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Abstract: In this study, we present an approximate solution of a class of systems of nonlinear differential equations using Fibonacci
collocation method. The problem is firstly reduced into a nonlinear algebraic system, later the unknown coefficients of the approximate
solution function are obtained. Also, some test problems are given to illustrate the effective of the proposed method. Finally, the
obtained numerical results are compared with exact solutions of the test problems and approximate ones obtained with the Chebyshev
operational matrix method.
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1 Introduction

Finding the solution of nonlinear differential equations is quite important because these equations are often used to
model scientific phenomena. For this reason, many methods have been developed for solving these equations
approximately. Some of these methods are as follows: Hermite wavelet method [1], homotopy analysis method [2],
Laguerre collocation method [3], variational iteration method [4], optimized decomposition method [5].

In [6], the approximate solutions of a class of systems of linear Fredholm integro-differential equations is obtained using
Fibonacci collocation method. Similarly, in [7], the high-order linear Fredholm integro-differential-difference equations
are approximately solved by using Fibonacci collocation method. Also, in [8], Fibonacci collocation method is used for
approximately solving a class of systems of high-order linear Volterra integro-differential equations. In [9], Fibonacci
collocation method is applied to linear differential-difference equations. The paper given by [10] deals with that the
application of Fibonacci collocation method to singularly perturbed differential-difference equations.

In this paper, the Fibonacci collocation method is firstly used for solving the following class of systems of nonlinear
differential equation:

2

∑
k=0

2

∑
r=1

Pjkr(x)u
(k)
r (x)+

2

∑
k=0

2

∑
r=1

Q jkrsp(x)ur
s (x)u(k)p (x) = g j(x), (1)

0 ≤ x ≤ 1, j,s, p = 1,2

with the initial conditions
1

∑
k=0

[
a jku(k)r (0)+b jku(k)r (0)

]
= δ jr, j = 1,2 (2)
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where u(0)r (x) = ur(x), u0
r (x) = 1 and ur(x) is an unknown functions. Pjkr(x), Q jkrsp(x) and g j(x) are given continuous

functions on interval [0,1], a jk, b jk, and δ jr are suitable constants. The aim of this study is to get the approximate solutions
as the truncated Fibonacci series defined by

ur (x) =
N+1

∑
n=1

crnFn(x) (3)

where Fn(x) denotes the Fibonacci polynomials; crn (1 ≤ rn ≤ N +1) are unknown Fibonacci polynomial coefficients,
and N is any positive integer such that N ≥ m.

The paper consists of 6 sections. In Section 2, the properties and definitions related to Fibonacci polynomials are given.
In Section 3, the fundamental matrix forms of Fibonacci collocation method by using fundamental relations of Fibonacci
polynomials are constructed. In section 4, the absolute error function is formulated. In Section 5, test problems are
presented and the proposed method are tested. Finally, conclusions are presented in Section 6.

2 Properties of Fibonacci polynomials

The Fibonacci polynomials were studied by Falcon and Plaza [11,12]. The recurrence relation of those polynomials is
defined by

Fn(x) = xFn−1(x)+Fn−2(x) (4)

For n ⩾ 3. , F1(x) = 1, F2(x) = x . The properties were further investigated by Falcon and Plaza in [11,12]. The first few
Fibonacci polynomials are

F1 = 1,

F2 = x,

F3 = x2 +1,

F4 = x3 +2x,

F5 = x4 +3x2 +1, (5)

F6 = x5 +4x3 +3x,

F7 = x6 +5x4 +6x2 +1,

F8 = x7 +6x5 +10x3 +4x,

...

3 Fundamental relations

Let us assume that linear combination of Fibonacci polynomials (3) is an approximate solutions of Eq (1). Our purpose is
to determine the matrix forms of Eq (1) by using (3). Firstly, we can write Fibonacci polynomials (5) in the matrix form

F(x) = T(x)M (6)
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where F(x) = [F1 (x) F2 (x) · · ·FN+1 (x)], T(x) =
[
1 x x2 x3...xN

]
, Cr = [cr1 cr2 · · ·cr(N+1)]

T ,r = 1,2 and

M =



1 0 1 0 1 0 1 0 1 ...

0 1 0 2 0 3 0 4 0 ...

0 0 1 0 3 0 6 0 10 ...

0 0 0 1 0 4 0 10 0 ...

0 0 0 0 1 0 5 0 15 ...

0 0 0 0 0 1 0 6 0 ...

0 0 0 0 0 0 1 0 7 ...

0 0 0 0 0 0 0 1 0 ...

0 0 0 0 0 0 0 0 ... ...

0 0 0 0 0 0 0 0 0 1


Then we set the approximate solutions defined by a truncated Fibonacci series (3) in the matrix form

ur (x) = F(x)Cr. (7)

By using (6) and (7), the matrix relation is expressed as

ur (x)∼= urN (x) = F(x)Cr= T(x)MCr (8)

u′r (x)∼= u′rN (x) = TBMCr

u
′′
r (x)∼= u

′′
rN (x) = T(x)B2MCr

...

u(k)r (x)∼= u(k)rN (x) = T(x)BkMCr

where r = 1,2. Also, the relations between the matrix T(x) and its derivatives, T́́ (x), T́́´ (x),...,T(k) (x) are

T′(x) = T(x)B, T′′(x) = T(x)B2 (9)

T′′′(x) = T(x)B3, ...,T(k) (x) = T(x)Bk

Then we set the approximate solution defined by a truncated Fibonacci series (3) in the matrix form

ur (x)∼= urN (x) = F(x)Cr. (10)

By substituting the Fibonacci collocation points defined by

xi =
i
N

, i = 0,1, ...N (11)

into Eq(8), we have
u(k)r (xi) = T(xi)BkMCr. (12)

and the compact form of the relation (12) becomes

U(k)
r = TBkMCr, k = 0,1,2, r = 1,2 (13)
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where

U(k)
r =


u(k)r (x0)

u(k)r (x1)
...

u(k)r (xN)

 , (14)

B =



0 1 0 0 0 0 · · · 0
0 0 2 0 0 0 · · · 0
0 0 0 3 0 0 · · · 0
0 0 0 0 4 0 · · · 0
0 0 0 0 0 5 · · · 0
0 0 0 0 0 0 · · · 0
...

...
...

...
...

. . . . . . N
0 0 0 0 0 0 · · · 0


, B0 =



1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0
0 0 0 0 1 0 · · · 0
0 0 0 0 0 1 · · · 0
...

...
...

...
...

. . . . . . 0
0 0 0 0 0 0 · · · 1



T =


T(x0)

T(x1)
...

T(xN)

=


1 x0 ... xN

0

1 x1 ... xN
1

1
... ...

...
1 xN ... xN

N

 .

In addition, we can obtain the matrix form
(
Ûs

)r Û(k)
p which appears in the nonlinear part of Eq. (1), by using Eq. (8) as

(
Ûs

)r Û(k)
p =


ur

s (x0)u(k)p (x0)

ur
s (x1)u(k)p (x1)

...

ur
s (xN)u(k)p (xN)

=


us (x0) 0 ... 0

0 us (x1) ... 0
...

...
. . .

...
0 0 ... us (xN)


r 

u(k)p (x0)

u(k)p (x1)
...

u(k)p (xN)


where (

Ûs
)r Û(k)

p =
(

T̂ M̂ Ĉr

)r
T (B)k M. (15)

T̂ =


T(x0) 0 ... 0

0 T(x1) ... 0
...

...
. . .

...
0 0 ... T(xN)

 , B̂ =


B 0 ... 0
0 B ... 0
...

...
. . .

...
0 0 ... B

 ,

M̂ =


M 0 ... 0
0 M ... 0
...

...
. . .

...
0 0 ... M

 , Ĉr =


Cr 0 ... 0
0 Cr ... 0
...

...
. . .

...
0 0 ... Cr

 .
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Substituting the collocation points (xi = i/N, i = 0,1,···,N) into Eq. (1), gives the system of equations

2

∑
k=0

2

∑
r=1

Pjkr(xi)u
(k)
r (xi)+

2

∑
k=0

2

∑
r=1

Q jkrsp(xi)ur
s (xi)u(k)p (xi) = g j(xi), , 0 ≤ x ≤ 1

which can be expressed with the aid of Eqs. (14) and (??) as

2

∑
k=0

2

∑
r=1

PjkrU
(k)
r +

2

∑
k=0

2

∑
r=1

Q jkrsp
(
Ûs

)r Û(k)
p = G j (16)

where

Pjkr = diag
[
Pjkr(x0) Pjkr(x1) ... Pjkr(xN)

]
,

Q jkrsp = diag
[
Q jkrsp(x0) Q jkrsp(x1) ... Q jkrsp(xN)

]
G j =

[
g j(x0) g j(x1) ... g j(xN)

]T
, j = 1,2.

Substituting the relations (13) and (15) into Eq. (16), the fundamental matrix equation can be obtained as{
2

∑
k=0

2

∑
r=1

PjkrTBkM+
2

∑
k=0

2

∑
r=1

Q jkrsp

(
T̂ M̂ Ĉr

)r
T (B)k M

}
Cr = G j (17)

Shortly, Eq. (17) is also written in the following form

WC = G or [W;G] (18)

where

W =

[
W11 W12

W21 W22

]
, C =

[
C1

C2

]
, G =

[
G1

G2

]

W11 =
2

∑
k=0

1

∑
r=1

PjkrTBkM+
2

∑
k=0

1

∑
r=1

Q jkrsp

(
T̂ M̂ Ĉr

)r
T (B)k M for j = 1

W12 =
2

∑
k=0

2

∑
r=2

PjkrTBkM+
2

∑
k=0

2

∑
r=2

Q jkrsp

(
T̂ M̂ Ĉr

)r
T (B)k M for j = 1

W21 =
2

∑
k=0

1

∑
r=1

PjkrTBkM+
2

∑
k=0

1

∑
r=1

Q jkrsp

(
T̂ M̂ Ĉr

)r
T (B)k M for j = 2

W12 =
2

∑
k=0

2

∑
r=2

PjkrTBkM+
2

∑
k=0

2

∑
r=2

Q jkrsp

(
T̂ M̂ Ĉr

)r
T (B)k M for j = 2.

Here, Eq. (18) is a system containing (N +1) linear algebraic equations with the (N +1) unknown Fibonacci coefficients
crn, n = 1,2, ...,N +1. Using Eq. (13) at the point 0, the matrix representation of the initial conditions in Eq. (2) is given
by {

m−1

∑
k=0

[
a jkT(0)+b jkT(0)

]
(B)(k) M

}
Cr = δ jr, j = 0,1,2, ...,m−1

or briefly
V jr Cr = [δ jr] or [V jr;δ jr] ; j = 0,1,2, ...,m−1 (19)

© 2021 BISKA Bilisim Technology
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where

V jr =
m−1

∑
k=0

[
a jkT(0)+b jkT(0)

]
(B)(k) M =

[
v jo v j1 v j2 ... v jN

]
.

Therefore, by replacing the row matrices in (19) by the last m rows of the augmented matrix (18), the new augmented
matrix becomes

Ŵ C = Ĝ or
[
Ŵ;Ĝ

]
which is an algebraic system. Here, [

Ŵ;Ĝ
]
=

[
Ŵ11 Ŵ12

Ŵ21 Ŵ22

]
(20)

where

[
Ŵ11

]
=



w11 w12 w13 · · · w1N+1

w21 w22 w23 · · · w2N+1

w31 w32 w33 · · · w3N+1
...

...
...

. . .
...

w(N+1−m)1 w(N+1−m)2 w(N+1−m)3 · · · w(N+1−m)N+1

v11 v12 v13 · · · v1N+1

v21 v22 v23 · · · v2N+1

v31 v32 v33 · · · v3N+1
...

...
...

. . .
...

v(m−1)1 v(m−1)2 v(m−1)3 · · · v(m−1)N+1



[
Ŵ12

]
=



w11 w12 w13 · · · w1N+1

w21 w22 w23 · · · w2N+1

w31 w32 w33 · · · w3N+1
...

...
...

. . .
...

w(N+1−m)1 w(N+1−m)2 w(N+1−m)3 · · · w(N+1−m)N+1

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


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[
Ŵ21

]
=



w11 w12 w13 · · · w1N+1

w21 w22 w23 · · · w2N+1

w31 w32 w33 · · · w3N+1
...

...
...

. . .
...

w(N+1−m)1 w(N+1−m)2 w(N+1−m)3 · · · w(N+1−m)N+1

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



[
Ŵ22

]
=



w11 w12 w13 · · · w1N+1

w21 w22 w23 · · · w2N+1

w31 w32 w33 · · · w3N+1
...

...
...

. . .
...

w(N+1−m)1 w(N+1−m)2 w(N+1−m)3 · · · w(N+1−m)N+1

v11 v12 v13 · · · v1N+1

v21 v22 v23 · · · v2N+1

v31 v32 v33 · · · v3N+1
...

...
...

. . .
...

v(m−1)1 v(m−1)2 v(m−1)3 · · · v(m−1)N+1



Ĝ =

[
Ĝ1

Ĝ2

]

where

Ĝ1 =
[

g1(x0) g1(x1) · · · g1(xN+1−m) δ10 δ11 δ12 · · · δ1m−1

]T

Ĝ2 =
[

g2(x0) g2(x1) · · · g2(xN+1−m) δ20 δ21 δ22 · · · δ2m−1

]T
.

In this way, by solving the linear equation system in (20), the unknown Fibonacci coefficients crn, n = 1,2, ...,N +1 are
calculated and substituted into (3), and the approximate solution is obtained.

4 Error Estimation

In this section, it is given that the error function Ei,N(x) for i = 1,2 to test the accuracy of the proposed method. The
function Ei,N(x) is given by

Ei,N(x) = |ui,N(x)−ui(x)| for i = 1,2 (21)

where ui,N(x) and ui(x) are the approximate and exact solutions of Eq.(1), respectively.
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5 Numerical examples

In this section, three numerical examples are given to show the efficient of the proposed method. On these problems, the
method is tested by using the error function given by (21).

Example 1. Consider the nonlinear differential equation

u
′
1 (x)+u

′
2 (x)+u2 (x)+u

′
1 (x)u2 (x) = 2x2 −3x−2 (22)

u
′
1 (x)− xu

′
2 (x)+u1 (x)+u2

1 (x) = x4 + x2 + x

with initial conditions
u1 (0) = 0,u2 (0) =−3

and the exact solutions u1 (x) = x2,u2 (x) = x−3. The approximate the solution ur(x) by the Fibonacci polynomials is

ur (x) =
N+1

∑
n=1

crnFn(x)

where N = 2, P111 (x) = 1, P112 (x) = 1, P102 (x) = 1,Q10112 (x) = 1, g1 (x) = 2x2 −3x−2, and P211 (x) = 1, P212 (x) =
−x, P201 (x) = 1, ,Q20111 (x) = 1, g2 (x) = x4 +x2 +x. Hence, the set of collocation points (11) for N = 2 is computed as

x0 = 0, x1 =
1
2
, x2 = 1

From Eq. (17), the fundamental matrix equation of the problem is

G1 =
{

P111TBM+Q10111T̂ M̂ Ĉ2T BM
}

C1 +{P112TBM+P102TM}C2

G2 =
{

P211TBM+P201TM+Q20111T̂ M̂ Ĉ1T M
}

C1 +{P212TBM}C2

where

W11 = P111TBM+Q10111T̂ M̂ Ĉ2T BM

W12 = P112TBM+P102TM

W21 = P211TBM+P201TM+Q20111T̂ M̂ Ĉ1T M

W22 = P212TBM

P111 = P112 = P102 = Q10112 =

1 0 0
0 1 0
0 0 1

 ,P211 = P201 = Q20111 =

1 0 0
0 1 0
0 0 1

 ,P212 =

0 0 0
0 −1

2 0
0 0 −1

 ,

T =

 T(0)
T
( 1

2

)
T(1)

=

1 0 0
1 1

2
1
4

1 1 1

 , M =

1 0 1
0 1 0
0 0 1

 , B =

0 1 0
0 0 2
0 0 0

 ,
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T̂ =


T(x0) 0 ... 0

0 T(x1) ... 0
...

...
. . .

...
0 0 ... T(xN)

=

1 0 0 0 0 0 0 0 0
0 0 0 1 1

2
1
4 0 0 0

0 0 0 0 0 0 1 1 1



M̂ =


M 0 ... 0
0 M ... 0
...

...
. . .

...
0 0 ... M

 , Ĉr =


Cr 0 ... 0
0 Cr ... 0
...

...
. . .

...
0 0 ... Cr



W =

[
W11 W12

W21 W22

]
, C1 =

[
a b c

]T
,C2 =

[
k l m

]T
, C =

[
C1

C2

]

G =

[
G1

G2

]
,G1 =

[
−2 −3 −3

]T
,G2 =

[
0 13

19 3
]T

,

W11 =

0 k+m+1 0
0 k+ 1

2 l + 5
4 m+1 k+ 1

2 l + 5
4 m+1

0 k+ l +2m+1 2k+2l +4m+2

 ,W12 =

1 1 1
1 3

2
9
4

1 2 4

 ,

W21 =

 a+ c+1 1 a+ c+1
a+ 1

2 b+ 5
4 c+1 1

2 a+ 1
4 b+ 5

8 c+ 3
2

5
4 a+ 5

8 b+ 25
16 c+ 9

4

a+b+2c+1 a+b+2c+2 2a+2b+4c+4

 ,W22 =

0 0 0
0 − 1

2 − 1
2

0 −1 −2

 ,

[
Ŵ
]
=

[
Ŵ11 Ŵ12

Ŵ21 Ŵ22

]
=



0 k+m+1 0 1 1 1
0 k+ 1

2 l + 5
4 m+1 k+ 1

2 l + 5
4 m+1 1 3

2
9
4

1 0 1 0 0 0
a+ c+1 1 a+ c+1 0 0 0

a+ 1
2 b+ 5

4 c+1 1
2 a+ 1

4 b+ 5
8 c+ 3

2
5
4 a+ 5

8 b+ 25
16 c+ 9

4 0 − 1
2 − 1

2

0 0 0 1 0 1


;

Ĝ =
[
−2 −3 0 0 13

16 −3
]T

From Eq. (19), the matrix form for initial condition is

[V11;δ11] =
[

1 0 1 ; 0
]
, [V12;δ12] =

[
1 0 1 ; −3

]
.
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Consequently, by solving the system [Ŵ;Ĝ], the Fibonacci coefficients matrix are obtained

C =
[
−1 0 1−3 1 0

]T

where
C1 =

[
−1 0 1

]T
, C2 =

[
−3 1 0

]T
.

The approximate solutions for N = 2 in terms of the Fibonacci polynomials is obtained as

u1 (x) = x2 and u2 (x) = x−3.

Example 2. [13] Consider that the following differential equation system
u′1(x)+1002u1(x)+1000u2

2(x) =0

u′2(x)−u1(x)+u2(x)+u2
2(x) =0

u1(0) = 1,u2(0) = 1

(23)

The exact solution of Eq.(23) is given by u1(x) = e−2x, u2(x) = e−x. The numerical results that are obtained using the
proposed method are presented in Table 1, Table 2 and Table 3. Also, the graphical comparisons of the approximate and
exact solutions are given in Figure 1 and Figure 2.

Table 1: Numerical comparison of the error functions E1,N and E2,N at the different values of N for Example 2

x Chebyshev operational matrix method [13], u1 The proposed method, u1
E1,6 E1,7 E1,8 E1,6 E1,7 E1,8

0.2 0.453×10−6 0.244×10−7 0.312×10−8 0.147×10−6 0.157×10−7 0.787×10−9

0.4 0.614×10−6 0.529×10−7 0.326×10−8 0.376×10−6 0.114×10−7 0.338×10−9

0.6 0.107×10−6 0.671×10−7 0.223×10−8 0.742×10−6 0.213×10−7 0.931×10−9

0.8 0.139×10−5 0.102×10−6 0.196×10−8 0.289×10−5 0.246×10−6 0.117×10−7

1 0.530×10−5 0.350×10−6 0.203×10−7 0.163×10−4 0.159×10−4 0.137×10−5

x Chebyshev operational matrix method [13], u2 The proposed method, u2
E2,6 E2,7 E2,8 E2,6 E2,7 E2,8

0.2 0.167×10−7 0.382×10−10 0.143×10−10 0.311×10−7 0.117×10−8 0.440×10−10

0.4 0.217×10−7 0.705×10−9 0.214×10−10 0.190×10−7 0.933×10−9 0.377×10−10

0.6 0.222×10−7 0.744×10−9 0.221×10−10 0.145×10−7 0.603×10−9 0.311×10−10

0.8 0.101×10−7 0.716×10−9 0.180×10−10 0.334×10−7 0.344×10−9 0.154×10−10

1 0.518×10−8 0.349×10−9 0.202×10−10 0.577×10−6 0.222×10−7 0.389×10−9

Table 2: Numerical results of the maximum error E1,N at the different values of N for Example 2

N 2 5 8 11
E1,N 0.303×100 0.144×10−2 0.137×10−5 0.465×10−9
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Table 3: Numerical results of the maximum error E2,N at the different values of N for Example 2

N 2 5 8 11
E2,N 0.319×10−1 0.124×10−4 0.389×10−9 0.270×10−12

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Approximate

Exact

(a) N = 3

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Approximate

Exact

(b) N = 4

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Approximate

Exact

(c) N = 5

Fig. 1: Graphical comparison of the exact and approximate solutions for u1 when N = 3,4,5 for Example 2

Example 3. Assume that the following differential equation system
u′′1(x)(1+u2

2(x))+u′2(x)(1+u1(x)) =g1(x)

u′′2(x)(1+u2
1(x))+u′1(x)(1+u2(x)) =g2(x)

u1(0) = 1,u2(0) = 1

(24)

The exact solution of Eq.(24) is given by u1(x) = sinx, u2(x) = ex. Here, g1(x) = ex − sinx+ ex sinx− e2x sinx, g2(x) =
ex + cosx+ ex cosx+ ex sin2 x. The numerical results that are obtained using the proposed method are presented in Table
4, Table 5 and Table 6. Also, the graphical comparisons of the approximate and exact solutions are given in Figure 3 and
Figure 4.
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Fig. 2: Graphical comparison of the exact and approximate solutions for u2 when N = 3,4,5 for Example 2

Table 4: Numerical comparison of the error functions E1,N and E2,N at the different values of N for Example 3

x u1 u2
E1,6 E1,7 E1,8 E2,6 E2,7 E2,8

0.2 0.533×10−7 0.527×10−9 0.827×10−10 0.794×10−7 0.309×10−8 0.114×10−9

0.4 0.123×10−6 0.736×10−9 0.164×10−9 0.193×10−6 0.627×10−8 0.206×10−9

0.6 0.214×10−6 0.589×10−9 0.235×10−9 0.352×10−6 0.918×10−8 0.259×10−9

0.8 0.372×10−6 0.706×10−10 0.274×10−9 0.639×10−6 0.117×10−7 0.232×10−9

1 0.501×10−5 0.116×10−6 0.112×10−7 0.851×10−5 0.400×10−6 0.192×10−7

Table 5: Numerical results of the maximum error E1,N at the different values of N for Example 3

N 2 5 8 11

E1,N 0.158×100 0.294×10−4 0.112×10−7 0.255×10−12

Table 6: Numerical results of the maximum error E2,N at the different values of N for Example 3

N 2 5 8 11

E2,N 0.218×100 0.123×10−3 0.192×10−7 0.877×10−12
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Fig. 3: Graphical comparison of the exact and approximate solutions for u1 when N = 2,3,4 for Example 3
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Fig. 4: Graphical comparison of the exact and approximate solutions for u2 when N = 2,3,4 for Example 3
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6 Conclusions

In this paper, the Fibonacci collocation method is used for solving a class of systems of nonlinear differential equations.
For the accuracy and efficiency of the method, three different examples are presented. The obtained results are compared
with ones obtained with Chebyshev operational matrix method. As a result of these comparisons, it can be said that the
method is very effective for approximately solving systems of nonlinear differential equations.
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