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Abstract: In this paper, we prove the existence of multivalued fixed point, by combining the contractions of Geraghty type with θ -
contraction and α,η-admissible concepts. Some consequences are given in metric spaces endowed with partial order or with graph,
also we provide an example and an application to the existence of solutions of a boundary value problemma for fractional differential
inclusions to demonstrate the usability of our outcomes.
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1 Introduction

The idea of the metric fixed point theory for multivalued mappings has been started by Nadler [14], where he gave an
important generalization to Banach principle in the setting of multivalued mappings. Afterward, several results were
given in this way for instance, see [5,7,11,17,16].

Samet et al. [15] introduced a new notion called as α-admissibility, they obtained some results for α −ψ-contractive
mappings. Later, several authors investigated such concepts to establish some results, for example see [2,7,13]. Recently,
a new contractions type is given by Jleli et al. [12], called θ -contraction to show the existence of fixed points by using
such concept. It is worth mentioning here, that a contraction in the sense of Banach is θ -contraction, while the converse
may be true. After that, several authors have studied on different variations of θ -contraction for single-valued and
multivalued mappings, for example, see [1,3,8,18].

In this study, we combine the (α,η)-admissibility concept with θ - contraction and Geraghty contraction type in the
multivalued mappings context, some existence results of a fixed point in complete metric spaces were furnished. We
present some results in metric spaces equipped with a partially order relationship and in metric spaces with graph by
using obtained main results. Finally, an example is provided and we suggest a study of an existence problemma of the
solutions for a fractional differential inclusion to demonstrate the validity of obtained results. Let (X ,d) be a metric space,
and let CB(X) be a set of closed, bounded and nonempty subsets of X , the Pompeiu-Hausdorff distance is defined as:

H(A,B) =


max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
if the maximum exists;

∞, otherwise,
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for all A,B ∈CB(X), where d(x,B) = inf{d(x,y) : y ∈ B}. For more details we refer the readers to [4,10].
Note that, if A= {x} (singleton) and B= {y}, then H(A,B) = d(x,y). Denote by CL(X) the family of closed and nonempty
subsets of X and let K(X) be the set of compact subsets of X .

Lemma 1. [14] Let (X ,d) be a metric space and let A,B be elemmaents of CL(X) such that H(A,B) > 0. Then, for an
arbitrary h > 1 and for each a ∈ A, there exists b ∈ B such that d(a,b)< hH(A,B).

Firstly, Samet et al. [15] introduced the concept of α-admissible single valued mapping, afterwards Asl et al. [2] extended
this notion to multivalued mappings by introducing the notion of α∗-admissible mappings. Later, Mohammadi et al. [13]
introduced the concept of α-admissible for multivalued mappings.

Definition 1. Let (X ,d)be a metric space and α : X ×X → R+ be a given function. T : X →CL(X) is

(1) α∗-admissible if for α(x,y)≥ 1, x,y ∈ X then α∗(T x,Ty)≥ 1, whenever α∗(T x,Ty) = inf{α(a,b) : a ∈ T x,b ∈ Ty};
(2) α-admissible, if for each z ∈ X and x ∈ T z with α(z,x)≥ 1, then α(x,y)≥ 1 for all y ∈ T x.

A mapping T is α∗-admissible, then it is also α-admissible, while there are some α-admissible mappings are never
α∗-admissible.

Definition 2. [6] Let (X ,d) be a metric space and η ,α : X ×X → R+ be given functions with η bounded. A mapping
T : X →CL(X) is α∗-admissible w.r.t η , if α(x,y)≥ η(x,y) then α∗(T x,Ty)≥ η∗(T x,Ty), where

α∗(T x,Ty) = inf{α(a,b) : a ∈ T x,b ∈ Ty}

and

η∗(T x,Ty) = sup{η(a,b) : a ∈ T x,b ∈ Ty}.

Definition 3. [9] Let (X ,d) be a metric space, multivalued map T : X → Cl(X) and a function α : X ×X → [0,∞). T is
called to be an α,η- lower semi continuous map if for x ∈ X and a sequence {xn} in X with limn→∞ d(xn,T xn) = 0 and
α(xn,xn+1)≥ η(xn,xn+1) for all n ≥ 0 implies

lim
n→∞

infd(xn,T xn)≥ d(x,T x).

Definition 4. [12] Let Θ be the set of all functions θ : (0,+∞)→ (1,+∞) be a function satisfying:

(θ1) :θ is non decreasing,
(θ2) :for each sequence {tn} in (0,+∞), lim

n→∞
tn = 1 if and only if lim

n→∞
tn = 0,

(θ3) :there exist σ ∈ (0,1) and ρ ∈ [0,∞) such that lim
t→0+

θ(t)−1
tσ

= ρ .

Let Ω be the set of the functions β : [0,∞)→ [0,1) satisfying lim
n→+∞

β (tn) = 1 implies lim
n→+∞

tn = 0.

2 Main results

Definition 5.Let (X ,d) be a metric space and α,η : X × X → (0,∞). T : X → CL(X) is a multivalued (α∗,η∗,θ)

contraction of Geraghty type, if there exist a function θ ∈ Θ , β ∈ Ω and κ : (0,∞)→ [0,1) satisfying lim
t→s+

supκ(t) < 1

for all s ∈ (0,∞) such that

θ(H(T x,Ty))≤
[
θ(β (d(x,y))d(x,y)

]κ(d(x,y))
, (1)

for all x,y ∈ X with α∗(x,y)≥ η∗(x,y) and H(T x,Ty)> 0.
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Theorem 1.Let (X ,d) be a complete metric space and T : X → K(X) be a multivalued (α∗,η∗,θ) contraction of Geraghty
type. Assume that the following conditions are satisfied:

(H1) :T is α∗-admissible w.r.t η .
(H2) :There exist x0 ∈ X and x1 ∈ T x0 such that α(x0,x1)≥ η(x0,x1).
(H3) :X is α −η regular, that’s, for every sequence {xn} in X such that xn → x and α (xn,xn+1) ≥ η(xn,xn+1), for all

n ∈ N, we have α(xn,x)≥ η(xn,x), for all n ∈ N.

Then T admits a fixed point in X.

Remark. We can replace the hypothesis (H4) by α,η- lower semi continuity of T , that is if T is α,η-lower semi
continuous, then for some x ∈ X and a sequence {xn} ⊂ X such lim

n→+∞
d(xn,x) = 0 and α(xn,xn+1) ≥ η(xn,xn+1) for all

n ∈ N, we have
0 ≤ d(x,T x)≤ lim

n→+∞
infd(xn,T xn) = 0.

Hence, x ∈ T x.

Theorem 2. Let (X ,d) be a complete metric space and T : X →CB(X) be a multivalued (α∗,η∗,θ) Geraghty contraction,
with θ is right continuous. Assume that the following conditions are hold:

(H1) :T is α∗-admissible w.r.t η .
(H2) :There exist x0 ∈ X and x1 ∈ T x0 such that α(x0,x1)≥ η(x0,x1).
(H3) :X is α −η regular, that’s for every sequence {xn} in X such that xn → x and α (xn,xn+1) ≥ η(xn,xn+1), for all

n ∈ N, we have α(xn,x)≥ η(xn,x), for all n ∈ N.

Then T admits a fixed point.

3 Fixed point on a metric space equipped with a partial ordering/graph

Firstly, we give an existence theorem of fixed point in a partially order metric space, by using the results provided in
previous section. Define α : X ×X → [0,+∞), η : XtimesX → [0,+∞) as follows:

α(x,y) =

{
2, if x ⪯ y,
0, otherwise.

η(x,y) =

{
1, x ⪯ y,
0, otherwise.

Theorem 3. Let (X ,⪯,d) be a complete ordered metric space and T : X → CB(X) be a multivalued mapping. Assume
that the following assertions hold:

(1) For each x ∈ X and y ∈ T x with x ⪯ y, we have y ⪯ z for all z ∈ Ty.
(2) There exist x0 ∈ X and x1 ∈ T x0 such that x0 ⪯ x1.
(3) For every nondecreasing sequence {xn} in X with xn → x ∈ X, then xn ⪯ x, for all n ∈ N;
(4) There exist a right continuous function θ ∈ Θ̂ , β ∈ Ω and κ : (0,∞) → [0,1) satisfying lim

t→s+
supκ(t) < 1 for all

s ∈ (0,∞) such that
θ(H(T x,Ty))≤

[
θ(β (d(x,y))d(x,y))

]κ(d(x,y)
, (2)

for all x,y ∈ Y with x ⪯ y andH(T x,Ty)> 0.

Then T has a fixed point.

© 2022 BISKA Bilisim Technology

www.ntmsci.com


35 A. Ali, S. Mahideb, S. Beloul: On some fixed point results for multivalued contractions with an application

Now, we give an existence theorem of a fixed point for multivalued mappings from a metric space X , equipped with a
graph, into the space of nonempty closed and bounded subsets of the metric space. Consider a graph G such that the
set V (G) of its vertices coincides with X and the set E (G) of its edges contains all loops; that is, E(G) ⊇ ∆ , where
∆ = {(x,x) : x ∈ X }. Assume that G has no parallel edges, so we can identify G with the pair (V (G),E(G)). Define
α,η : X ×X → [0,+∞) as follows:

α(x,y) =

{
2, (x,y) ∈ E(G),

0, otherwise,

η (x,y) =

{
1, if (x,y) ∈ E(G),

0, otherwise.

Theorem 4. Let (X ,d) be a complete metric space equipped with a graph G and T : X → CB(X) be a multivalued
mapping. Assume that the following conditions are satisfied:

(1) For each x ∈ X and y ∈ T x with (x,y) ∈ E(G), we have (y,z) ∈ E(G) for all z ∈ Ty;
(2) There exist x0 ∈ X and x1 ∈ T x0 such that (x0,x1) ∈ E(G);
(3) For every sequence {xn} in X such that xn → x ∈ X and (xn,xn+1) ∈ E(G) for all n ∈ N, then {xn,x) ∈ E(G).
(4) There exist a right continuous function θ ∈ Θ , β ∈ Ω and κ : (0,∞) → [0,1) such that lim

t→s+
supκ(t) < 1 for all

s ∈ (0,∞)

θ(H(T x,Ty))≤
[
θ(β (d(x,y))d(x,y)

]κ(d(x,y))
, (3)

for all x,y ∈ X with (x,y) ∈ E(G) and H(T x,Ty)> 0.

Then there exists a point x satisfying x ∈ T x.

4 Existence of the solution for a fractional differential inclusion

Let the boundary value problems with fractional order differential inclusion and boundary integral conditions:
cDα x(t) ∈ F(t,x(t)), t ∈ I = [0,1], 1 < α ≤ 2
x(0)− x′(0) = 0
x(1) =

∫ 1
0 g(s,x(s))ds

(4)

where cDα is the Caputo fractional derivative of α order, F and g are given continuous functions
F : I ×R×R−→ K(R) and g : [0,1]×R→ R.
Denote by X =C(I,R) the Banach space of continuous functions x : I −→ R, with the usual supermum norm

∥ x ∥∞= sup{|x(t)|, t ∈ I}.

X can be endowed with the partial order relationship ⪯, that is, for all x,y∈ X x ⪯ y if and only if x(s)≤ y(s), so (X ,d∞,⪯)

is a complete ordered metric space. x is a solution of problem (4) if there exists v ∈ F(s,x(t)) such that
cDα x(t) = v(t), 0 ≤ t ≤ 1, 1 < α ≤ 2
ax(0)− x′(0) = 0
x(1) =

∫ 1
0 g(s,x(s))ds

(5)

Lemma 2. A function x is a solution of (5) if and only if it is a solution of the fractional integral equation:

x(s) =
∫ 1

0
G(t,s)v(s)ds+

t +1
2

∫ 1

0
g(s,x(s))ds,
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where G is the Green function given by

G(t,s) =


(t+1)(1−s)α−1

2Γ (α) − (t−s)α−1

Γ (α) , 0 ≤ s ≤ t
(t+1)(1−s)α−1

2Γ (α) , t ≤ s ≤ 0.
(6)

G is continuous on I2, so let G0 = sup
0≤t,s≤1

∫ 1

0
|G(t,s)|ds. For all x ∈ X , define a set valued mapping:

T x(t) = {z ∈ X ,z(t) =
∫ 1

0
G(t,s)v(s)ds+

t +1
2

∫ 1

0
g(s,x(s))ds,v ∈ F(t,x(t))}.

The problem (4) has a solution if and only if T has a fixed point.
Firstly, we show that T is well defined, in fact since F is continuous, then from Michael selection theorem there exists a
continuous function in v ∈ F(t,x), then T x is non empty. Moreover, since F has compact values, then for all x ∈ X the set
T x is compact. Assume that:

(A1) : For each x ∈ X and y ∈ T x with x ⪯ y, we have y ⪯ z for all z ∈ Ty.
(A2) : There exist x0 ∈ X and x1 ∈ T x0 such that x0 ⪯ x1.
(A3) : There exists ϕ ∈C(I,R+) such that for all x1,x2 ∈ R, we have

H(F(s,x1(s)),F(s,x2(t)))≤ ϕ(s) ln(1+ |x1(t)− x2(t)|),

with ϕ0 = sup
t∈[0,1]

|ϕ(t)|.

(A4) : There exists ψ ∈C(I,R+) such that for all x1,x2 ∈ R, we have

∥g(s,x1(s))−g(s,x2(s))∥ ≤ ψ(t) ln(1+ |x1(t)− x2(t)|),

with ψ0 = sup
t∈[0,1]

|ψ(t)| and κ0 = G0ϕ0 +ψ0 < 1.

Theorem 5. Under the assumptions (A1)− (A4) the problem (4) possesses a solution.
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