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Abstract: In this research, firstly, we have extended Ashraf’s results in [4,5] for (θ ,θ)-derivation that acting as a homomorphism
(resp. an anti-homomorphism) on a Jordan ideal and a subring of a prime ring R with characteristic non equal two. Secondly, we have
expanded Zaidi’s results in [12] for a generalized (θ ,θ)-derivations. Lastly, we have found the relationship between the commutativity
of a prime ring and the existence of certain specific types of generalized derivations on R.
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1 Introduction

Let R be an associative ring with identity, Z(R) is the center of R. A ring R is prime if sRt = 0, then either s = 0 or t = 0
and R is semiprime if the identity sRs = 0 gives s = 0. The charR ̸= 2 of a ring R if whenever 2s = 0, s ∈ R, then s = 0.
The derivation is an additive map δ : R → R satisfies

δ (st) = δ (s)t + sδ (t) ∀s, t ∈ R.

The additive map δ is said to be (θ ,ϕ)-derivation if

δ (st) = δ (s)θ(t)+ϕ(s)δ (t) ∀s, t ∈ R,

where, θ ,ϕ : R → R are maps on R.

An additive map F : R → R is called a generalized derivation associated with δ if there exists a derivation δ : R → R such
that

F(st) = F(s)t + sδ (t) ∀s, t ∈ R.

An additive map F : R → R is called a generalized (θ ,ϕ)-derivation associated with δ where θ ,ϕ are maps on R , if there
exists a (θ ,ϕ)-derivation δ satisfies

F(st) = F(s)θ(t)+ϕ(s)δ (t) ∀s, t ∈ R.

All other definitions are standard and they can be found in [1,2,3,4,6,7,8,9,10] and [11].

2 Preliminaries

We will state some lemmas, which helps us to prove the main results,
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Lemma 1.[12, Lemma 2-5] Let V ̸= {0} be a Jordan ideal of a prime ring R. If

rV = {0} or V r = {0},r ∈ R, then r = 0.

Lemma 2.[12, Lemma 2-6] Let V ̸= {0} be a Jordan ideal of a prime ring R of charR ̸= 2. If sVt = {0}, then s = 0 or
t = 0.

Lemma 3.[12, Lemma 2-7] Let V ̸= {0} be a Jordan ideal of a prime ring R of charR ̸= 2. Then the commutativity of V
gives that V ⊆ Z(R).

3 Generalized (θ ,θ)-derivation

Now we will generalize Zaidi’s theorem [12] to left (θ ,θ)-derivations that acting as a homomorphism (resp. an anti-
homomorphism) on a Jordan ideal V ̸= {0} and subring of a prime ring R of charR ̸= 2.

Theorem 1.If V ̸= {0} is a Jordan ideal and subring of a prime ring R of a charR ̸= 2 and θ an automorphisms on R and
δ is a left (θ ,θ)-derivation of R which is acting as a homomorphism (resp. an anti-homomorphism) on V . Then δ = 0 or
V ⊆ Z(R).

Proof.Assume that δ acting as a homomorphism on V , where V is not contained in the center of R. Thus

δ (st) = δ (s)δ (t) = δ (s)θ(t)+θ(s)δ (t) ∀s, t ∈V. (1)

Now substituting in the identity (1) t by tr,r ∈V , then

δ (str) = δ (s)θ(t)θ(r)+θ(s)(δ (t)θ(r)+θ(t)δ (r)) = δ (s)(δ (t)θ(r)+θ(t)δ (r)).

From (1) we get (δ (s)−θ(s))θ(t)δ (r) = 0. Thus θ−1(δ (s)−θ(s))tθ−1δ (r) = 0. Hence θ−1(δ (s)−θ(s))V θ−1δ (r) =
{0}. From lemma (2-2), we have δ (s)−θ(s) or δ (r) = 0. Let δ (r) = 0 and using lemma (2-3), we conclude that δ = 0.
Now let δ (s)−θ(s) = 0, then from the identity (1)

θ(s)δ (t) = 0. (2)

Substituting s in the identity (2) by sr, we get θ(s)θ(r)δ (t) = 0. Hence srθ−1(δ (t)) = 0, then sV θ−1(δ (t)) = {0}. Using
lemma (2) we have s = 0 or δ (t) = 0, since V ̸= {0}, then δ (t) = 0. Thus by lemma (3) V ⊆ Z(R). Assume that δ is acting
as an anti-homomorphism on a Jordan ideal V ̸= {0} of R where V is not contained in the center of R. Hence

δ (st) = δ (ts) = δ (t)δ (s) = δ (s)θ(t)+θ(s)δ (t) ∀s, t ∈V. (3)

Substituting s by st in (3), then

(δ (s)θ(t)+θ(s)δ (t))θ(t)+θ(s)θ(t)δ (t) = δ (t)(δ (s)θ(t)+θ(s)δ (t)).

Then from (3) we get
θ(s)θ(t)δ (s) = δ (t)θ(s)δ (t). (4)

Now, replace s by cs in identity (4), then

θ(c)θ(s)θ(t)δ (s) = δ (t)θ(c)θ(s)δ (t) ∀c,s, t ∈V. (5)
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Concerning (4), then (5) gives that [δ (t),θ(c)]θ(s)δ (t) = 0. Thus

θ
−1[δ (t),θ(c)]sθ

−1(δ (t)) = 0.

Equivalently, θ−1[δ (t),θ(c)]V θ−1(δ (t)) = 0. From lemma(2) conclude that [δ (t),θ(c)] = 0or δ (t) = 0. Let δ (t) = 0
and using lemma (3), we conclude that δ = 0. Now let

[δ (t),θ(c)] = 0, (6)

then replace t by tc in identity (6) we have

0 = [δ (tc),θ(c)] = [δ (t)θ(c)+θ(t)δ (c),θ(c)]

= [δ (t)θ(c),θ(c)]+ [θ(t)δ (c),θ(c)]

= θ(t)[δ (c)θ(c)]+ [θ(t),θ(c)]δ (c).

This means
θ(t)[δ (c)θ(c)]+ [θ(t),θ(c)]δ (c) = 0. (7)

then replace t by rt in identity (6) we have
[θ(r),θ(c)]θ(t)δ (c) = 0,

Thus [r,c]tθ−1(δ (c)) = 0, equivalently, [r,c]V θ−1(δ (c)) = {0}. From Lemma(2) conclude that [r,c] = 0 or δ (t) = 0.
Assume that

U = {c ∈V : [r,c] = 0 ∀r ∈V}and W = {c ∈V : δ (c) = 0}.

Then U ⊂V and W ⊂V as a proper subgroups and V =U
⋃

W , hence V =Uor V =W . Now, if V =U , then [r,c] = 0,
implies V is commutative, then by Lemma (3) V is contained in the center of R, which is contradict with assumption.
Hence V ⊆ Z(R). Now we will extend theorem (1) to generalized (θ ,θ)-derivation on R. ⊓⊔

Theorem 2. Let V ̸= {0} be a Jordan ideal and subring of a prime ring R of a charR ̸= 2. Now if θ is an automorphisms on
R and F : R→R is a generalized (θ ,θ)-derivation on R which is acting as a homomorphism (resp. an anti-homomorphism)
on V and associated with δ . Then δ = 0 or V ⊆ Z(R).

Proof. Assume that δ acting as a homomorphism on V and V ⊈ Z(R). Thus

F(st) = F(s)F(t) = F(s)θ(t)+θ(s)δ (t) ∀s, t ∈V. (8)

Now substituting in the identity (8) t by tr,r ∈V , then

F(str) = F(s)θ(t)θ(r)+θ(s)(δ (t)θ(r)+θ(t)δ (r)) =

F(s)(F(t)θ(r)+θ(t)δ (r)).

From (1) we get (F(s)−θ(s))θ(t)δ (r) = 0. Thus θ−1(F(s)−θ(s))tθ−1δ (r) = 0. Hence θ−1(F(s)−θ(s))V θ−1δ (r) =
{0}. From lemma (2), we have F(s)−θ(s) or δ (r) = 0. Let δ (r) = 0 and using lemma (3), we conclude that δ = 0. Now
let F(s)−θ(s) = 0, then

θ(s)δ (t) = 0. (9)

substituting s in the identity (2) by sr, we get θ(s)θ(r)δ (t) = 0. Hence srθ−1(δ (t)) = 0, then sV θ−1(δ (t)) = {0}. Using
lemma (2-2) we have s = 0 or δ (t) = 0, since V ̸= {0}, then δ (t) = 0. Thus by lemma (2-3) V ⊆ Z(R). Now assume that δ
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is acting as an anti-homomorphism on a Jordan ideal V ̸= {0} of R such that V is not contained in the center of R. Hence

F(st) = F(ts) = F(t)F(s) = F(s)θ(t)+θ(s)δ (t). (10)

Substituting s by st in (10), then

(F(s)θ(t)+θ(s)δ (t))θ(t)+θ(s)θ(t)δ (t)) = F(t)(F(s)θ(t)+θ(s)δ (t)).

Then from (10) we get
θ(s)θ(t)δ (t))F(t)θ(s)δ (t). (11)

Now, replace s by cs in identity (11), then

θ(c)θ(s)θ(t)δ (s) = F(t)θ(c)θ(s)δ (t) ∀c,s, t ∈V. (12)

Concerning (11), then (12) gives that
[F(t),θ(c)]θ(s)δ (t) = 0.

Thus θ−1[F(t),θ(c)]sθ−1(δ (t)) = 0. Equivalently, θ−1[F(t),θ(c)]V θ−1(δ (t)) = 0. From lemma (2-2) conclude that
[F(t),θ(c)] = 0 or δ (t) = 0. Let δ (t) = 0 and using lemma (2-3), we conclude that δ = 0. Now let

[F(t),θ(c)] = 0, (13)

then replace t by tc in identity (13) we have

0 = [F(tc),θ(c)] = [F(t)θ(c)+θ(t)δ (c),θ(c)]

= [F(t)θ(c),θ(c)]+ [θ(t)δ (c),θ(c)]

= θ(t)[δ (c)θ(c)]+ [θ(t),θ(c)]δ (c).

This means
θ(t)[δ (c)θ(c)]+ [θ(t),θ(c)]δ (c) = 0. (14)

then replace t by rt in identity (14) we have [θ(r),θ(c)]θ(t)δ (c) = 0, Thus [r,c]tθ−1(δ (c)) = 0, equivalently,
[r,c]V θ−1(δ (c)) = {0}, From Lemma(2) conclude that [r,c] = 0 or δ (t) = 0. Assume that

U = {c ∈V : [r,c] = 0 ∀r ∈V} and W = {c ∈V : δ (c) = 0}.

Then U ⊂ V and W ⊂ V as a proper subgrops and V = U ∪W , hence V = U or V = W . Now, if V = U , then [r,c] = 0,
implies V is commutative, then by Lemma (3) V is contained in the center of R, which is contradict with assumption.
Hence V ⊆ Z(R).
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