ ∗sker({x}) ̸= Y for a point x ∈ Y , then {x} is a

δ ∗sD-set in Y .

Proof. Let δ ∗sker({x}) ̸= Y for a point x ∈ Y , then there exists a subset L ∈ δ ∗SO such that {x} ⊆ L and L ̸= Y . Using
Theorem 15, for the point x, we have {x} is δ ∗-semiopen or δ ∗-semiclosed in Y . When the singleton {x} is δ ∗-semiopen,
then {x} is a δ ∗sD-set in Y . When the singleton {x} is δ ∗-semiclosed, then Y \{x} is δ ∗-semiopen in Y . Put L1 = L and
L2 = Y ∩ (Y \{x}). Then, {x}= L1 \L2 and L1 ̸= Y . Thus, {x} is a δ ∗sD-set.

Theorem 22. Let f : X → Y be any function. If a singleton {x} is a δ ∗sD-set in Y , then δ ∗sker({x}) ̸= Y .

Proof. Let {x} be a δ ∗sD-set in Y , then there exist two subsets L1,L2 ∈ δ ∗SO such that {x}= L1 \L2, {x}⊆ L1 and L1 ̸=Y .
Thus, we have that δ ∗sker({x})⊆ L1 ̸= Y and so δ ∗sker({x}) ̸= Y .

Definition 10. Let f : X → Y be any function. Then, Y is said to be:

(1) δ ∗-semi D0 if for any pair of distinct points x and y of Y there exists a δ ∗sD-set of Y containing x but not y or a
δ ∗sD-set of Y containing y but not x.

(2) δ ∗-semi D1 if for any pair of distinct points x and y of Y there exists a δ ∗sD-set of Y containing x but not y and a
δ ∗sD-set of Y containing y but not x.

Remark. If Y is δ ∗-semi D1, then it is δ ∗-semi D0.

Example 7. Consider X = {1,2} and Y = {a,b} with δ = {Y,φ ,{a}}. If f : X →Y is a function such that f (1) = f (2) = a
then δ ∗SO = {Y,φ ,{a}}. Then, Y is δ ∗-semi D0 but not δ ∗-semi D1 because there is no δ ∗sD-set containing b but not a.

Theorem 23. Let f : X →Y be any function and Y be a δ ∗-semi T1
2

with at least two points. Then, Y is δ ∗-semi D1 if and
only if δ ∗sker({x}) ̸= Y holds for every point x ∈ Y .

Proof. Necessity. Let x ∈ Y . For a point y ̸= x, there exists a δ ∗sD-set L such that x ∈ L and y /∈ L. Say L = L1 \L2, where
Li ∈ δ ∗SO for each i ∈ {1,2} and L1 ̸= Y . Thus, for the point x, we have a δ ∗-semiopen set L1 such that {x} ⊆ L1 and
L1 ̸= Y . Hence, δ ∗sker({x}) ̸= Y .
Sufficiency. Let x and y be a pair of distinct points of Y . We prove that there exist δ ∗sD-sets A and B containing x and y,
respectively, such that y /∈ A and x /∈ B. Using Theorem 15, we can take the subsets A and B for the following four cases
for two points x and y.
Case1. {x} is δ ∗-semiopen and {y} is δ ∗-semiclosed in Y . Since δ ∗sker({y}) ̸= Y , then there exists a δ ∗-semiopen set K
such that y ∈ K and K ̸= Y . Put A = {x} and B = {y}. Since B = K \ (Y \{y}), then K is a δ ∗-semiopen set with K ̸= Y
and Y \{y} is δ ∗-semiopen, and B is a required δ ∗sD-set containing y such that x /∈ B. Obviously, A is a required δ ∗sD-set
containing x such that y /∈ A.
Case 2. {x} is δ ∗-semiclosed and {y} is δ ∗-semiopen in Y . The proof is similar to Case 1.
Case 3. {x} and {y} are δ ∗-semiopen in Y . Put A = {x} and B = {y}.
Case 4. {x} and {y} are δ ∗-semiclosed in Y . Put A = Y \{y} and B = Y \{x}.
For each case of the above, the subsets A and B are the required δ ∗sD-sets. Therefore, Y is δ ∗-semi D1.
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4 δ ∗-semi Tk (k = 0,1,2)

In this section, we introduce some new separation axioms using the notion of δ ∗-semiopen set. Moreover, we give some
characterization of these types of spaces and study the relationships between them and other spaces defined in section
three.

Definition 11. Let f : X → Y be any function. Then, Y is said to be:

(1) δ ∗-semi T0 if for each pair of distinct points x,y in Y , there exists a δ ∗-semiopen set L such that either x ∈ L and y /∈ L
or x /∈ L and y ∈ L.

(2) δ ∗-semi T1 if for each pair of distinct points x,y in Y , there exist two δ ∗-semiopen sets L and K such that x ∈ L but
y /∈ L and y ∈ K but x /∈ K.

(3) δ ∗-semi T2 if for each distinct points x,y in Y , there exist two disjoint δ ∗-semiopen sets L and K containing x and y
respectively.

Theorem 24. Let f : X → Y be any function. Then, Y is δ ∗-semi T0 if and only if for each pair of distinct points x,y of Y ,
δ ∗-scl({x}) ̸= δ ∗-scl({y}).

Proof. Necessity. Let Y be δ ∗-semi T0 and x,y be any two distinct points of Y . Then, there exists a δ ∗-semiopen set L
containing x or y, say x but not y. Then, Y \ L is a δ ∗-semiclosed set which does not contain x but contains y. Since
δ ∗-scl({y}) is the smallest δ ∗-semiclosed set containing y, then δ ∗-scl({y}) ⊆ Y \ L and therefore x /∈ δ ∗-scl({y}).
Consequently δ ∗-scl({x}) ̸= δ ∗-scl({y}).
Sufficiency. Suppose that x,y ∈ Y , x ̸= y and δ ∗-scl({x}) ̸= δ ∗-scl({y}). Let z be a point of Y such that z ∈ δ ∗-scl({x})
but z /∈ δ ∗-scl({y}). We claim that x /∈ δ ∗-scl({y}). For, if x ∈ δ ∗-scl({y}) then δ ∗-scl({x}) ⊆ δ ∗-scl({y}). This
contradicts the fact that z /∈ δ ∗-scl({y}). Consequently x belongs to the δ ∗-semiopen set Y \δ ∗-scl({y}) to which y does
not belong.

Theorem 25. Let f : X → Y be any function. Then, Y is δ ∗-semi T1 if and only if the singletons are δ ∗-semiclosed sets.

Proof. Let Y be δ ∗-semi T1 and x any point of Y . Suppose y ∈ Y \{x}, then x ̸= y and so there exists a δ ∗-semiopen set L
such that y ∈ L but x /∈ L. Consequently y ∈ L ⊆ Y \{x}, that is Y \{x}= ∪{L : y ∈ Y \{x}} which is δ ∗-semiopen.
Conversely, suppose {p} is δ ∗-semiclosed for every p ∈Y . Let x,y ∈Y with x ̸= y. Now, x ̸= y implies y ∈Y \{x}. Hence,
Y \{x} is a δ ∗-semiopen set contains y but not x. Similarly Y \{y} is a δ ∗-semiopen set contains x but not y. Accordingly
Y is δ ∗-semi T1.

Theorem 26. Let f : X → Y be any function. Then, the following statements are equivalent:

(1) Y is δ ∗-semi T2.
(2) Let x ∈ Y . For each y ̸= x, there exists a δ ∗-semiopen set L containing x such that y /∈ δ ∗-scl(L).
(3) For each x ∈ Y , ∩{δ ∗-scl(L) : L ∈ δ ∗SO and x ∈ L}= {x}.

Proof. (1)⇒ (2): Since Y is δ ∗-semi T2, then there exist disjoint δ ∗-semiopen sets L and K containing x and y respectively.
So, L ⊆ Y \K. Therefore, δ ∗-scl(L)⊆ Y \K. So, y /∈ δ ∗-scl(L).
(2) ⇒ (3): If possible for some y ̸= x, we have y ∈ δ ∗-scl(L) for every δ ∗-semiopen set L containing x, which then
contradicts (2).
(3) ⇒ (1): Let x,y ∈ Y and x ̸= y. Then, there exists a δ ∗-semiopen set L containing x such that y /∈ δ ∗-scl(L). Let
K = Y \δ ∗-scl(L), then y ∈ K, x ∈ L and L∩K = φ . Thus, Y is δ ∗-semi T2.

Theorem 27. Let f : X → Y be any function. Then, then the following statements are hold:

(1) Every δ ∗-semi T2 space is δ ∗-semi T1.
(2) Every δ ∗-semi T1 space is δ ∗-semi T1

2
.
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(3) Every δ ∗-semi T1
2

space is δ ∗-semi T0.

Proof. (1) The proof is straightforward from the definitions.
(2) The proof is obvious by Theorem 25.
(3) Let x and y be any two distinct points of Y . By Theorem 15, the singleton set {x} is δ ∗-semiclosed or δ ∗-semiopen.

(1) If {x} is δ ∗-semiclosed, then Y \ {x} is δ ∗-semiopen. So y ∈ Y \ {x} and x /∈ Y \ {x}. Therefore, we have Y is
δ ∗-semi T0.

(2) If {x} is δ ∗-semiopen, then x ∈ {x} and y /∈ {x}. Therefore, we have Y is δ ∗-semi T0.

Example 8. Consider X = {1,2,3,4} and Y = {a,b,c,d} with
δ = {Y,φ ,{d},{a,d},{a,c,d},{a,b,d}}. If f : X → Y is a function such that f (1) = f (2) = f (3) = f (4) = d, then
δ ∗SO = {Y,φ ,{d},{a,d},{b,d},{c,d},{a,c,d},{a,b,d}}. Then, Y is δ ∗-semi T0 but not δ ∗-semi T1

2
.

Example 9. Consider X = {1,2,3} and Y = {a,b,c} with δ = {Y,φ ,{a}}. If f : X → Y is a function such that f (1) =
f (2) = f (3) = a then δ ∗SO = {Y,φ ,{a},{a,b},{a,c}}. Then, Y is δ ∗-semi T1

2
but not δ ∗-semi T1.

Remark. Let f : X → Y be any function. If Y is δ ∗-semi Tk, then it is δ ∗-semi Dk, for k = 0,1.

Proof.Obvious.

Theorem 28. Let f : X → Y be any function. Then, Y is δ ∗-semi D0 if and only if it is δ ∗-semi T0.

Proof. Suppose that Y is δ ∗-semi D0. Then, for each distinct pair x,y ∈ Y , at least one of x,y, say x, belongs to a δ ∗sD-set
G but y /∈ G. Let G = L1 \L2 where L1 ̸=Y and L1,L2 ∈ δ ∗SO. Then, x ∈ L1, and for y /∈ G we have two cases: (a) y /∈ L1

(b) y ∈ L1 and y ∈ L2.
In case (a), x ∈ L1 but y /∈ L1.
In case (b), y ∈ L2 but x /∈ L2.
Thus in both the cases, we obtain that Y is δ ∗-semi T0.
Conversely, if Y is δ ∗-semi T0, by Remark 4, Y is δ ∗-semi D0.

Corollary 1. If Y is δ ∗-semi D1, then it is δ ∗-semi T0.

Proof. Follows from Remark 3 and Theorem 28.

Here is an example which shows that the converse of Corollary 1 is not true in general.

Example 10. From Example 7, it is clear that Y is δ ∗-semi T0 but not δ ∗-semi D1.

Corollary 2. Let f : X → Y be any function. If Y is δ ∗-semi T1, then it is δ ∗-semi symmetric.

Proof. In δ ∗-semi T1, every singleton is δ ∗-semiclosed and therefore is δ ∗-sgc. Then, by Theorem 14, Y is δ ∗-semi
symmetric.

Corollary 3. Let f : X → Y be any function. Then, the following statements are equivalent:

(1) Y is δ ∗-semi symmetric and δ ∗-semi T0.
(2) Y is δ ∗-semi T1.

Proof. By Corollary 2 and Theorem 27, it suffices to prove only (1)⇒ (2).
Let x ̸= y and as Y is δ ∗-semi T0, we may assume that x ∈ L ⊆ Y \ {y} for some L ∈ δ ∗SO. Then, x /∈ δ ∗-scl({y}) and
hence y /∈ δ ∗-scl({x}). There exists a δ ∗-semiopen set K such that y ∈ K ⊆ Y \{x} and thus Y is a δ ∗-semi T1 space.

Theorem 29. Let f : X → Y be any function. If Y is δ ∗-semi symmetric, then the following statements are equivalent:
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(1) Y is δ ∗-semi T0.
(2) Y is δ ∗-semi T1

2
.

(3) Y is δ ∗-semi T1.

Proof. (1)⇔ (3): Obvious from Corollary 3.
(3)⇒ (2) and (2)⇒ (1): Directly from Theorem 27.

Corollary 4. Let f : X → Y be any function. If Y is δ ∗-semi symmetric, then the following statements are equivalent:

(1) Y is δ ∗-semi T0.
(2) Y is δ ∗-semi D1.
(3) Y is δ ∗-semi T1.

Proof.(1)⇒ (3). Follows from Corollary 3.
(3)⇒ (2)⇒ (1). Follows from Remark 4 and Corollary 1.
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