Generalized Derivations on a Prime Rings

Taha I. ${ }^{*}$, Masri R. and Tarmizi R.
Sultan Idris Universiti Faculty of Sciences and Mathematics Department of Mathematics 35900 Tanjong Malim, Perak, Malaysia

Received: 25 December 2021 , Accepted: 31 January 2022
Published online: 13 March 2022

Abstract

In this research, firstly, we have extended Ashraf's results in [4,5] for (θ, θ)-derivation that acting as a homomorphism (resp. an anti-homomorphism) on a Jordan ideal and a subring of a prime ring R with characteristic non equal two. Secondly, we have expanded Zaidi's results in [12] for a generalized (θ, θ)-derivations. Lastly, we have found the relationship between the commutativity of a prime ring and the existence of certain specific types of generalized derivations on R.

Keywords: Generalized derivation, semiprime rings, Jordan Ideal.

1 Introduction

Let R be an associative ring with identity, $Z(R)$ is the center of R. A ring R is prime if $s R t=0$, then either $s=0$ or $t=0$ and R is semiprime if the identity $s R s=0$ gives $s=0$. The $\operatorname{char} R \neq 2$ of a ring R if whenever $2 s=0, s \in R$, then $s=0$. The derivation is an additive map $\delta: R \rightarrow R$ satisfies

$$
\delta(s t)=\delta(s) t+s \delta(t) \forall s, t \in R
$$

The additive map δ is said to be (θ, φ)-derivation if

$$
\delta(s t)=\delta(s) \theta(t)+\varphi(s) \delta(t) \forall s, t \in R,
$$

where, $\theta, \varphi: R \rightarrow R$ are maps on R.

An additive map $F: R \rightarrow R$ is called a generalized derivation associated with δ if there exists a derivation $\delta: R \rightarrow R$ such that

$$
F(s t)=F(s) t+s \delta(t) \forall s, t \in R .
$$

An additive map $F: R \rightarrow R$ is called a generalized (θ, φ)-derivation associated with δ where θ, φ are maps on R, if there exists a (θ, φ)-derivation δ satisfies

$$
F(s t)=F(s) \theta(t)+\varphi(s) \delta(t) \forall s, t \in R .
$$

All other definitions are standard and they can be found in [1,2,3,4,6,7,8,9,10] and [11].

2 Preliminaries

We will state some lemmas, which helps us to prove the main results,

Lemma 1.[12, Lemma 2-5] Let $V \neq\{0\}$ be a Jordan ideal of a prime ring R. If

$$
r V=\{0\} \text { or } V r=\{0\}, r \in R, \text { then } r=0
$$

Lemma 2.[12, Lemma 2-6] Let $V \neq\{0\}$ be a Jordan ideal of a prime ring R of char $R \neq 2$. If $s V t=\{0\}$, then $s=0$ or $t=0$.

Lemma 3.[12, Lemma 2-7] Let $V \neq\{0\}$ be a Jordan ideal of a prime ring R of char $R \neq 2$. Then the commutativity of V gives that $V \subseteq Z(R)$.

3 Generalized (θ, θ)-derivation

Now we will generalize Zaidi's theorem [12] to left (θ, θ)-derivations that acting as a homomorphism (resp. an antihomomorphism) on a Jordan ideal $V \neq\{0\}$ and subring of a prime ring R of char $R \neq 2$.

Theorem 1.If $V \neq\{0\}$ is a Jordan ideal and subring of a prime ring R of a char $R \neq 2$ and θ an automorphisms on R and δ is a left (θ, θ)-derivation of R which is acting as a homomorphism (resp. an anti-homomorphism) on V. Then $\delta=0$ or $V \subseteq Z(R)$.

Proof.Assume that δ acting as a homomorphism on V, where V is not contained in the center of R. Thus

$$
\begin{equation*}
\delta(s t)=\delta(s) \delta(t)=\delta(s) \theta(t)+\theta(s) \delta(t) \forall s, t \in V \tag{1}
\end{equation*}
$$

Now substituting in the identity (1) t by $t r, r \in V$, then

$$
\delta(s t r)=\boldsymbol{\delta}(s) \theta(t) \theta(r)+\theta(s)(\delta(t) \theta(r)+\theta(t) \delta(r))=\delta(s)(\delta(t) \theta(r)+\theta(t) \delta(r))
$$

From (1) we get $(\boldsymbol{\delta}(s)-\theta(s)) \theta(t) \delta(r)=0$. Thus $\theta^{-1}(\delta(s)-\theta(s)) t \theta^{-1} \delta(r)=0$. Hence $\theta^{-1}(\delta(s)-\theta(s)) V \theta^{-1} \delta(r)=$ $\{0\}$. From lemma (2-2), we have $\delta(s)-\theta(s)$ or $\delta(r)=0$. Let $\delta(r)=0$ and using lemma (2-3), we conclude that $\delta=0$. Now let $\delta(s)-\theta(s)=0$, then from the identity (1)

$$
\begin{equation*}
\theta(s) \delta(t)=0 \tag{2}
\end{equation*}
$$

Substituting s in the identity (2) by $s r$, we get $\theta(s) \theta(r) \boldsymbol{\delta}(t)=0$. Hence $s r \theta^{-1}(\boldsymbol{\delta}(t))=0$, then $s V \theta^{-1}(\delta(t))=\{0\}$. Using lemma (2) we have $s=0$ or $\delta(t)=0$, since $V \neq\{0\}$, then $\delta(t)=0$. Thus by lemma (3) $V \subseteq Z(R)$. Assume that δ is acting as an anti-homomorphism on a Jordan ideal $V \neq\{0\}$ of R where V is not contained in the center of R. Hence

$$
\begin{equation*}
\delta(s t)=\delta(t s)=\delta(t) \delta(s)=\delta(s) \theta(t)+\theta(s) \delta(t) \forall s, t \in V \tag{3}
\end{equation*}
$$

Substituting s by $s t$ in (3), then

$$
(\delta(s) \theta(t)+\theta(s) \delta(t)) \theta(t)+\theta(s) \theta(t) \delta(t)=\delta(t)(\delta(s) \theta(t)+\theta(s) \delta(t))
$$

Then from (3) we get

$$
\begin{equation*}
\theta(s) \theta(t) \boldsymbol{\delta}(s)=\boldsymbol{\delta}(t) \boldsymbol{\theta}(s) \boldsymbol{\delta}(t) \tag{4}
\end{equation*}
$$

Now, replace s by $c s$ in identity (4), then

$$
\begin{equation*}
\theta(c) \theta(s) \boldsymbol{\theta}(t) \boldsymbol{\delta}(s)=\boldsymbol{\delta}(t) \boldsymbol{\theta}(c) \boldsymbol{\theta}(s) \boldsymbol{\delta}(t) \forall c, s, t \in V \tag{5}
\end{equation*}
$$

Concerning (4), then (5) gives that $[\boldsymbol{\delta}(t), \theta(c)] \theta(s) \boldsymbol{\delta}(t)=0$. Thus

$$
\theta^{-1}[\delta(t), \theta(c)] s \theta^{-1}(\delta(t))=0
$$

Equivalently, $\theta^{-1}[\boldsymbol{\delta}(t), \theta(c)] V \theta^{-1}(\delta(t))=0$. From lemma(2) conclude that $[\boldsymbol{\delta}(t), \theta(c)]=0$ or $\delta(t)=0$. Let $\delta(t)=0$ and using lemma (3), we conclude that $\delta=0$. Now let

$$
\begin{equation*}
[\boldsymbol{\delta}(t), \boldsymbol{\theta}(c)]=0 \tag{6}
\end{equation*}
$$

then replace t by $t c$ in identity (6) we have

$$
\begin{aligned}
0=[& {[\boldsymbol{\delta}(t c), \boldsymbol{\theta}(c)]=[\boldsymbol{\delta}(t) \boldsymbol{\theta}(c)+\boldsymbol{\theta}(t) \boldsymbol{\delta}(c), \boldsymbol{\theta}(c)] } \\
& =[\boldsymbol{\delta}(t) \boldsymbol{\theta}(c), \boldsymbol{\theta}(c)]+[\boldsymbol{\theta}(t) \boldsymbol{\delta}(c), \boldsymbol{\theta}(c)] \\
& =\theta(t)[\boldsymbol{\delta}(c) \boldsymbol{\theta}(c)]+[\boldsymbol{\theta}(t), \boldsymbol{\theta}(c)] \boldsymbol{\delta}(c) .
\end{aligned}
$$

This means

$$
\begin{equation*}
\boldsymbol{\theta}(t)[\boldsymbol{\delta}(c) \boldsymbol{\theta}(c)]+[\boldsymbol{\theta}(t), \boldsymbol{\theta}(c)] \boldsymbol{\delta}(c)=0 \tag{7}
\end{equation*}
$$

then replace t by $r t$ in identity (6) we have

$$
[\theta(r), \boldsymbol{\theta}(c)] \boldsymbol{\theta}(t) \boldsymbol{\delta}(c)=0
$$

Thus $[r, c] t \theta^{-1}(\delta(c))=0$, equivalently, $[r, c] V \theta^{-1}(\delta(c))=\{0\}$. From Lemma(2) conclude that $[r, c]=0$ or $\delta(t)=0$. Assume that

$$
U=\{c \in V:[r, c]=0 \forall r \in V\} \text { and } W=\{c \in V: \delta(c)=0\} .
$$

Then $U \subset V$ and $W \subset V$ as a proper subgroups and $V=U \bigcup W$, hence $V=U$ or $V=W$. Now, if $V=U$, then $[r, c]=0$, implies V is commutative, then by Lemma (3) V is contained in the center of R, which is contradict with assumption. Hence $V \subseteq Z(R)$. Now we will extend theorem (1) to generalized (θ, θ)-derivation on R.

Theorem 2. Let $V \neq\{0\}$ be a Jordan ideal and subring of a prime ring R of a char $R \neq 2$. Now if θ is an automorphisms on R and $F: R \rightarrow R$ is a generalized (θ, θ)-derivation on R which is acting as a homomorphism (resp. an anti-homomorphism) on V and associated with δ. Then $\delta=0$ or $V \subseteq Z(R)$.

Proof. Assume that δ acting as a homomorphism on V and $V \nsubseteq Z(R)$. Thus

$$
\begin{equation*}
F(s t)=F(s) F(t)=F(s) \theta(t)+\theta(s) \delta(t) \forall s, t \in V \tag{8}
\end{equation*}
$$

Now substituting in the identity (8) t by $t r, r \in V$, then

$$
\begin{gathered}
F(s t r)=F(s) \theta(t) \theta(r)+\theta(s)(\boldsymbol{\delta}(t) \theta(r)+\boldsymbol{\theta}(t) \boldsymbol{\delta}(r))= \\
F(s)(F(t) \boldsymbol{\theta}(r)+\boldsymbol{\theta}(t) \boldsymbol{\delta}(r)) .
\end{gathered}
$$

From (1) we get $(F(s)-\theta(s)) \theta(t) \boldsymbol{\delta}(r)=0$. Thus $\theta^{-1}(F(s)-\theta(s)) t \boldsymbol{\theta}^{-1} \boldsymbol{\delta}(r)=0$. Hence $\theta^{-1}(F(s)-\theta(s)) V \theta^{-1} \boldsymbol{\delta}(r)=$ $\{0\}$. From lemma (2), we have $F(s)-\theta(s)$ or $\delta(r)=0$. Let $\delta(r)=0$ and using lemma (3), we conclude that $\delta=0$. Now let $F(s)-\theta(s)=0$, then

$$
\begin{equation*}
\theta(s) \delta(t)=0 \tag{9}
\end{equation*}
$$

substituting s in the identity (2) by $s r$, we get $\boldsymbol{\theta}(s) \boldsymbol{\theta}(r) \boldsymbol{\delta}(t)=0$. Hence $s r \boldsymbol{\theta}^{-1}(\boldsymbol{\delta}(t))=0$, then $s V \theta^{-1}(\boldsymbol{\delta}(t))=\{0\}$. Using lemma (2-2) we have $s=0$ or $\delta(t)=0$, since $V \neq\{0\}$, then $\delta(t)=0$. Thus by lemma (2-3) $V \subseteq Z(R)$. Now assume that δ
is acting as an anti-homomorphism on a Jordan ideal $V \neq\{0\}$ of R such that V is not contained in the center of R. Hence

$$
\begin{equation*}
F(s t)=F(t s)=F(t) F(s)=F(s) \theta(t)+\theta(s) \delta(t) \tag{10}
\end{equation*}
$$

Substituting s by $s t$ in (10), then

$$
(F(s) \theta(t)+\theta(s) \boldsymbol{\delta}(t)) \theta(t)+\boldsymbol{\theta}(s) \boldsymbol{\theta}(t) \boldsymbol{\delta}(t))=F(t)(F(s) \theta(t)+\theta(s) \boldsymbol{\delta}(t))
$$

Then from (10) we get

$$
\begin{equation*}
\theta(s) \boldsymbol{\theta}(t) \boldsymbol{\delta}(t)) F(t) \boldsymbol{\theta}(s) \boldsymbol{\delta}(t) \tag{11}
\end{equation*}
$$

Now, replace s by $c s$ in identity (11), then

$$
\begin{equation*}
\theta(c) \theta(s) \theta(t) \boldsymbol{\delta}(s)=F(t) \boldsymbol{\theta}(c) \boldsymbol{\theta}(s) \boldsymbol{\delta}(t) \forall c, s, t \in V \tag{12}
\end{equation*}
$$

Concerning (11), then (12) gives that

$$
[F(t), \theta(c)] \theta(s) \delta(t)=0 .
$$

Thus $\theta^{-1}[F(t), \theta(c)] s \theta^{-1}(\delta(t))=0$. Equivalently, $\theta^{-1}[F(t), \theta(c)] V \theta^{-1}(\delta(t))=0$. From lemma (2-2) conclude that $[F(t), \theta(c)]=0$ or $\delta(t)=0$. Let $\delta(t)=0$ and using lemma (2-3), we conclude that $\delta=0$. Now let

$$
\begin{equation*}
[F(t), \theta(c)]=0 \tag{13}
\end{equation*}
$$

then replace t by $t c$ in identity (13) we have

$$
\begin{aligned}
0=[& F(t c), \boldsymbol{\theta}(c)]=[F(t) \boldsymbol{\theta}(c)+\boldsymbol{\theta}(t) \boldsymbol{\delta}(c), \boldsymbol{\theta}(c)] \\
& =[F(t) \boldsymbol{\theta}(c), \boldsymbol{\theta}(c)]+[\boldsymbol{\theta}(t) \boldsymbol{\delta}(c), \boldsymbol{\theta}(c)] \\
& =\boldsymbol{\theta}(t)[\boldsymbol{\delta}(c) \boldsymbol{\theta}(c)]+[\boldsymbol{\theta}(t), \boldsymbol{\theta}(c)] \boldsymbol{\delta}(c) .
\end{aligned}
$$

This means

$$
\begin{equation*}
\boldsymbol{\theta}(t)[\boldsymbol{\delta}(c) \boldsymbol{\theta}(c)]+[\boldsymbol{\theta}(t), \boldsymbol{\theta}(c)] \boldsymbol{\delta}(c)=0 . \tag{14}
\end{equation*}
$$

then replace t by $r t$ in identity (14) we have $[\boldsymbol{\theta}(r), \boldsymbol{\theta}(c)] \boldsymbol{\theta}(t) \boldsymbol{\delta}(c)=0$, Thus $[r, c] t \boldsymbol{\theta}^{-1}(\boldsymbol{\delta}(c))=0$, equivalently, $[r, c] V \theta^{-1}(\delta(c))=\{0\}$, From Lemma(2) conclude that $[r, c]=0$ or $\delta(t)=0$. Assume that

$$
U=\{c \in V:[r, c]=0 \forall r \in V\} \text { and } W=\{c \in V: \delta(c)=0\} .
$$

Then $U \subset V$ and $W \subset V$ as a proper subgrops and $V=U \cup W$, hence $V=U$ or $V=W$. Now, if $V=U$, then $[r, c]=0$, implies V is commutative, then by Lemma (3) V is contained in the center of R, which is contradict with assumption. Hence $V \subseteq Z(R)$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] Al Khalaf A., Artemovych O. and Taha Iman, Derivations in differentially prime rings, Journal of Algebra and its Applications, 17, No. 7, (2018).
[2] Al Khalaf A., Artemovych O. and Taha Iman, Derivations in differentially semiprime rings, Asian-European Journal of Mathematics(AEJM) 12, No. 5, (2019).
[3] O.D. Artemovych and M.P. Lukashenko, Lie and Jordan structures of differentially semiprime rings, Algebra and Discrete Math. 20(2015), 13-31.
[4] M. Ashraf, N. Rehman and M. A. Quadri, On (σ, τ)-derivations in certain classes of rings, Rad Math. 9 (1999), 187-192.
[5] M. Ashraf and N. Rehman, On Lie ideals and Jordan left derivation of prime rings, Arch. Math. (Brno) 36 (2000), 201 - 206.
[6] M. Ashraf, On left (θ, φ)-derivations of prime rings, Archivum Mathematicum (Brno), Tomus 41 (2005), 157-166.
[7] J. Bergen, I. N. Herstein and J. M. Keer, Lie ideals and derivations of prime ring, J. Algebra 71 (1981), 254-267.
[8] Chng, J.C. : alpha derivation with invertible values, Bulletin of the Intitite of Math. Acad. Sinica 13, (1985).
[9] I.N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago London, 1965.
[10] I.N. Herstein, Rings with involution, The University of Chicago Press, Chicago London 1976.
[11] E. C. Posner, Derivations in Prime Rings. Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[12] S. M. A. Zaidi, M. Ashraf and S. Ali, On Jordan ideals and left (q,q) - derivations in prime rings, IJMMS 37 (2004), $1957-1964$.

