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Abstract: The approximate solutions of first order non-linear initial value problems are obtained using both the perturbation method
and the Adomian’s decomposition method. The results are then compared with the exact solution, and they are presented in a number
of figures for the various values of parameter ε .
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1 Introduction

Over the last ten years or so many mathematical methods that are aimed at solving nonlinear partial and ordinary
differential equations have appeared in the research literature [1,2,9,10,11,12,13,14]. However, most of them require a
tedious analysis or a large computer memory to handle these problems. In the beginning of the 1980s, a so-called
Adomian Decomposition Method (ADM) was introduced by Adomian [3] for solving the nonlinear problems. It is well
known that this method avoids linearization and unrealistic assumptions, and provides an efficient numerical solution
with high accuracy [3,7,8,9,10,11].

Also, another method called Perturbation Series Method (PSM) has its roots in 17th century. It is a large collection of
iterative methods for obtaining approximate solutions to problems involving a small parameter ε . These methods are so
powerful that sometimes it is actually advisable to introduce a parameter ε temporarily into a difficult problem having no
small parameter, and then finally to set ε = 1 to recover the original problem [5]. The main idea of perturbation theory
can be thought of decomposing a difficult problem into an infinite number of relatively easy ones. Hence, perturbation
theory is most useful when the first few steps reveal the important features of the solution and the remaining ones give
small corrections [5]. In Ref. [4], the authors have made a comparison of the ADM and a regular perturbation technics
applied to the solution of nonlinear vector random differential equations. They have observed that the ADM is superior
for their problem. Also, in Refs. [1,2] the authors have obtained the numerical solutions of Blasius equation and integral
equations by using "homotopy perturbation method" and ADM. From the comparison they have made, one observes that
the accuracy and the effectiveness of the method change according to the problem studied.

In this paper we consider the non-linear initial value problem

dy(x)
dx

= f (x,y(x),ε), (1)

y(x0) =y0, (2)
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where x is independent variable, y= y(x) is dependent variable, and ε is some positive parameter. Here f : R×R×R+ →R
together with a point (x0,y0) ∈ R×R.

2 Adomian’s decomposition method

In this section we consider the model equation of the form

dy(x)
dx

= f (x,y(x),ε), y(x0) = y0, (3)

where f is a nonlinear function in y. The decomposition method consists of approximating the solution of Eq.(3) as an
infinite series

y(x) =
∞

∑
n=0

yn(x), (4)

and decomposing f as

f (x,y(x),ε) =
∞

∑
n=0

An, (5)

where An’s are the Adomian polynomials given by

An =
1
n!

dn

dλ n

[
f

(
x,

∞

∑
n=0

λ
nyn(x),ε

)]
λ=0

, n = 0,1,2 · · · . (6)

The convergence of the decomposition series (6) is studied in [6]. Applying the decomposition method [3], Eq.(3) can be
written as

Ly(x) = f (x,y(x),ε) (7)

where the notation L = d
dx symbolizes the linear differential operator. We assume the integration inverse operators L−1

exists, and it is defined as L−1 =
∫ x

0 (.)dτ . Therefore, applying on both sides of Eq.(7) with L−1 yields

y(x) = y0 +L−1 f (x,y(x),ε). (8)

Using Eqs.(4) and (5) it follows that

∞

∑
n=0

yn(x) = y0 +L−1
∞

∑
n=0

An. (9)

Therefore, one determines the iterates in the following recursive way:

y0(x)≡ y(0),

yn+1(x) = L−1An, n = 0,1,2 · · · .

We then define the solution y(x) as

y(x) = lim
n→∞

n

∑
k=0

yk(x). (10)
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3 Perturbation series method

The general procedure of the perturbation series method is to introduce a small parameter ε , such that when ε = 0 the
problem becomes soluble. The global solution to the given problem can then be studied by a local analysis about ε = 0
[5]. A perturbative solution is constructed by local analysis about ε = 0 as a series of powers of ε:

y(x) = y0(x)+ εy1(x)+ ε
2y2(x)+ · · · . (11)

This series is called a perturbation series. It has the attractive feature that yn(x) can be computed in terms of
y0(x),y1(x), ...,yn−1(x) as long as the problem obtained by setting ε = 0 is soluble [5]. One expects that y(x) is well
approximated by only a few terms of the perturbation series if ε is very small.

In the following section we compare the exact solution of an initial-value problem with the approximate solutions
obtained by (ADM) and (PSM). We then present some figures that show how close the approximate solutions are to the
exact solution.

4 Application and results

Example. We consider the initial-value problem

y′(x) =− y(x)
x+ εy(x)

, y(1) = 1. (12)

Firstly, we find the exact solution to (12). Therefore, let us first write the differential equation as (x+ εy)y′+ y = 0, and
let x+ εy = t. Differentiating both sides with respect to x, we then have the equation tdt − xdx = 0. From here one gets
t − x = c/(t + x), where c is an arbitrary constant. Therefore,

y =
1
ε
(t − x) =

c
ε(t + x)

=
c

ε(εy+2x)

from which it follows that y =
−x
ε

∓ 1
ε

√
x2 + c. Since y(1)=1, we get the exact solution to (12)

yexact(x) =
−x
ε

+
√

x2/ε2 +2/ε +1. (13)

From (13) one obtains the second order expansion of the exact solution with respect to ε

yexact(x) =
−x
ε

+
x
ε

√
1+

ε2 +2ε

x2 (14)

=
1
x
+

(
1
2x

− 1
2x3

)
ε +

(
1

2x5 − 1
2x3

)
ε

2 +O(ε3) (ε → 0). (15)

Secondly, we obtain the Adomian decomposition solution to (12). We proceed as in section 2, and take f (x,y,ε) =
− y

x+ εy
. Therefore, we have

f (x,y,ε) =−y
x

 1

1+
εy
x

=−y
x
+

y2

x2 ε − y3

x3 ε
2 + · · · ,
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and the Adomian polynomials can be derived as follows [3,10] :

f (x,y,ε) =−1
x
(y0 + y1 + y2 + · · ·)+ ε

x2 (y0 + y1 + y2 + · · ·)2 − ε2

x3 (y0 + y1 + y2 + · · ·)3 + · · ·

=−1
x
(y0 + y1 + y2 + · · ·)+ ε

x2

(
y2

0 +(2y0y1)+(2y0y2 + y2
1)+(2y0y3 +2y1y2)+ · · ·

)
− ε2

x3

(
y3

0 +(3y2
0y1)+(3y2

0y2 +3y0y2
1)+(y3

1 +3y2
0y3 +6y0y1y2)+ · · ·

)
Therefore, we get the following Adomian polynomials:

A0 =−1
x

y0 +
ε

x2 y2
0 −

ε2

x3 y3
0,

A1 =−1
x

y1 +
2ε

x2 y0y1 −
3ε2

x3 y2
0y1,

A2 =−1
x

y2 +
2ε

x2 y0y3 +
2ε

x2 y1y2 −
3ε2

x3 y2
0y2 −

3ε2

x3 y2
1y0,

...

Since y(1) = 1 we take y0(x)≡ 1. Therefore, we have

A0 =−1
x
+

ε

x2 − ε2

x3 ,

y1(x) = L−1A0 =− lnx− ε

x
+

ε2

2x2 ,

A1 =
lnx
x

+

(
1
x2 −2

lnx
x2

)
ε +

(
− 5

2x3 +3
lnx
x3

)
ε

2 +O(ε3) (ε → 0),

y2(x) = L−1A1 =
(lnx)2

2
+

(
1
x
+2

lnx
x

)
ε +

(
1

2x2 −3
lnx
2x2

)
ε

2 +O(ε3) (ε → 0),

...

and so on. Substituting these terms into (10), we obtain the three-term decomposition series solution

ydecomp(x) = 1− lnx+
(lnx)2

2
+

(
2

lnx
x

)
ε +

(
1
x2 −3

lnx
2x2

)
ε

2 +O(ε3) (ε → 0). (16)

Lastly, we obtain the perturbation series solution to (12), by assuming that (12) has a solution, y(x) of the form given by
(11), namely

y(x) =
∞

∑
n=0

ε
nyn(x), ε ≪ 1. (17)

To do this, let us write Eq.(12) in the form

(x+ εy(x))y(x)′+ y(x) = 0, y(1) = 1. (18)
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Now, let us plug Eq.(17) in Eq.(18): [
x+ ε

∞

∑
n=0

ε
nyn(x)

]
∞

∑
n=0

ε
ny′n(x)+

∞

∑
n=0

ε
nyn(x) = 0

x
∞

∑
n=0

ε
ny′n(x)+

∞

∑
n=0

ε
n+1[y0(x)y′n(x)+ ...+ yn(x)y′0(x)]+

∞

∑
n=0

ε
nyn(x) = 0

xy′0(x)+ y0(x)+
∞

∑
n=1

ε
n[xy′n(x)+ y0(x)y′n−1(x)+ ...+ yn−1(x)y′0(x)+ yn(x)] = 0.

Therefore, the zeroth-order problem xy′0(x)+ y0(x) = 0 is obtained by setting ε = 0, and the solution which satisfies the

initial condition y0(1) = 1 is

y0(x) =
1
x
.

The nth-order problem (n ≥ 1) is obtained by setting the coefficient of εn (n ≥ 1) equal to 0. The result is

xy′n(x)+ y0(x)y′n−1(x)+ ...+ yn−1(x)y′0(x)+ yn(x) = 0, yn(1) = 0 (n ≥ 1). (19)

It is clear from Eq.(19) that the first-order problem xy′1(x)+ y0(x)y′0(x)+ y1(x) = 0, and the solution which satisfies the

initial condition y1(1) = 0 is

y1(x) =
1
2x

− 1
2x3 .

Similarly, we obtain the second-order problem from Eq.(19) that xy′2(x)+ y0(x)y′1(x)+ y1(x)y′0(x)+ y2(x) = 0 with the

initial condition y2(1) = 0. The solution to this initial value problem is easy to obtain

y2(x) =
1

2x5 − 1
2x3 .

Let us now put y0(x),y1(x),y2(x) in Eq.(17) to obtain the three-term perturbation series approximation to y(x):

yperturb(x) =
1
x
+

(
1
2x

− 1
2x3

)
ε +

(
1

2x5 − 1
2x3

)
ε

2 +O(ε3) (ε → 0). (20)

As seen from the Eq.s (15) and (20), the exact solution and the perturbation series approximation to Eq.(12) are the same

up to the second order of ε (ε → 0). This shows that PSM is the best approximation between PSM and ADM to the exact

solution for this example. Therefore, it suffices to compare the exact solution with the Adomian decomposition series

solution. It is clear that the perturbation series approximation obtained in (20) is non-uniform for small x. For this reason

we take 0.8 ≤ x ≤ 1.5 to make a numerical comparison of the solutions. In figures 1, 2 and 3 we take ε = 0.03, ε = 0.01

and ε = 0.001, respectively. As seen from the three figures we achieve a very good approximation to the exact solution as

ε gets closer to 0. By using only 3 terms of the decomposition series (10), we have approximated to the exact solution as

desired, which shows that the speed of convergence of the ADM is very fast. In conclusion, the ADM is easier to compute

and supplies quantitatively reliable results, and the overall errors in the application of the ADM can be made very small

by adding new terms to the series (10).
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Fig. 1: Comparison of the Exact Sol. with the Decomposition Series Sol. (ε = 0.03).
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Fig. 2: Comparison of the Exact Sol. with the Decomposition Series Sol. (ε = 0.01).
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Fig. 3: Comparison of the Exact Sol. with the Decomposition Series Sol. (ε = 0.001).
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