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Abstract: Our purpose is to solve the system of differential equations of spherical curves in 3-dimensional euclidean space using a
numerical method such as the Adomian Decomposition Method. In the different values of x, we compare the Adomian decomposition
method solution with the exact solution. We demonstrate the obtained numerical results on tables and figures. Thus we prove the
reliability of the proposed method with an example.
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1 Introduction

Curves are seen in some fields such as mechanics, kinematics and differential geometry [1]. The curve located on a sphere
is called the spherical curve. The condition for a curve to be a spherical curve is usually given in the form

τ

κ
+

[
1
τ

(
1
κ

)′]′
= 0,

where κ is curvature function and τ is torsion function [1]. The system of differential equations characterizing a unit speed
spherical curve in Euclidean 3-space is given as [1]λ ′

1 (x) = κ (x)λ2 (x)+1,
λ ′

2 (x) =−κ (x)λ1 (x)+ τ (x)λ3 (x) ,
λ ′

3 (x) = τ (x)λ2 (x) .
a ≤ x ≤ b, (1)

λ1 (a) = A, λ2 (a) = B, λ3 (a) =C, (2)

where a,b,A,B,C are real constants; κ (x) = 1√
1−x2

and τ (x) = −1√
1−x2

.

We use the Adomian decomposition method (ADM) to approximate the system of equations (1)-(2). The ADM was first
introduced by George Adomian in 1980 [2]. It is applied to stochastic and deterministic problems in biology, physics,
and chemical. This method can easily solve a wide class of linear (nonlinear) of ordinary and partial differential
equations, integral equations, integro-differential, difference, delay differential equations and class neural networks with
time-varying lags etc. [4, 5, 11–17]. ADM method is powerful and effective. Many researchers have preferred ADM to
obtain numerical solutions. Abbaoui and Cherruault evidenced the convergence of the Adomian method in 1994 [1].

This paper can be presented as follows: In Section 1, we present the introduction part. In Section 2, we implement ADM
to solve the system of differential equations of spherical curves in 3-dimensional euclidean space. From here obtained
results are shown on tables and figures. In Section 3, the convergence of ADM is proved. The study is completed with the
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conclusion section. We have seen that these problems can be solved by many methods such as Taylor matrix collocation
method, hermite polynomial approach, Lucas collocation method, Taylor polynomial solutions [6–10]. Therefore, we
had to show that ADM’s solution process for the system of differential equations of spherical curves in 3-dimensional
euclidean space could be easier and more reliable. The results demonstrate that ADM is as powerful as other methods for
our proposed problem.

2 Implementation of ADM

In this section we consider the following system of differential equations of spherical curves in 3-dimensional euclidean
space. We present a particular example that confirms the results obtained [1].

λ ′
1 (x) = 1√

1−x2
λ2 (x)+1,

λ ′
2 (x) =− 1√

1−x2
λ1 (x)− 1√

1−x2
λ3 (x) ,

λ ′
3 (x) = −1√

1−x2
λ2 (x) ,

(3)

λ1 (0) = A, λ2 (0) = B, λ3 (0) =C. (4)

The approximate solutions of the above system of differential equations are obtained by using ADM as follows:

The equations (3) are rewritten in the form

Lλ1 =
1√

1−x2
λ2 (x)+1,

Lλ2 =− 1√
1−x2

λ1 (x)− 1√
1−x2

λ3 (x) ,

Lλ3 =− 1√
1−x2

λ2 (x) ,

(5)

where differential operator L is given by L(.) = d
dx (.) and L is the highest order derivation. If the integral operator

L−1 (.) =
∫ x

0 (.) is applied to each term of equation (5), we obtain the following recurrence relation

(λ1 (x))k+1 = λ1 (0)+L−1
(

1√
1−x2

(λ2 (x))k +1
)
,

(λ2 (x))k+1 = λ2 (0)+L−1
(
− 1√

1−x2
(λ1 (x))k − 1√

1−x2
(λ3 (x))k

)
,

(λ3 (x))k+1 = λ3 (0)+L−1
(
− 1√

1−x2
(λ2 (x))k

)
,

(6)

where λ1 (0) ,λ2 (0) ,λ3 (0) are written from the boundary conditions (4). From the above recursive relation for
k = 0,1,2, ..., we have

(λ1 (x))k+1 = λ1 (0)+L−1
(

1√
1−x2

(λ2 (x))k +1
)
,

(λ1 (x))0 = λ1 (0)+L−1 (1) ,

k = 0, (λ1 (x))1 =
∫ x

0

(
1√

1−x2
(λ2 (x))0

)
dx,

k = 1, (λ1 (x))2 =
∫ x

0

(
1√

1−x2
(λ2 (x))1

)
dx,

k = 2, (λ1 (x))3 =
∫ x

0

(
1√

1−x2
(λ2 (x))2

)
dx,

...

(7)

The approximate solution λ1 (x) by ADM is given by

(λ1 (x))Approximate =
5
∑

k=0
(λ1 (x))k =(λ1 (x))0 +(λ1 (x))1

+(λ1 (x))2 +(λ1 (x))3 +(λ1 (x))4 +(λ1 (x))5.

© 2021 BISKA Bilisim Technology

www.ntmsci.com/jacm


17 Derya ARSLAN: A New Approximate Solution for the Differential Equations Systems

(λ2 (x))k+1 = λ2 (0)+L−1
(
− 1√

1−x2
(λ1 (x))k − 1√

1−x2
(λ3 (x))k

)
(λ2 (x))0 = λ2 (0) ,

k = 0, (λ2 (x))1 =
∫ x

0

(
− 1√

1−x2
(λ1 (x))0 − 1√

1−x2
(λ3 (x))0

)
dx,

k = 1, (λ2 (x))2 =
∫ x

0

(
− 1√

1−x2
(λ1 (x))1 − 1√

1−x2
(λ3 (x))1

)
dx,

k = 2, (λ2 (x))3 =
∫ x

0

(
− 1√

1−x2
(λ1 (x))2 − 1√

1−x2
(λ3 (x))2

)
dx,

...

(8)

The approximate solution λ2 (x) by ADM is given by

(λ2 (x))Approximate = (λ2 (x))0 +(λ2 (x))1
+(λ2 (x))2 +(λ2 (x))3 +(λ2 (x))4 +(λ2 (x))5.

(λ3 (x))k+1 = λ3 (0)+L−1
(
− 1√

1−x2
(λ2 (x))k

)
,

(λ3 (x))0 = λ3 (0) ,

k = 0, (λ3 (x))1 = L−1
(
− 1√

1−x2
(λ2 (x))0

)
,

k = 1, (λ3 (x))2 = L−1
(
− 1√

1−x2
(λ2 (x))1

)
,

k = 2, (λ3 (x))3 = L−1
(
− 1√

1−x2
(λ2 (x))2

)
,

...

(9)

The approximate solution λ3 (x) by ADM is given by

(λ3 (x))Approximate = (λ3 (x))0 +(λ3 (x))1
+(λ3 (x))2 +(λ3 (x))3 +(λ3 (x))4 +(λ3 (x))5.

Example 1 The system of differential equations of spherical curves are considered as
λ ′

1 (x) = 1√
1−x2

λ2 (x)+1,

λ ′
2 (x) =− 1√

1−x2
λ1 (x)− 1√

1−x2
λ3 (x) ,

λ ′
3 (x) = −1√

1−x2
λ2 (x) ,

(10)

λ1 (0) = 0, λ2 (0) =−1, λ3 (0) = 0.

The exact solution of this problem is

λ1(x) = 0, λ2(x) =
√

1− x2, λ3(x) =− x.

By applying the ADM with five iterations, according to Equations (5)-(10), we obtain for k = 0,1,2,3,4,5,

(λ1 (x))k+1 =
x∫

0

(
1√

1−x2
(λ2 (x))k

)
dx,

(λ1 (x))0 =
∫ x

0 dx = x,

(λ2 (x))k+1 =
∫ x

0

(
− 1√

1−x2
(λ1 (x))k − 1√

1−x2
(λ3 (x))k

)
dx,

(λ2 (x))0 =−1,

(λ3 (x))k+1 =
x∫

0

(
− 1√

1−x2
(λ2 (x))k

)
dx,

(λ3 (x))0 = 0.
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Utilizing the above recurrence relations for k = 0,1,2, ..., we find solutions of the system of differential equations of
spherical curves in 3-dimensional euclidean space as

(λ1 (x))0 = x,
(λ1 (x))1 =−arcsin(x),
(λ1 (x))2 = x− arcsin(x),
(λ1 (x))3 = 0.3333333333arcsin(x)3,
(λ1 (x))4 = 0.3333333333arcsin(x)3 +2x−2arcsin(x),

λ1 (x) =
5
∑

k=0
(λ1 (x))k =4x−4arcsin(x)+6666666666arcsin(x)3 − (03333333332e−1)arcsin(x)5,

(λ2 (x))0 =−1,
(λ2 (x))1 =−1+ 1√

1−x2
− x2√

1−x2
,

(λ2 (x))2 = arcsin(x)2,

(λ2 (x))3 =−2+arcsin(x)2 +2
√

1− x2,
(λ2 (x))4 =−0.1666666666arcsin(x)4,

λ2 (x) =
5
∑

k=0
(λ2 (x))k =−8+ 1√

1−x2
− x2√

1−x2
+4arcsin(x)2 +6

√
1− x2 −0.3333333332arcsin(x)4,

(λ3 (x))0 = 0,
(λ3 (x))1 =−arcsin(x),
(λ3 (x))2 = x− arcsin(x),
(λ3 (x))3 = 0.3333333333arcsin(x)3,
(λ3 (x))4 = 0.3333333333arcsin(x)3 +2x−2arcsin(x),

λ3 (x) =
5
∑

k=0
(λ3 (x))k =−4arcsin(x)+3x+0.6666666666arcsin(x)3 −0.3333333332arcsin(x)5.

After these calculations with five iterations, we obtain the following results of both the exact solution and approximate
solution for different values of x.

Table 1: Comparison of exact solution and approximate solution for λ1 (x) .

x λ1(x)Exact λ1(x)Approximate Error
0 0.00000000 0.00000000 0.00000000
3π

40 0.00000000 -0.00000000 0.00000000
3π

20 0.00000000 0.00000541 0.00000541
9π

40 0.00000000 -0.00014460 0.00014460
3π

10 0.00000000 -0.00330969 0.00330969

Table 2: Comparison of exact solution and approximate solution for λ2 (x) .

x λ2(x)Exact λ2(x)Approximate Error
0 -1.00000000 -1.00000000 0.00000000
3π

40 -0.97184539 - 0.97184740 0.00000201
3π

20 -0.88200561 -0.88216005 0.00015444
9π

40 -0.70735512 -0.70992764 0.00257252
3π

10 -0.33426875 -0.37171644 0.03744769

The results obtained with the ADM are almost the same as the results found with the exact solution. It is clear in tables
and figures that these results not only give rapidly convergent results but also accurately compute the solutions.
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Table 3: Comparison of exact solution and approximate solution for λ3 (x) .

x λ3(x)Exact λ3(x)Approximate Error
0 0.00000000 -1.00000000 0.00000000
3π

40 -0.23561944 - 0.23561948 0.00000004
3π

20 -0.47123889 -0.47124431 0.00000542
9π

40 -0.70685834 -0.70700295 0.00014461
3π

10 -0.94247779 -0.94578749 0.00330970

Fig. 1: Curves of exact solution and approximate solution for λ1 (x) .

Fig. 2: Curves of exact solution and approximate solution for λ2 (x) .
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Fig. 3: Curves of exact solution and approximate solution for λ3 (x) .

3 Conclusion

We reached high approximate solutions that are very close to exact solutions with five iterations. All the figures and tables
show that successive approximation methods such as ADM are an accurate, reliable and simple method for solving the
system of differential equations of spherical curves in 3-dimensional euclidean space. ADM can also be easily applied to
differential equations of spherical curves in high dimensional Euclidean space.
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