Note on the projectable linear connection in the semi-tangent bundle

Furkan Yildirim

Narman Vocational Training School, Ataturk University, 25530, Erzurum, Turkey
Received: 3 October 2021, Accepted: 26 November 2021
Published online: 23 December 2021.

Abstract

The present paper is devoted to some results concerning with the projectable linear connection in the semi-tangent (pullback) bundle tM . In this study, horizontal lift problems of projectable linear connection, which are preliminary to the subject of covarient derivates of almost contact structure and almost paracontact structure on semi-tangent bundle, are discussed.

Keywords: Horizontal lift, Projectable linear connection, Pull-back bundle, Semi-tangent bundle, Vector field.

1 Introduction

Let M_{n} be a differentiable manifold of class C^{∞} and finite dimension n, and let $\left(M_{n}, \pi_{1}, B_{m}\right)$ be a differentiable bundle over B_{m}. We use the notation $\left(x^{i}\right)=\left(x^{a}, x^{\alpha}\right)$, where the indices i, j, \ldots run from 1 to n, the indices a, b, \ldots from 1 to $n-m$ and the indices α, β, \ldots from $n-m+1$ to n, x^{α} are coordinates in B_{m}, x^{a} are fibre coordinates of the bundle

$$
\pi_{1}: M_{n} \rightarrow B_{m} .
$$

Let now $\left(T\left(B_{m}\right), \tilde{\pi}, B_{m}\right)$ be a tangent bundle [13] over base space B_{m}, and let M_{n} be differentiable bundle determined by a natural projection (submersion) $\pi_{1}: M_{n} \rightarrow B_{m}$. The semi-tangent bundle (pull-back [[2],[3],[9], [10],[14],[15]]) of the tangent bundle $\left(T\left(B_{m}\right), \widetilde{\pi}, B_{m}\right)$ is the bundle $\left(t\left(B_{m}\right), \pi_{2}, M_{n}\right)$ over differentiable bundle M_{n} with a total space
$t\left(B_{m}\right)=\left\{\left(\left(x^{a}, x^{\alpha}\right), x^{\bar{\alpha}}\right) \in M_{n} \times T_{x}\left(B_{m}\right): \pi_{1}\left(x^{a}, x^{\alpha}\right)=\tilde{\pi}\left(x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{\alpha}\right)\right\} \subset M_{n} \times T_{x}\left(B_{m}\right)$
and with the projection map $\pi_{2}: t\left(B_{m}\right) \rightarrow M_{n}$ defined by $\pi_{2}\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{a}, x^{\alpha}\right)$, where $T_{x}\left(B_{m}\right)\left(x=\pi_{1}(\widetilde{x}), \widetilde{x}=\left(x^{a}, x^{\alpha}\right) \in M_{n}\right)$ is the tangent space at a point x of B_{m}, where $x^{\bar{\alpha}}=y^{\alpha}(\bar{\alpha}, \bar{\beta}, \ldots=n+1, \ldots, 2 n)$ are fibre coordinates of the tangent bundle $T\left(B_{m}\right)$.

Where the pull-back (Pontryagin [7]) bundle $t\left(B_{m}\right)$ of the differentiable bundle M_{n} also has the natural bundle structure over B_{m}, its bundle projection $\pi: t\left(B_{m}\right) \rightarrow B_{m}$ being defined by $\pi:\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \rightarrow\left(x^{\alpha}\right)$, and hence $\pi=\pi_{1} \circ \pi_{2}$. Thus $\left(t\left(B_{m}\right), \pi_{1} \circ \pi_{2}\right)$ is the composite bundle [[8], p.9] or step-like bundle [6]. Consequently, we notice the semi-tangent bundle $\left(t\left(B_{m}\right), \pi_{2}\right)$ is a pull-back bundle of the tangent bundle over B_{m} by π_{1} [9].

If $\left(x^{i^{\prime}}\right)=\left(x^{a^{\prime}}, x^{\alpha^{\prime}}\right)$ is another local adapted coordinates in differentiable bundle M_{n}, then we have

$$
\left\{\begin{array}{l}
x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right), \tag{1}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right)
\end{array}\right.
$$

[^0]The Jacobian of (1) has the components

$$
\left(A_{j}^{i^{\prime}}\right)=\left(\frac{\partial x^{i^{\prime}}}{\partial x^{j}}\right)=\left(\begin{array}{cc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} \\
0 & A_{\beta}^{\alpha^{\prime}}
\end{array}\right),
$$

where $A_{b}^{a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{b}}, A_{\beta}^{a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{\beta}}, A_{\beta}^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}}$ [9].
To a transformation (1) of local coordinates of M_{n}, there corresponds on $t\left(B_{m}\right)$ the change of coordinate

$$
\left\{\begin{array}{l}
x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right), \tag{2}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right), \\
x^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}} y^{\beta} .
\end{array}\right.
$$

The Jacobian of (2) is:

$$
\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} & 0 \tag{3}\\
0 & A_{\beta}^{\alpha^{\prime}} & 0 \\
0 & A_{\beta \varepsilon}^{\alpha^{\prime}} y^{\varepsilon} & A_{\beta}^{\alpha^{\prime}}
\end{array}\right)
$$

where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), I, J, \ldots=1, \ldots, 2 n ; A_{\beta \varepsilon}^{\alpha^{\prime}}=\frac{\partial^{2} x^{\alpha^{\prime}}}{\partial x^{\beta} \partial x^{\varepsilon}}$ [9].
The purpose of this paper is to study the horizontal lifts of projectable linear connection to semi-tangent (pull-back) bundle $\left(t\left(B_{m}\right), \pi_{2}\right)$ and their properties.

We denote by $\mathfrak{J}_{q}^{p}\left(M_{n}\right)$ the set of all tensor fields of class C^{∞} and of type (p, q) on M_{n}, i.e., contravariant degree p and covariant degree q. We now put $\mathfrak{J}\left(M_{n}\right)=\sum_{p, q=0}^{\infty} \mathfrak{I}_{q}^{p}\left(M_{n}\right)$, which is the set of all tensor fields on M_{n}. Smilarly, we denote by $\mathfrak{I}_{q}^{p}\left(B_{m}\right)$ and $\mathfrak{J}\left(B_{m}\right)$ respectively the corresponding sets of tensor fields in the base space B_{m}.

2 Some lifts of vector and covector fields

If f is a function on B_{m}, we write ${ }^{v v} f$ for the function on $t\left(B_{m}\right)$ obtained by forming the composition of $\pi: t\left(B_{m}\right) \rightarrow B_{m}$ and ${ }^{v} f=f \circ \pi_{1}$, so that

$$
{ }^{v v} f={ }^{v} f \circ \pi_{2}=f \circ \pi_{1} \circ \pi_{2}=f \circ \pi .
$$

Thus, the vertical lift ${ }^{v v} f$ of the function f to $t\left(B_{m}\right)$ satisfies

$$
\begin{equation*}
{ }^{v v} f\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)=f\left(x^{\alpha}\right) . \tag{4}
\end{equation*}
$$

We note here that value ${ }^{\nu v} f$ is constant along each fibre of $\pi: t\left(B_{m}\right) \rightarrow B_{m}$. Let $X \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. On putting

$$
{ }^{v v} X=\left({ }^{v v} X^{\alpha}\right)=\left(\begin{array}{l}
0 \tag{5}\\
0 \\
X^{\alpha}
\end{array}\right)
$$

from (3), we easily see that ${ }^{v v} X^{\prime}=\bar{A}\left({ }^{v v} X\right)$. The vector field ${ }^{v v} X$ is called the vertical lift of X to $t\left(B_{m}\right)$.

Let $\omega \in \mathfrak{I}_{1}^{0}\left(B_{m}\right)$, i.e. $\omega=\omega_{\alpha} d x^{\alpha}$. On putting

$$
\begin{equation*}
{ }^{v v} \omega=\left({ }^{v v} \omega\right)_{\alpha}=\left(0, \omega_{\alpha}, 0\right) \tag{6}
\end{equation*}
$$

from (3), we easily see that ${ }^{v v} \omega=\bar{A}^{v v} \omega^{\prime}$. The covector field ${ }^{v v} \omega$ is called the vertical lift of ω to $t\left(B_{m}\right)$.
Let $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ be a projectable vector field [11] with projection $X=X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$ i.e. $\widetilde{X}=\widetilde{X}^{a}\left(x^{a}, x^{\alpha}\right) \partial_{a}+X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$. Now, consider $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$, then ${ }^{c c} \widetilde{X}$ (complete lift) has the components on the semi-tangent bundle $t\left(B_{m}\right)$ [9]

$$
{ }^{c c} \widetilde{X}=\left({ }^{c c} \widetilde{X}^{\alpha}\right)=\left(\begin{array}{l}
\widetilde{X}^{a} \tag{7}\\
X^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.
For any $F \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$, if we take account of (3), we can prove that $(\gamma F)^{\prime}=\bar{A}(\gamma F)$, where γF is a vector field defined by

$$
\gamma F=\left(\gamma F^{I}\right)=\left(\begin{array}{l}
0 \tag{8}\\
0 \\
y^{\varepsilon} F_{\varepsilon}^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.
Let now $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ be a projectable vector field on M_{n} with projection $X \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$ [11]. Then we define the horizontal lift ${ }^{H H} \widetilde{X}$ of \widetilde{X} by

$$
{ }^{H H} \widetilde{X}={ }^{c c} \widetilde{X}-\gamma(\nabla \widetilde{X})
$$

on $t\left(M_{n}\right)$. Where ∇ is a projectable symmetric linear connection in a differentiable manifold B_{m}. Then, remembering that ${ }^{c c} \widetilde{X}$ and $\gamma(\nabla \widetilde{X})$ have, respectively, local componenets

$$
{ }^{c c} \widetilde{X}=\left({ }^{c c} \widetilde{X}^{I}\right)=\left(\begin{array}{l}
\widetilde{X}^{a} \\
X^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right), \gamma(\nabla \widetilde{X})=\left(\gamma(\nabla \widetilde{X})^{I}\right)=\left(\begin{array}{l}
0 \\
0 \\
y^{\varepsilon} \nabla_{\varepsilon} X^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t\left(B_{m}\right) . \nabla_{\alpha} X^{\varepsilon}$ being the covariant derivative of X^{ε}, i.e.,

$$
\left(\nabla_{\alpha} X^{\varepsilon}\right)=\partial_{\alpha} X^{\varepsilon}+X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon}
$$

We find that the horizontal lift ${ }^{H H} \widetilde{X}$ of \widetilde{X} has the components

$$
{ }^{H H} X=\left({ }^{H H} X^{I}\right)=\left(\begin{array}{l}
\widetilde{X}^{a} \tag{9}\\
X^{\alpha} \\
-\Gamma_{\beta}^{\alpha} X^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t\left(B_{m}\right)$. Where

$$
\begin{equation*}
\Gamma_{\beta}^{\alpha}=y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} . \tag{10}
\end{equation*}
$$

3 Complete lifts of projectable linear connection

Let $\Gamma_{\alpha}^{\beta} \gamma$ be components of projectable linear connection [[1], [4], [5], [11], [12]] ∇ with respect to local coordinates (x^{α}) in B_{m} and ${ }^{c c} \Gamma_{I}^{J}{ }_{K}$ components of ${ }^{c c} \nabla$ with respect to the induced coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ in $t\left(B_{m}\right)$. We recall from [11] that components ${ }^{c c} \Gamma_{I}^{J}{ }_{K}$ of complete lift ${ }^{c c} \nabla$ of projectable linear connection ∇ can be calculated from base manifold B_{m} to semi-tangent bundle $t\left(B_{m}\right)$ also as:
where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), K=(c, \gamma, \bar{\gamma})$. On the other hand, from (11) we obtain:
Theorem 1. Let \widetilde{X} and \widetilde{Y} be projectable vector fields on M_{n} with projection $X \in \mathfrak{J}_{0}^{1}\left(B_{m}\right)$ and $Y \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$, respectively. We have:
(i) ${ }^{c c} \nabla_{{ }^{v v}}\left({ }^{v v} Y\right)=0$,
(ii) ${ }^{c c} \nabla_{{ }^{v v_{X}}}\left({ }^{H H} \widetilde{Y}\right)=0$,
(iii) ${ }^{c} \nabla^{{ }^{c}{ }^{\prime} \tilde{X}}\left({ }^{v v} Y\right)={ }^{v v}\left(\nabla_{X} Y\right)$,
(iv) ${ }^{c c} \nabla_{H H \widetilde{X}}\left({ }^{H H} \widetilde{Y}\right)={ }^{H H}\left(\nabla_{X} Y\right)+\gamma(R(, X) Y)$,
(v) $\left[{ }^{c c} \widetilde{X}{ }^{c c} \widetilde{Y}\right]={ }^{c c}[\widetilde{X}, \widetilde{Y}]\left(\right.$ i.e. $L_{c c} \widetilde{X}\left({ }^{c c} \widetilde{Y}\right)={ }^{c c}\left(L_{\widetilde{X}} \widetilde{Y}\right)$),
(vi) $\left[{ }^{c c} \widetilde{X}, \gamma F\right]=\gamma\left(L_{X} F\right)\left(F \in \mathfrak{J}_{1}^{1}\left(B_{m}\right)\right)$,
where $R(, X) Y \in \mathfrak{J}_{1}^{1}\left(B_{m}\right)$ is a tensor field of type of $(1,1)$ defined by $F(Z)=R(Z, X) Y$ for any $Z \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$ and L_{X} is the operator of Lie derivation with respect to X.

4 Horizontal lifts of projectable linear connection

Let there be given a projectable linear connection ∇ in B_{m}. We shall define the horizontal lift ${ }^{H H} \nabla$ of a projectable linear connection ∇ in B_{m} to $t\left(B_{m}\right)$ by the conditions:
(i) ${ }^{H H} \nabla_{{ }^{v} v_{X}}\left({ }^{v v} Y\right)=0$,
(ii) ${ }^{H H} \nabla_{{ }^{v} v_{X}}\left({ }^{H H} \widetilde{Y}\right)=0$
(iii) ${ }^{H H} \nabla_{H H \tilde{X}}\left({ }^{v \nu} Y\right)={ }^{\nu v}\left(\nabla_{X} Y\right)$,

$$
\begin{equation*}
(i v)^{H H} \nabla_{H H \widetilde{X}}\left({ }^{H H} \widetilde{Y}\right)={ }^{H H}\left(\nabla_{X} Y\right), \tag{12}
\end{equation*}
$$

for any $\widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$. Thus, if we put

$$
\begin{equation*}
\widetilde{S}(\widetilde{X}, \widetilde{Y})={ }^{H H} \nabla_{\widetilde{X}} \widetilde{Y}-{ }^{c c} \nabla_{\widetilde{X}} \widetilde{Y} \tag{13}
\end{equation*}
$$

for any $\widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$. Then, from (13) and Theorem 1, the tensor \widetilde{S} of type (1,2) in $t\left(B_{m}\right)$ satisfies the conditions
(i) $\widetilde{S}\left({ }^{v v} X,{ }^{\nu v} Y\right)=0$,
(ii) $\widetilde{S}\left({ }^{v{ }^{v}} X,{ }^{H H} \widetilde{Y}\right)=0$,
(iii) $\widetilde{S}\left({ }^{H H} \widetilde{X},{ }^{v v} Y\right)=0$,

$$
\begin{equation*}
(i v) \widetilde{S}\left({ }^{H H} \widetilde{X},{ }^{H H} \widetilde{Y}\right)=-\gamma(R(, X) Y), \tag{14}
\end{equation*}
$$

for any $\widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$. Therefore \widetilde{S} has the components $\widetilde{S}_{I K}^{J}$ such that

$$
\begin{equation*}
\bar{S}_{\alpha \gamma}^{\bar{\beta}}=-y^{\varepsilon} R_{\varepsilon \alpha \gamma}^{\beta} \tag{15}
\end{equation*}
$$

all others being zero, with respect to the induced coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ in $t\left(B_{m}\right)$.
Since the components ${ }^{c c} \Gamma_{I}^{J}{ }_{K}$ of ${ }^{c c} \nabla$ are given by (11), it follows from (13) and (15) that the horizontal lift ${ }^{H H} \nabla$ of a projectable linear connection ∇ has the components ${ }^{H H} \Gamma_{I}^{J}{ }_{K}$ such that
with respect to the induced coordinates in $t\left(B_{m}\right)$. Where ${ }^{H H} \Gamma_{I}^{J}{ }_{K}$ are the components of ${ }^{H H} \nabla$ in $t\left(B_{m}\right)$.

Proof. For convenience sake we only consider ${ }^{H H} \Gamma_{\alpha}^{\bar{\beta}} \gamma$. According to (11), (13) and (15), in fact:

$$
\begin{aligned}
\widetilde{S}_{\alpha \gamma}^{\bar{\beta}} & ={ }^{H H} \Gamma_{\alpha \gamma}^{\bar{\beta}}-{ }^{c c} \Gamma_{\alpha \gamma}^{\bar{\beta}} \\
-y^{\varepsilon} R_{\varepsilon \alpha \gamma} & ={ }^{H H} \Gamma_{\alpha \gamma}^{\bar{\beta}}-y^{\varepsilon} \partial_{\varepsilon} \Gamma_{\alpha \gamma}^{\beta} \\
{ }^{H H} \Gamma_{\alpha}^{\bar{\beta}} & =y^{\varepsilon} \partial_{\varepsilon} \Gamma_{\alpha \gamma}^{\beta}-y^{\varepsilon} R_{\varepsilon \alpha \gamma}^{\beta} .
\end{aligned}
$$

Thus, we have ${ }^{H H} \Gamma_{\alpha}^{\bar{\beta}}{ }_{\gamma}=y^{\varepsilon} \partial_{\varepsilon} \Gamma_{\alpha}^{\beta} \gamma^{2}-y^{\varepsilon} R_{\varepsilon \alpha \gamma}^{\beta}$. Similarly, we can easily find other components of ${ }^{H H} \Gamma_{I}^{J}{ }_{K}$.

Theorem 2. Let $X, Y \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$. Then we obtain

$$
{ }^{H H} \nabla_{v v}\left({ }^{v{ }^{v}} Y\right)=0
$$

Proof. If $X, Y \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$ and
are the components of $\left({ }^{H H} \nabla_{v^{v} X}\left({ }^{v v} Y\right)\right)^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(B_{m}\right)$, then we have

$$
\left({ }^{H H} \nabla^{v v} X\left({ }^{v v} Y\right)\right)^{J}={ }^{v v} X^{a H H} \nabla_{a}\left({ }^{v v} Y\right)^{J}+{ }^{v v} X^{\alpha H H} \nabla_{\alpha}\left({ }^{v v} Y\right)^{J}+{ }^{v v} X^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}\left({ }^{v v} Y\right)^{J} .
$$

Firstly, if $J=b$, we have

$$
\begin{array}{rl}
\left({ }^{H H} \nabla_{v v}\left({ }^{v v} Y\right)\right)^{b} & ={ }^{v v} X^{a H H} \nabla_{a} \underbrace{v v}_{0} Y^{b}
\end{array}+{ }^{v v} X^{\alpha H H} \nabla_{\alpha} \underbrace{v v}_{0} Y^{b}+{ }^{v v} X^{\bar{\alpha} H H} \nabla_{\bar{\alpha}} \underbrace{\left({ }^{v v} Y^{b}\right)}_{0}) ~\left(\begin{array}{l}
\end{array}\right.
$$

by virtue of (5) and (16). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
\left({ }^{H H} \nabla^{v_{V} X}\left({ }^{\left({ }^{v}\right.} Y\right)\right)^{\beta} & ={ }^{v v} X^{a H H} \nabla_{a} \underbrace{v v}_{0} Y^{\beta}
\end{aligned}+{ }^{v v} X^{\alpha H H} \nabla_{\alpha} \underbrace{v v}_{0} Y^{\beta}+{ }^{v v} X^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}(\underbrace{\left.{ }^{v v} Y^{\beta}\right)}_{0})
$$

by virtue of (5) and (16). Thirdly, if $J=\bar{\beta}$, then we have

$$
\begin{aligned}
& =X^{\alpha}(\underbrace{\partial_{\bar{\alpha}} Y^{\beta}}_{0}+{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} c \underbrace{v v}_{0} Y^{c}+{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} \gamma \underbrace{\left.{ }^{(v v} Y\right)^{\gamma}}_{0}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} \bar{\gamma}}_{0}\left({ }^{(v v} Y\right)^{\bar{\gamma}}) \\
& =0
\end{aligned}
$$

by virtue of (5) and (16). Thus Theorem 2 is proved.

Theorem 3. Let \widetilde{Y} be a projectable vector field on M_{n} with projections Y on B_{m}. If $X \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$, then

$$
{ }^{H H} \nabla_{v v_{X}}\left({ }^{H H} \widetilde{Y}\right)=0 .
$$

Proof. If $\widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right), X \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$ and

$$
\left(\begin{array}{l}
\left({ }^{H H} \nabla_{v_{X} X}\left({ }^{H H} \widetilde{Y}\right)\right)^{b} \\
\left({ }^{H} \nabla_{\nabla^{v} X}\left({ }^{H H} \widetilde{Y}\right)\right)^{\beta} \\
\left({ }^{H H} \nabla_{v^{v} X}\left({ }^{H H} \widetilde{Y}\right)\right)^{\beta}
\end{array}\right)
$$

are the components of $\left({ }^{H H} \nabla_{{ }^{v v} X}\left({ }^{H} H \widetilde{Y}\right)\right)^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(B_{m}\right)$, then we have

$$
\left({ }^{H H} \nabla_{v v X}\left({ }^{H H} \widetilde{Y}\right)\right)^{J}={ }^{v v} X^{a H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{J}+{ }^{v v} X^{\alpha H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{J}+{ }^{v v} X^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{J} .
$$

Firstly, if $J=b$, we have

$$
\begin{aligned}
\left({ }^{H H} \nabla_{v v X}\left({ }^{H H} \widetilde{Y}\right)\right)^{b} & =\underbrace{v v}_{0} X^{a}{ }^{H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{b}+\underbrace{{ }^{v v} X^{\alpha}}_{0}{ }^{H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{b}+\underbrace{{ }^{v v} X^{\bar{\alpha}}}_{X^{\alpha}}{ }^{H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{b} \\
& =X^{\alpha} \underbrace{\partial_{\alpha} Y^{b}}_{0}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha}}^{b} c}_{0}{ }^{H H}{ }^{H} \widetilde{Y})^{c}+\underbrace{H H}_{0} \Gamma_{\bar{\alpha} \gamma}^{b}\left({ }^{H H} \widetilde{Y}\right)^{\gamma}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha} \bar{\gamma}}^{b}}_{0}\left({ }^{H H} \widetilde{Y}\right)^{\bar{\gamma}}) \\
& =0
\end{aligned}
$$

by virtue of (5), (9) and (16). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
\left({ }^{H H} \nabla_{v_{X} X}\left({ }^{H H} \widetilde{Y}\right)\right)^{\beta} & =\underbrace{v v}_{0} X^{a}{ }^{H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{\beta}+\underbrace{v v}_{0} X^{\alpha}{ }^{H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{\beta}+\underbrace{v v}_{X^{\alpha}}{ }^{\bar{\alpha}}{ }^{H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{\beta} \\
& =X^{\alpha}(\underbrace{\partial_{\bar{\alpha}} Y^{\beta}}_{0}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha} c}^{\beta}}_{0}\left({ }^{H H \widetilde{Y}}\right)^{c}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} \gamma}_{0}\left({ }^{H H \widetilde{Y}}\right)^{\gamma}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} \bar{\gamma}}_{0}\left({ }^{H H} \widetilde{Y}\right)^{\bar{\gamma}}) \\
& =0
\end{aligned}
$$

by virtue of (5), (9) and (16). Thirdly, if $J=\bar{\beta}$, then we have

$$
\begin{aligned}
\left({ }^{H H} \nabla_{v^{v} X}\left({ }^{H H} \widetilde{Y}\right)\right)^{\bar{\beta}} & =\underbrace{{ }^{v v} X^{a}}_{0}{ }^{H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{\bar{\beta}}+\underbrace{{ }^{v v} X^{\alpha}}_{0}{ }^{H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{\bar{\beta}}+\underbrace{{ }^{v v} X^{\bar{\alpha}}}_{X^{\alpha}}{ }^{H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{\bar{\beta}} \\
& =X^{\alpha}(-\underbrace{\partial_{\bar{\alpha}} y^{\varepsilon}}_{\delta_{\alpha}^{\varepsilon}} \Gamma_{\varepsilon}^{\beta}{ }_{\gamma} Y^{\gamma}+\underbrace{H H}_{0} \Gamma_{\bar{\alpha} c}^{\bar{\beta}}\left({ }^{H H} \widetilde{Y}\right)^{c}+{ }^{H H} \Gamma_{\bar{\alpha} \gamma}^{\bar{\beta}}\left({ }^{H H} \widetilde{Y}\right)^{\gamma}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha}}^{\bar{\beta}} \bar{\gamma}}_{0}{ }^{H H} \widetilde{Y})^{\bar{\gamma}}) \\
& =-X^{\alpha} \Gamma_{\alpha}^{\beta} \gamma^{\gamma} Y^{\gamma}+X^{\alpha} \Gamma_{\alpha}^{\beta}{ }_{\gamma} Y^{\gamma} \\
& =0
\end{aligned}
$$

by virtue of (5), (9) and (16). The proof is completed.

Theorem 4. Let \widetilde{X} and \widetilde{Y} be projectable vector fields on M_{n} with projection $X \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$ and $Y \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$, respectively. We have:

$$
{ }^{H H} \nabla_{c c \widetilde{X}}\left({ }^{H H} \widetilde{Y}\right)={ }^{H H}\left(\nabla_{X} Y\right) .
$$

Proof. (i) If $\widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ and

$$
\left(\begin{array}{c}
\left(\begin{array}{c}
{ }^{H H} \nabla_{c c}\left({ }^{H H} \widetilde{Y}\right)
\end{array}\right)^{b} \\
\left({ }^{H H} \nabla_{c c} \widetilde{X}\left({ }^{H H} \widetilde{Y}\right)\right)^{\beta} \\
\left({ }^{H H} \nabla_{c c}\left({ }^{H H} \widetilde{Y}\right)\right.
\end{array}\right)
$$

are the components of $\left({ }^{H H} \nabla_{c c \widetilde{X}}\left({ }^{H H} \widetilde{Y}\right)\right)^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(B_{m}\right)$, then we have

$$
\left({ }^{H H} \nabla_{c c} \widetilde{X}\left({ }^{H H} \widetilde{Y}\right)\right)^{J}={ }^{c c} \widetilde{X}^{a H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{J}+{ }^{c c} \widetilde{X}^{\alpha H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{J}+{ }^{c c} \widetilde{X}^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{J}
$$

Firstly, if $J=b$, we have

$$
\begin{aligned}
\left({ }^{H H} \nabla_{c c}\left({ }^{H H} \widetilde{Y}\right)\right)^{b}= & { }^{c c} \widetilde{X}^{a H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{b}+{ }^{c c} \widetilde{X}^{\alpha H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{b}+{ }^{c c} \widetilde{X}^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{b} \\
= & X^{a H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{b}+X^{\alpha H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{b}+\left(y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}\right)^{H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{b} \\
= & X^{a}(\partial_{a} Y^{b}+\underbrace{{ }^{H H} \Gamma_{a c}^{b}}_{0} Y^{c}+\underbrace{{ }^{H H} \Gamma_{a}^{b} \gamma}_{0} Y^{\gamma}+\underbrace{{ }^{H H} \Gamma_{a}^{b} \bar{\gamma}}_{0} Y^{\bar{\gamma}})+X^{\alpha}(\partial_{\alpha} Y^{b}+\underbrace{{ }^{H H} \Gamma_{\alpha c}^{b}}_{0} Y^{c}+\underbrace{{ }^{H H} \Gamma_{\alpha}^{b}{ }_{\gamma} Y^{\gamma}}_{\Gamma_{\alpha}^{b} \gamma}+\underbrace{{ }^{H H} \Gamma_{\alpha}^{b} \bar{\gamma}}_{0} Y^{\bar{\gamma}}) \\
& +\left(y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}\right)(\underbrace{\partial_{\bar{\alpha}} Y^{b}}_{0}+\underbrace{H H \Gamma_{\alpha}^{b} c}_{0} Y^{c}+\underbrace{{ }^{H H} \Gamma_{\alpha}^{b} \gamma}_{0} Y^{\gamma}+\underbrace{H H}_{0} \Gamma_{\alpha}^{b} \bar{\gamma} Y^{\bar{\gamma}}) \\
= & X^{\alpha} \partial_{\alpha} Y^{b}+X^{\alpha} \Gamma_{\alpha \gamma}^{b} Y^{\gamma}=X^{\alpha}\left(\partial_{\alpha} Y^{b}+\Gamma_{\alpha}^{b} \gamma Y^{\gamma}\right)
\end{aligned}
$$

by virtue of (7), (9) and (16). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
& \left({ }^{H H} \nabla_{c c \widetilde{X}}\left({ }^{H H} \widetilde{Y}\right)\right)^{\beta}={ }^{c c} \widetilde{X}^{a H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{\beta}+{ }^{c c} \widetilde{X}^{\alpha H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{\beta}+{ }^{c c} \widetilde{X}^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{\beta} \\
& =X^{a H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{\beta}+X^{\alpha H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{\beta}+\left(y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}\right)^{H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{\beta} \\
& =X^{a}(\underbrace{\partial_{a} Y^{\beta}}_{0}+\underbrace{{ }^{H H} \Gamma_{a}^{\beta}{ }_{c}}_{0} Y^{c}+\underbrace{{ }^{H H} \Gamma_{a}^{\beta}{ }_{\gamma}}_{0} Y^{\gamma}+\underbrace{{ }^{H H} \Gamma_{a}^{\beta} \bar{\gamma}}_{0} Y^{\bar{\gamma}})+X^{\alpha}(\partial_{\alpha} Y^{\beta}+\underbrace{H H}_{0} \Gamma_{\alpha}^{\beta}{ }_{c} Y^{c}+\underbrace{{ }^{H H} \Gamma_{\alpha}^{\beta} \gamma}_{\Gamma_{\alpha}^{\beta} \gamma} Y^{\gamma}+\underbrace{H H}_{0} \Gamma_{\alpha}^{\beta} \bar{\gamma} Y^{\bar{\gamma}}) \\
& +\left(y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}\right)(\underbrace{\partial_{\bar{\alpha}} Y^{\beta}}_{0}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} c}_{0} Y^{c}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha} \gamma}^{\beta}}_{0} Y^{\gamma}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} \bar{\gamma}}_{0} Y^{\bar{\gamma}}) \\
& =X^{\alpha} \partial_{\alpha} Y^{\beta}+X^{\alpha} \Gamma_{\alpha}^{\beta}{ }_{\gamma} Y^{\gamma}=X^{\alpha}\left(\partial_{\alpha} Y^{\beta}+\Gamma_{\alpha}^{\beta}{ }_{\gamma} Y^{\gamma}\right)
\end{aligned}
$$

by virtue of (7), (9) and (16). Thirdly, if $J=\bar{\beta}$, then we have

$$
\begin{aligned}
\left({ }^{H H} \nabla_{c c \widetilde{X}}^{H H} \widetilde{Y}\right)^{\bar{\beta}}= & { }^{c c} \widetilde{X}^{a H H} \nabla_{a}\left({ }^{H H} \widetilde{Y}\right)^{\bar{\beta}}+{ }^{c c} \widetilde{X}^{\alpha H H} \nabla_{\alpha}\left({ }^{H H} \widetilde{Y}\right)^{\bar{\beta}}+{ }^{c c} \widetilde{X}^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}\left({ }^{H H} \widetilde{Y}\right)^{\bar{\beta}} \\
= & X^{a H H} \nabla_{a}\left(-y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\sigma} Y^{\sigma}\right)+X^{\alpha H H} \nabla_{\alpha}\left(-y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\sigma} Y^{\sigma}\right)+\left(y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}\right)^{H H} \nabla_{\bar{\alpha}}\left(-y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\sigma} Y^{\sigma}\right) \\
= & -X^{a} \underbrace{\partial_{a} \Gamma_{\varepsilon}^{\beta}{ }_{\sigma}{ }^{\varepsilon}}_{0} y^{\varepsilon} Y^{\sigma}-X^{a} \underbrace{\partial_{a} y^{\varepsilon}}_{0} \Gamma_{\varepsilon}^{\beta}{ }_{\varepsilon}{ }_{\sigma} Y^{\sigma}-X^{a} \Gamma_{\varepsilon}^{\beta}{ }_{\sigma} y^{\varepsilon} \underbrace{\partial_{a} Y^{\sigma}}_{0}-X^{\alpha} \partial_{\alpha} \Gamma_{\varepsilon}^{\beta}{ }_{\sigma} y^{\varepsilon} Y^{\sigma} \\
& -X^{\alpha} \underbrace{\partial_{\alpha} y^{\varepsilon}}_{0} \Gamma_{\varepsilon}^{\beta}{ }_{\sigma} Y^{\sigma}-X^{\alpha} \Gamma_{\varepsilon}^{\beta}{ }_{\sigma} y^{\varepsilon} \partial_{\alpha} Y^{\sigma}+X^{\alpha} y^{\varepsilon} \partial_{\varepsilon} \Gamma_{\alpha}^{\beta}{ }_{\sigma} Y^{\sigma}-X^{\alpha} y^{\varphi} \partial_{\varphi} \Gamma_{\alpha}^{\beta}{ }_{\sigma} Y^{\sigma}+X^{\alpha} y^{\varphi} \partial_{\alpha} \Gamma_{\varphi}^{\beta}{ }_{\sigma} Y^{\sigma} \\
& -X^{\alpha} y^{\varphi} \Gamma_{\varphi}^{\beta}{ }_{\phi} \Gamma_{\alpha}^{\phi}{ }_{\sigma} Y^{\sigma}+X^{\alpha} y^{\varphi} \Gamma_{\alpha}^{\beta}{ }_{\phi} \Gamma_{\varphi}^{\phi}{ }_{\sigma} Y^{\sigma}-X^{\alpha} \Gamma_{\alpha}^{\beta}{ }_{\sigma} \Gamma_{\varepsilon}^{\sigma}{ }_{\phi} y^{\varepsilon} Y^{\phi}-\Gamma_{\varepsilon}^{\beta}{ }_{\sigma} y^{\varepsilon} X^{\alpha} \partial_{\alpha} Y^{\sigma}+\Gamma_{\varepsilon}^{\beta}{ }_{\sigma} y^{\varepsilon} X^{\alpha} \partial_{\alpha} Y^{\sigma} \\
= & -\Gamma_{\varepsilon}^{\beta}{ }_{\sigma} y^{\varepsilon} X^{\alpha} \partial_{\alpha} Y^{\sigma}+\Gamma_{\varphi}^{\beta}{ }_{\phi} \Gamma_{\alpha}^{\phi}{ }_{\sigma} X^{\alpha} y^{\varphi} Y^{\sigma}
\end{aligned}
$$

by virtue of (7), (9) and (16). Thus, we have ${ }^{H H} \nabla_{c c \widetilde{X}}\left({ }^{H H} \widetilde{Y}\right)={ }^{H H}\left(\nabla_{X} Y\right)$.
Theorem 5. Let \widetilde{X} be a projectable vector field on M_{n} with projections X on B_{m}. If $Y \in \mathfrak{J}_{0}^{1}\left(B_{m}\right)$, then

$$
{ }^{H H} \nabla_{H H \tilde{X}}\left({ }^{\nu v} Y\right)={ }^{v v}\left(\nabla_{X} Y\right) .
$$

 the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(B_{m}\right)$, then we have

$$
\left({ }^{H H} \nabla_{H H \widetilde{X}}\left({ }^{v v} Y\right)\right)^{J}={ }^{H H} \widetilde{X}^{a H H} \nabla_{a}\left({ }^{\nu v} Y\right)^{J}+{ }^{H H} \widetilde{X}^{\alpha H H} \nabla_{\alpha}\left({ }^{\nu v} Y\right)^{J}+{ }^{H H} \widetilde{X}^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}\left({ }^{(v v} Y\right)^{J} .
$$

Firstly, if $J=b$, we have

$$
\begin{aligned}
& \left({ }^{H H} \nabla_{H H} \tilde{X}\left({ }^{v v} Y\right)\right)^{b}={ }^{H H} \widetilde{X}^{a H H} \nabla_{a}\left({ }^{v v} Y\right)^{b}+{ }^{H H} \widetilde{X}^{\alpha H H} \nabla_{\alpha}\left({ }^{v v} Y\right)^{b}+{ }^{H H} \widetilde{X}^{\bar{\alpha} H H} \nabla_{\bar{\alpha}}\left({ }^{v v} Y\right)^{b} \\
& =X^{a}(\partial_{a} \underbrace{{ }^{v v} Y^{b}}_{0}+{ }^{H H} \Gamma_{a}^{b} c^{{ }^{v v} Y^{c}}+{ }^{H H} \Gamma_{a}^{b} \gamma_{0}^{{ }^{v v} Y^{\gamma}}+\underbrace{{ }^{H H} \Gamma_{a}^{b} \bar{\gamma}}_{0}\left({ }^{v v} Y\right)^{\bar{\gamma}}) \\
& +X^{\alpha}(\partial_{\alpha} \underbrace{v v}_{0} Y^{b}+{ }^{H H} \Gamma_{\alpha}^{b} c \underbrace{{ }^{\nu v} Y^{c}}_{0}+{ }^{H H} \Gamma_{\alpha}^{b} \underbrace{v^{v} Y^{\gamma}}_{0}+\underbrace{H H}_{0} \Gamma_{\alpha}^{b} \bar{\gamma}\left({ }^{v v} Y\right)^{\bar{\gamma}}) \\
& +{ }^{H H} \widetilde{X}^{\bar{\alpha}}(\partial_{\bar{\alpha}} \underbrace{{ }^{v \nu} Y^{b}}_{0}+{ }^{H H} \Gamma_{\bar{\alpha}}^{b} c \underbrace{{ }^{v v} Y^{c}}_{0}+{ }^{H H} \Gamma_{\bar{\alpha}}^{b} \gamma^{{ }^{v v} \underbrace{\gamma}}+\underbrace{{ }^{H} \Gamma_{\bar{\alpha}}^{b} \bar{\gamma}}_{0}\left({ }^{v v} Y\right)^{\bar{\gamma}}) \\
& =0
\end{aligned}
$$

by virtue of (5), (9) and (16). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
& \left({ }^{H H} \nabla_{H H \tilde{X}}\left({ }^{v v} Y\right)\right)^{\beta}={ }^{H H} \widetilde{X}^{a} \underbrace{H H}_{0} \nabla_{a}\left({ }^{(v v} Y\right)^{\beta}+{ }^{H H} \widetilde{X}^{\alpha} \underbrace{H H}_{0} \nabla_{\alpha}\left({ }^{v v} Y\right)^{\beta})+{ }^{H H} \widetilde{X}^{\bar{\alpha}} \underbrace{H H}_{0} \nabla_{\bar{\alpha}\left({ }^{(v v} Y\right)^{\beta}} \\
& =X^{a}(\partial_{a} \underbrace{{ }^{v v} Y^{\beta}}_{0}+{ }^{H H} \Gamma_{a}^{\beta}{ }_{c} \underbrace{{ }^{v v} Y^{c}}_{0}+{ }^{H H} \Gamma_{a}^{\beta} \gamma^{{ }^{v v} \underbrace{\gamma}}+\underbrace{\left.\left.{ }^{H H} \Gamma_{a}^{\beta} \bar{\gamma}^{(v v} Y\right)^{\bar{\gamma}}\right)}_{0} \\
& +X^{\alpha}(\partial_{\alpha} \underbrace{v v}_{0} Y^{\beta}+{ }^{H H} \Gamma_{\alpha}^{\beta} c \underbrace{{ }^{v v} Y^{c}}_{0}+{ }^{H H} \Gamma_{\alpha}^{\beta} \gamma^{v v} \underbrace{Y^{\gamma}}_{0}+\underbrace{{ }^{H H} \Gamma_{\alpha}^{\beta} \bar{\gamma}}_{0}{ }^{\left.\left({ }^{v v} Y\right)^{\bar{\gamma}}\right)} \\
& +{ }^{H H} \tilde{X}^{\bar{\alpha}}(\partial_{\bar{\alpha}} \underbrace{{ }^{v v} Y^{\beta}}_{0}+{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} c \underbrace{{ }^{v v} Y^{c}}_{0}+{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} \gamma_{0}^{{ }^{v v} Y^{\gamma}}+\underbrace{{ }^{H H} \Gamma_{\bar{\alpha}}^{\beta} \bar{\gamma}}_{0}\left({ }^{(v v} Y\right)^{\bar{\gamma}}) \\
& =0
\end{aligned}
$$

by virtue of (5), (9) and (16). Thirdly, if $J=\bar{\beta}$, then we have

$$
\begin{aligned}
& \left({ }^{H H} \nabla_{H H \tilde{X}}\left({ }^{v v} Y\right)\right)^{\bar{\beta}}={ }^{H H} \widetilde{X}^{a H H} \nabla_{a} \underbrace{v v}_{0} Y^{\bar{\beta}}+{ }^{H H} \widetilde{X}^{\alpha H H} \nabla_{\alpha} \underbrace{{ }^{v v} Y^{\bar{\beta}}}_{0}+{ }^{H H} \widetilde{X}^{\bar{\alpha} H H} \nabla_{\bar{\alpha}} \underbrace{{ }^{v v} Y^{\bar{\beta}}}_{0} \\
& =X^{a}(\underbrace{\partial_{a}\left({ }^{v v} Y\right)^{\bar{\beta}}}_{0}+{ }^{H H} \Gamma_{a}^{\bar{\beta}}{ }_{c}\left({ }^{\nu v} Y\right)^{c}+\underbrace{{ }^{H H} \Gamma_{a}^{\bar{\beta}} \gamma}_{0}\left({ }^{(v v} Y\right)^{\gamma}+\underbrace{{ }^{H H} \Gamma_{a}^{\bar{\beta}} \bar{\gamma}}_{0}{ }^{\left({ }^{v v} Y\right.})^{\bar{\gamma}}) \\
& +X^{\alpha}(\partial_{\alpha}\left({ }^{v v} Y\right)^{\bar{\beta}}+{ }^{H H} \Gamma_{\alpha}^{\bar{\beta}} c\left({ }^{\left({ }^{v}\right.} Y\right)^{c}+{ }^{H H} \Gamma_{\alpha}^{\bar{\beta}} \gamma \underbrace{\left({ }^{v v} Y\right)^{\gamma}}_{0}+\underbrace{{ }^{H H} \Gamma_{\alpha}^{\bar{\beta}} \bar{\gamma}}_{\Gamma_{\alpha}^{\beta} \gamma}\left({ }^{v v} Y\right)^{\bar{\gamma}}) \\
& +\left(-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} Y^{\beta}\right)(\underbrace{\partial_{\bar{\alpha}} Y^{\beta}}_{0}+{ }^{H H} \Gamma_{\bar{\alpha}}^{\bar{\beta}} c \underbrace{{ }^{v v} Y^{c}}_{0}+{ }^{H H} \Gamma_{\bar{\alpha}}^{\bar{\beta}} \gamma \underbrace{v v}_{0} Y^{\gamma}+\underbrace{H H}_{0} \Gamma_{\bar{\alpha}}^{\bar{\beta}} \bar{\gamma}{ }^{\left.\left({ }^{v v} Y\right)^{\bar{\gamma}}\right)} \\
& =X^{\alpha} \partial_{\alpha} Y^{\beta}+X^{\alpha} \Gamma_{\alpha}^{\beta}{ }_{\gamma} Y^{\gamma}=X^{\alpha}\left(\partial_{\alpha} Y^{\beta}+\Gamma_{\alpha}^{\beta}{ }_{\gamma} Y^{\gamma}\right) \\
& =\left(\nabla_{X} Y\right)^{\beta}
\end{aligned}
$$

by virtue of (5), (9) and (16). On the other hand, we know that ${ }^{\nu v}\left(\nabla_{X} Y\right)$ have the components

$$
{ }^{v v}\left(\nabla_{X} Y\right)=\left(\begin{array}{l}
0 \\
0 \\
\left(\nabla_{X} Y\right)^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(B_{m}\right)$. Thus, we have ${ }^{H H} \nabla_{H H} \tilde{X}\left({ }^{v v} Y\right)={ }^{v v}\left(\nabla_{X} Y\right)$ in $t\left(B_{m}\right)$.

5 Conclusion

In this paper, we consider horizontal lifting problem of projectable linear connection on M to the semi-tangent bundle tM . In this context, the following equations have been obtained:
(i) ${ }^{H H} \nabla^{v_{v} X}\left({ }^{(v v} Y\right)=0$,
(ii) ${ }^{H H} \nabla_{v_{v} X}\left({ }^{H H} \widetilde{Y}\right)=0$,
(iii) $\left.{ }^{H H} \nabla_{c c} \widetilde{X}^{(}{ }^{H H} \widetilde{Y}\right)={ }^{H H}\left(\nabla_{X} Y\right)$,
(iv) ${ }^{H H} \nabla_{H H \tilde{X}}\left({ }^{v v} Y\right)={ }^{v v}\left(\nabla_{X} Y\right)$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

Acknowledgment

The paper was supported by TUBITAK project MFAG-118F176.

References

[1] A. Bednarska, On lifts of projectable-projectable classical linear connections to the cotangent bundle, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica, 67 (2013), no. 1, 1-10.
[2] D. Husemoller, Fibre Bundles. Springer, New York, 1994.
[3] H.B. Lawson and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
[4] W.M. Mikulski and J. Tomáš, Reduction for natural operators on projectable connections, Demonstratio Mathematica; 42 (2009), no. 2, 437-441.
[5] Mikulski, W.M., On the existence of prolongations of connections by bundle functors, Extracta Math. 22 (2007), no. 3, 297-314.
[6] N.M. Ostianu, Step-fibred spaces, Tr. Geom. Sem. 5, Moscow. (VINITI), (1974), 259-309.
[7] L.S. Pontryagin, Characteristic cycles on differentiable manifolds. Amer. Math. Soc. Translation, (1950) , no. 32, 72 pp.
[8] W.A. Poor, Differential Geometric Structures, New York, McGraw-Hill, 1981.
[9] A.A. Salimov and E. Kadıoğlu, Lifts of Derivations to the Semitangent Bundle, Turk J. Math. 24 (2000), 259-266.
[10] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
[11] V.V. Vishnevskii, Integrable affinor structures and their plural interpretations. Geometry, 7.J. Math. Sci. (New York) 108 (2002), no. 2, 151-187.
[12] V.V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over Algebras. Kazan. Kazan Gos. Univ. 1985. (in Russian).
[13] K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
[14] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, 38 (2014), 325-339.
[15] F. Yıldırım, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.

[^0]: * Corresponding author e-mail: (F. Yıldırım) furkan.yildirim@atauni.edu.tr

