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Abstract: The present paper is devoted to some results concerning with the projectable linear connection in the semi-tangent (pull-
back) bundle tM. In this study, horizontal lift problems of projectable linear connection, which are preliminary to the subject of covarient
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1 Introduction

Let Mn be a differentiable manifold of class C∞ and finite dimension n, and let (Mn,π1,Bm) be a differentiable bundle over
Bm. We use the notation (xi) = (xa,xα), where the indices i, j, ... run from 1 to n, the indices a,b, ... from 1 to n−m and
the indices α,β , ... from n−m+1 to n, xα are coordinates in Bm , xa are fibre coordinates of the bundle

π1 : Mn → Bm.

Let now (T (Bm), π̃,Bm) be a tangent bundle [13] over base space Bm, and let Mn be differentiable bundle determined by
a natural projection (submersion) π1 : Mn → Bm. The semi-tangent bundle (pull-back [[2],[3],[9], [10],[14],[15]]) of the
tangent bundle (T (Bm), π̃,Bm) is the bundle (t(Bm),π2,Mn) over differentiable bundle Mn with a total space

t(Bm) =
{
((xa,xα) ,xα) ∈ Mn ×Tx(Bm) : π1 (xa,xα) = π̃

(
xα ,xα

)
= (xα)

}
⊂ Mn ×Tx(Bm)

and with the projection map π2 : t(Bm) → Mn defined by π2(xa,xα ,xα) = (xa,xα), where
Tx(Bm)(x = π1 (x̃) , x̃ = (xa,xα) ∈ Mn) is the tangent space at a point x of Bm, where xα = yα

(
α,β , ...= n+1, ...,2n

)
are fibre coordinates of the tangent bundle T (Bm).

Where the pull-back (Pontryagin [7]) bundle t(Bm) of the differentiable bundle Mn also has the natural bundle structure
over Bm, its bundle projection π : t(Bm) → Bm being defined by π : (xa,xα ,xα) → (xα) , and hence π = π1 ◦ π2. Thus
(t(Bm),π1 ◦ π2) is the composite bundle [[8], p.9] or step-like bundle [6]. Consequently, we notice the semi-tangent
bundle (t(Bm),π2 ) is a pull-back bundle of the tangent bundle over Bm by π1 [9].

If (xi′) = (xa′ ,xα ′
) is another local adapted coordinates in differentiable bundle Mn, then we have{

xa′ = xa′(xb,xβ ),

xα ′
= xα ′ (

xβ
)

.
(1)
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The Jacobian of (1) has the components

(
Ai′

j

)
=

(
∂xi′

∂x j

)
=

(
Aa′

b Aa′
β

0 Aα ′
β

)
,

where Aa′
b = ∂xa′

∂xb , Aa′
β
= ∂xa′

∂xβ
, Aα ′

β
= ∂xα ′

∂xβ
[9].

To a transformation (1) of local coordinates of Mn, there corresponds on t(Bm) the change of coordinate
xa′ = xa′(xb,xβ ),

xα ′
= xα ′ (

xβ
)
,

xα
′
= ∂xα ′

∂xβ
yβ .

(2)

The Jacobian of (2) is:

Ā =
(

AI′
J

)
=

Aa′
b Aa′

β
0

0 Aα ′
β

0

0 Aα ′
βε

yε Aα ′
β

 , (3)

where I = (a,α,α), J = (b,β ,β ), I,J, ....= 1, ...,2n; Aα ′
βε

= ∂ 2xα ′

∂xβ ∂xε
[9].

The purpose of this paper is to study the horizontal lifts of projectable linear connection to semi-tangent (pull-back)
bundle (t(Bm) , π2) and their properties.

We denote by ℑ
p
q(Mn) the set of all tensor fields of class C∞ and of type (p,q) on Mn, i.e., contravariant degree p and

covariant degree q. We now put ℑ(Mn) = ∑
∞
p,q=0 ℑ

p
q(Mn), which is the set of all tensor fields on Mn. Smilarly, we denote

by ℑ
p
q(Bm) and ℑ(Bm) respectively the corresponding sets of tensor fields in the base space Bm.

2 Some lifts of vector and covector fields

If f is a function on Bm, we write vv f for the function on t(Bm) obtained by forming the composition of π : t(Bm)→ Bm

and v f = f ◦π1, so that
vv f = v f ◦π2 = f ◦π1 ◦π2 = f ◦π.

Thus, the vertical lift vv f of the function f to t(Bm) satisfies

vv f (xa,xα ,xα) = f (xα). (4)

We note here that value vv f is constant along each fibre of π : t(Bm)→ Bm. Let X ∈ ℑ1
0(Bm), i.e. X = Xα ∂α . On putting

vvX = (vvXα) =

0
0
Xα

 , (5)

from (3), we easily see that vvX ′ = Ā(vvX). The vector field vvX is called the vertical lift of X to t(Bm).
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Let ω ∈ ℑ0
1(Bm), i.e. ω = ωα dxα . On putting

vv
ω = (vv

ω)
α
= (0,ωα ,0) , (6)

from (3), we easily see that vvω = Āvvω ′. The covector field vvω is called the vertical lift of ω to t(Bm).

Let X̃ ∈ ℑ1
0(Mn) be a projectable vector field [11] with projection X = Xα(xα)∂α i.e. X̃ = X̃a(xa,xα)∂a +Xα(xα)∂α .

Now, consider X̃ ∈ ℑ1
0(Mn), then ccX̃ (complete lift) has the components on the semi-tangent bundle t(Bm) [9]

ccX̃ =
(

ccX̃α

)
=

 X̃a

Xα

yε ∂ε Xα

 (7)

with respect to the coordinates (xa,xα ,xα).

For any F ∈ ℑ1
1(Bm), if we take account of (3), we can prove that (γF)′ = Ā(γF), where γF is a vector field defined by

γF = (γF I) =

 0
0
yε Fα

ε

 (8)

with respect to the coordinates (xa,xα ,xα).

Let now X̃ ∈ ℑ1
0(Mn) be a projectable vector field on Mn with projection X ∈ ℑ1

0(Bm) [11]. Then we define the horizontal
lift HH X̃ of X̃ by

HH X̃ = ccX̃ − γ(∇X̃)

on t(Mn). Where ∇ is a projectable symmetric linear connection in a differentiable manifold Bm. Then, remembering that
ccX̃ and γ(∇X̃) have, respectively, local componenets

ccX̃ =
(

ccX̃ I
)
=

 X̃a

Xα

yε ∂ε Xα

 ,γ(∇X̃) =
(

γ(∇X̃)I
)
=

 0
0
yε ∇ε Xα


with respect to the coordinates (xa,xα ,xα) on t(Bm). ∇α Xε being the covariant derivative of Xε , i.e.,

(∇α Xε) = ∂α Xε +Xβ
Γ

ε

β α .

We find that the horizontal lift HH X̃ of X̃ has the components

HHX =
(HHX I)=

 X̃a

Xα

−Γ α

β
Xβ

 (9)

with respect to the coordinates (xa,xα ,xα) on t(Bm). Where

Γ
α

β
= yε

Γ
α

ε β . (10)
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3 Complete lifts of projectable linear connection

Let Γ
β

α γ be components of projectable linear connection [[1], [4], [5], [11], [12]] ∇ with respect to local coordinates (xα)

in Bm and ccΓ J
I K components of cc∇ with respect to the induced coordinates (xa,xα ,xα) in t(Bm). We recall from [11] that

components ccΓ J
I K of complete lift cc∇ of projectable linear connection ∇ can be calculated from base manifold Bm to

semi-tangent bundle t(Bm) also as:

ccΓ b
a c =

ccΓ b
a γ =

ccΓ b
a γ =

ccΓ b
α c =

ccΓ b
α γ =

ccΓ b
α c =

ccΓ b
α γ =

ccΓ b
α γ = 0,

ccΓ b
α γ = Γ b

α γ ,
ccΓ

β
a c =

ccΓ
β

a γ =
ccΓ

β
a γ =

ccΓ
β

α c =
ccΓ

β

α γ =
ccΓ

β

α c =
ccΓ

β

α γ =
ccΓ

β

α γ = 0,
ccΓ

β

α γ = Γ
β

α γ ,

ccΓ
β

a c =
ccΓ

β
a γ =

ccΓ
β

a γ =
ccΓ

β

α c =
ccΓ

β

α c =
ccΓ

β

α γ = 0,
ccΓ

β

α γ = Γ
β

α γ ,

ccΓ
β

α γ = yε ∂εΓ
β

α γ ,

ccΓ
β

α γ = Γ
β

α γ .

(11)

where I = (a,α,α), J = (b,β ,β ), K = (c,γ,γ). On the other hand, from (11) we obtain:

Theorem 1. Let X̃ and Ỹ be projectable vector fields on Mn with projection X ∈ ℑ1
0(Bm) and Y ∈ ℑ1

0(Bm), respectively.
We have:

(i) cc∇vvX (
vvY ) = 0,

(ii) cc∇vvX (
HHỸ ) = 0,

(iii) cc∇HH X̃ (
vvY ) = vv (∇XY ) ,

(iv) cc∇HH X̃ (
HHỸ ) = HH (∇XY )+ γ(R( ,X)Y ),

(v) [ccX̃ ,cc Ỹ ] =cc [X̃ ,Ỹ ](i.e.LccX̃ (
ccỸ ) =cc

(
LX̃Ỹ

)
),

(vi) [ccX̃ ,γF ] = γ (LX F)(F ∈ ℑ1
1(Bm)),

where R( ,X)Y ∈ ℑ1
1(Bm) is a tensor field of type of (1,1) defined by F(Z) = R(Z,X)Y for any Z ∈ ℑ1

0(Bm) and LX is the
operator of Lie derivation with respect to X.

4 Horizontal lifts of projectable linear connection

Let there be given a projectable linear connection ∇ in Bm. We shall define the horizontal lift HH∇ of a projectable linear
connection ∇ in Bm to t(Bm) by the conditions:

(i) HH∇vvX (
vvY ) = 0,

(ii) HH∇vvX (
HHỸ ) = 0

(iii) HH∇HH X̃ (
vvY ) = vv (∇XY ) ,

(iv)HH
∇HH X̃ (

HHỸ ) = HH (∇XY ) , (12)

for any X̃ ,Ỹ ∈ ℑ1
0(Mn). Thus, if we put

S̃(X̃ ,Ỹ ) = HH
∇X̃Ỹ − cc

∇X̃Ỹ (13)

for any X̃ ,Ỹ ∈ ℑ1
0(Mn). Then, from (13) and Theorem 1, the tensor S̃ of type (1,2) in t(Bm) satisfies the conditions

(i) S̃(vvX ,vv Y ) = 0,
(ii) S̃(vvX ,HH Ỹ ) = 0,

(iii) S̃(HH X̃ ,vv Y ) = 0,
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(iv)S̃(HH X̃ ,HH Ỹ ) =−γ(R( ,X)Y ), (14)

for any X̃ ,Ỹ ∈ ℑ1
0(Mn). Therefore S̃ has the components S̃J

IK such that

S̃β

αγ =−yε Rβ

εαγ (15)

all others being zero, with respect to the induced coordinates (xb,xβ ,xβ ) in t(Bm).

Since the components ccΓ J
I K of cc∇ are given by (11), it follows from (13) and (15) that the horizontal lift HH∇ of a

projectable linear connection ∇ has the components HHΓ J
I K such that

HHΓ b
a c =

HHΓ b
a γ =

HHΓ b
a γ =

HHΓ b
α c =

HHΓ b
α γ =

HHΓ b
α c =

HHΓ b
α γ =

HHΓ b
α γ = 0,

HHΓ b
α γ = Γ b

α γ ,
HHΓ

β
a c =

HHΓ
β

a γ =
HHΓ

β
a γ =

HHΓ
β

α c =
HHΓ

β

α γ =
HHΓ

β

α c =
HHΓ

β

α γ =
HHΓ

β

α γ = 0,
HHΓ

β

α γ = Γ
β

α γ ,

HHΓ
β

a c =
HHΓ

β
a γ =

HHΓ
β

a γ =
HHΓ

β

α c =
HHΓ

β

α c =
HHΓ

β

α γ = 0,
HHΓ

β

α γ = Γ
β

α γ ,

HHΓ
β

α γ = yε ∂εΓ
β

α γ − yε Rβ

εαγ ,

HHΓ
β

α γ = Γ
β

α γ .

(16)

with respect to the induced coordinates in t(Bm). Where HHΓ J
I K are the components of HH∇ in t(Bm).

Proof. For convenience sake we only consider HHΓ
β

α γ . According to (11), (13) and (15 ), in fact:

S̃β

αγ =
HH

Γ
β

α γ − cc
Γ

β

α γ

−yε Rεαγ =
HH

Γ
β

α γ − yε
∂εΓ

β

α γ

HH
Γ

β

α γ = yε
∂εΓ

β

α γ − yε Rβ

εαγ .

Thus, we have HHΓ
β

α γ = yε ∂εΓ
β

α γ − yε Rβ

εαγ . Similarly, we can easily find other components of HHΓ J
I K .

Theorem 2. Let X ,Y ∈ ℑ1
0(Bm). Then we obtain

HH
∇vvX (

vvY ) = 0.

Proof. If X ,Y ∈ ℑ1
0(Bm) and 

(
HH∇vvX (

vvY )
)

b(
HH∇vvX (

vvY )
)

β(
HH∇vvX (

vvY )
)

β


are the components of

(
HH∇vvX (

vvY )
)J with respect to the coordinates (xb,xβ ,xβ ) on t(Bm), then we have

(HH
∇vvX (

vvY )
)J

=vv XaHH
∇a(

vvY )J +vv Xα HH
∇α(

vvY )J +vv Xα HH
∇α(

vvY )J .

© 2021 BISKA Bilisim Technology
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Firstly, if J = b, we have(HH
∇vvX (

vvY )
)b

=vv XaHH
∇a

vvY b︸︷︷︸
0

+vvXα HH
∇α

vvY b︸︷︷︸
0

+vvXα HH
∇α (vvY b)︸ ︷︷ ︸

0

= 0

by virtue of (5) and (16). Secondly, if J = β , we have(HH
∇vvX (

vvY )
)β

=vv XaHH
∇a

vvY β︸︷︷︸
0

+vvXα HH
∇α

vvY β︸︷︷︸
0

+vvXα HH
∇α (vvY β )︸ ︷︷ ︸

0

= 0

by virtue of (5) and (16). Thirdly, if J = β , then we have

(HH
∇vvX (

vvY )
)β

= vvXa︸︷︷︸
0

HH
∇a(

vvY )β + vvXα︸︷︷︸
0

HH
∇α(

vvY )β +vv Xα HH
∇α(

vvY )β

= Xα(∂αY β︸ ︷︷ ︸
0

+HH
Γ

β

α c
vvY c︸︷︷︸

0

+HH
Γ

β

α γ (
vvY )γ︸ ︷︷ ︸

0

+HH
Γ

β

α γ︸ ︷︷ ︸
0

(vvY )γ)

= 0

by virtue of (5) and (16). Thus Theorem 2 is proved.

Theorem 3. Let Ỹ be a projectable vector field on Mn with projections Y on Bm. If X ∈ ℑ1
0(Bm), then

HH
∇vvX (

HHỸ ) = 0.

Proof. If Ỹ ∈ ℑ1
0(Mn), X ∈ ℑ1

0(Bm) and 
(

HH∇vvX (
HHỸ )

)b(
HH∇vvX (

HHỸ )
)β

(
HH∇vvX (

HHỸ )
)β


are the components of

(
HH∇vvX (

HHỸ )
)J

with respect to the coordinates (xb,xβ ,xβ ) on t(Bm), then we have

(
HH

∇vvX (
HHỸ )

)J
=vv XaHH

∇a(
HHỸ )J +vv Xα HH

∇α(
HHỸ )J +vv Xα HH

∇α(
HHỸ )J .

Firstly, if J = b, we have(
HH

∇vvX (
HHỸ )

)b
= vvXa︸︷︷︸

0

HH
∇a(

HHỸ )b + vvXα︸︷︷︸
0

HH
∇α(

HHỸ )b + vvXα︸︷︷︸
Xα

HH
∇α(

HHỸ )b

= Xα(∂αY b︸ ︷︷ ︸
0

+HH
Γ

b
α c︸ ︷︷ ︸

0

(HHỸ )c +HH
Γ

b
α γ︸ ︷︷ ︸

0

(HHỸ )γ +HH
Γ

b
α γ︸ ︷︷ ︸

0

(HHỸ )γ)

= 0
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by virtue of (5), (9) and (16). Secondly, if J = β , we have(
HH

∇vvX (
HHỸ )

)β

= vvXa︸︷︷︸
0

HH
∇a(

HHỸ )β + vvXα︸︷︷︸
0

HH
∇α(

HHỸ )β + vvXα︸︷︷︸
Xα

HH
∇α(

HHỸ )β

= Xα(∂αY β︸ ︷︷ ︸
0

+HH
Γ

β

α c︸ ︷︷ ︸
0

(HHỸ )c +HH
Γ

β

α γ︸ ︷︷ ︸
0

(HHỸ )γ +HH
Γ

β

α γ︸ ︷︷ ︸
0

(HHỸ )γ)

= 0

by virtue of (5), (9) and (16). Thirdly, if J = β , then we have(
HH

∇vvX (
HHỸ )

)β

= vvXa︸︷︷︸
0

HH
∇a(

HHỸ )β + vvXα︸︷︷︸
0

HH
∇α(

HHỸ )β + vvXα︸︷︷︸
Xα

HH
∇α(

HHỸ )β

= Xα(−∂α yε︸︷︷︸
δ ε

α

Γ
β

ε γY γ +HH
Γ

β

α c︸ ︷︷ ︸
0

(HHỸ )c +HH
Γ

β

α γ(
HHỸ )γ +HH

Γ
β

α γ︸ ︷︷ ︸
0

(HHỸ )γ)

= −Xα
Γ

β

α γY γ +Xα
Γ

β

α γY γ

= 0

by virtue of (5), (9) and (16). The proof is completed.

Theorem 4. Let X̃ and Ỹ be projectable vector fields on Mn with projection X ∈ ℑ1
0(Bm) and Y ∈ ℑ1

0(Bm), respectively.
We have:

HH
∇ccX̃ (

HHỸ ) = HH (∇XY ) .

Proof. (i) If X̃ ,Ỹ ∈ ℑ1
0(Mn) and 

(
HH∇ccX̃ (

HHỸ )
)

b(
HH∇ccX̃ (

HHỸ )
)

β(
HH∇ccX̃ (

HHỸ )
)

β


are the components of

(
HH∇ccX̃ (

HHỸ )
)J

with respect to the coordinates (xb,xβ ,xβ ) on t(Bm), then we have

(
HH

∇ccX̃ (
HHỸ )

)J
=cc X̃aHH

∇a(
HHỸ )J +cc X̃α HH

∇α(
HHỸ )J +cc X̃α HH

∇α(
HHỸ )J .

Firstly, if J = b, we have(
HH

∇ccX̃ (
HHỸ )

)b
= ccX̃aHH

∇a(
HHỸ )b +cc X̃α HH

∇α(
HHỸ )b +cc X̃α HH

∇α(
HHỸ )b

= XaHH
∇a(

HHỸ )b +Xα HH
∇a(

HHỸ )b +(yε
∂ε Xα)HH

∇a(
HHỸ )b

= Xa(∂aY b +HH
Γ

b
a c︸ ︷︷ ︸

0

Y c +HH
Γ

b
a γ︸ ︷︷ ︸

0

Y γ +HH
Γ

b
a γ︸ ︷︷ ︸

0

Y γ)+Xα(∂αY b +HH
Γ

b
α c︸ ︷︷ ︸

0

Y c +HH
Γ

b
α γ︸ ︷︷ ︸

Γ b
α γ

Y γ +HH
Γ

b
α γ︸ ︷︷ ︸

0

Y γ)

+(yε
∂ε Xα)(∂αY b︸ ︷︷ ︸

0

+HH
Γ

b
α c︸ ︷︷ ︸

0

Y c +HH
Γ

b
α γ︸ ︷︷ ︸

0

Y γ +HH
Γ

b
α γ︸ ︷︷ ︸

0

Y γ)

= Xα
∂αY b +Xα

Γ
b

α γY γ = Xα

(
∂αY b +Γ

b
α γY γ

)
© 2021 BISKA Bilisim Technology
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by virtue of (7), (9) and (16). Secondly, if J = β , we have(
HH

∇ccX̃ (
HHỸ )

)β

= ccX̃aHH
∇a(

HHỸ )β +cc X̃α HH
∇α(

HHỸ )β +cc X̃α HH
∇α(

HHỸ )β

= XaHH
∇a(

HHỸ )β +Xα HH
∇α(

HHỸ )β +(yε
∂ε Xα)HH

∇α(
HHỸ )β

= Xa(∂aY β︸ ︷︷ ︸
0

+HH
Γ

β
a c︸ ︷︷ ︸

0

Y c +HH
Γ

β
a γ︸ ︷︷ ︸

0

Y γ +HH
Γ

β
a γ︸ ︷︷ ︸

0

Y γ)+Xα(∂αY β +HH
Γ

β

α c︸ ︷︷ ︸
0

Y c +HH
Γ

β

α γ︸ ︷︷ ︸
Γ

β
α γ

Y γ +HH
Γ

β

α γ︸ ︷︷ ︸
0

Y γ)

+(yε
∂ε Xα)(∂αY β︸ ︷︷ ︸

0

+HH
Γ

β

α c︸ ︷︷ ︸
0

Y c +HH
Γ

β

α γ︸ ︷︷ ︸
0

Y γ +HH
Γ

β

α γ︸ ︷︷ ︸
0

Y γ)

= Xα
∂αY β +Xα

Γ
β

α γY γ = Xα

(
∂αY β +Γ

β

α γY γ

)
by virtue of (7), (9) and (16). Thirdly, if J = β , then we have(

HH
∇

HH
ccX̃

Ỹ
)β

= ccX̃aHH
∇a(

HHỸ )β +cc X̃α HH
∇α(

HHỸ )β +cc X̃α HH
∇α(

HHỸ )β

= XaHH
∇a

(
−yε

Γ
β

ε σY σ

)
+Xα HH

∇α

(
−yε

Γ
β

ε σY σ

)
+(yε

∂ε Xα)HH
∇α

(
−yε

Γ
β

ε σY σ

)
= −Xa

∂aΓ
β

ε σ︸ ︷︷ ︸
0

yεY σ −Xa
∂ayε︸︷︷︸

0

Γ
β

ε σY σ −Xa
Γ

β

ε σ yε
∂aY σ︸ ︷︷ ︸

0

−Xα
∂αΓ

β

ε σ yεY σ

−Xα
∂α yε︸︷︷︸

0

Γ
β

ε σY σ −Xα
Γ

β

ε σ yε
∂αY σ +Xα yε

∂εΓ
β

α σY σ −Xα yϕ
∂ϕΓ

β

α σY σ +Xα yϕ
∂αΓ

β

ϕ σY σ

−Xα yϕ
Γ

β

ϕ φΓ
φ

α σY σ +Xα yϕ
Γ

β

α φΓ
φ

ϕ σY σ −Xα
Γ

β

α σΓ
σ

ε φ yεY φ −Γ
β

ε σ yε Xα
∂αY σ +Γ

β

ε σ yε Xα
∂αY σ

= −Γ
β

ε σ yε Xα
∂αY σ +Γ

β

ϕ φΓ
φ

α σ Xα yϕY σ

by virtue of (7), (9) and (16). Thus, we have HH∇ccX̃ (
HHỸ ) = HH (∇XY ).

Theorem 5. Let X̃ be a projectable vector field on Mn with projections X on Bm. If Y ∈ ℑ1
0(Bm), then

HH
∇HH X̃ (

vvY ) = vv (∇XY ) .

Proof. If X̃ ∈ ℑ1
0(Mn), Y ∈ ℑ1

0(Bm) and


(

HH∇HH X̃ (
vvY )

)b(
HH∇HH X̃ (

vvY )
)β(

HH∇HH X̃ (
vvY )

)β

 are the components of
(

HH∇HH X̃ (
vvY )

)J with respect to

the coordinates (xb,xβ ,xβ ) on t(Bm), then we have(HH
∇HH X̃ (

vvY )
)J

=HH X̃aHH
∇a(

vvY )J +HH X̃α HH
∇α(

vvY )J +HH X̃α HH
∇α(

vvY )J .

Firstly, if J = b, we have(HH
∇HH X̃ (

vvY )
)b

= HH X̃aHH
∇a(

vvY )b +HH X̃α HH
∇α(

vvY )b +HH X̃α HH
∇α(

vvY )b

= Xa(∂a
vvY b︸︷︷︸

0

+HH
Γ

b
a c

vvY c︸︷︷︸
0

+HH
Γ

b
a γ

vvY γ︸︷︷︸
0

+HH
Γ

b
a γ︸ ︷︷ ︸

0

(vvY )γ)

+Xα(∂α
vvY b︸︷︷︸

0

+HH
Γ

b
α c

vvY c︸︷︷︸
0

+HH
Γ

b
α γ

vvY γ︸︷︷︸
0

+HH
Γ

b
α γ︸ ︷︷ ︸

0

(vvY )γ)

+HH X̃α(∂α
vvY b︸︷︷︸

0

+HH
Γ

b
α c

vvY c︸︷︷︸
0

+HH
Γ

b
α γ

vvY γ︸︷︷︸
0

+HH
Γ

b
α γ︸ ︷︷ ︸

0

(vvY )γ)

= 0
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by virtue of (5), (9) and (16). Secondly, if J = β , we have(HH
∇HH X̃ (

vvY )
)β

= HH X̃a HH
∇a(

vvY )β︸ ︷︷ ︸
0

+HH X̃α HH
∇α(

vvY )β︸ ︷︷ ︸
0

+HH X̃α HH
∇α(

vvY )β︸ ︷︷ ︸
0

= Xa(∂a
vvY β︸︷︷︸

0

+HH
Γ

β
a c

vvY c︸︷︷︸
0

+HH
Γ

β
a γ

vvY γ︸︷︷︸
0

+HH
Γ

β
a γ︸ ︷︷ ︸

0

(vvY )γ)

+Xα(∂α
vvY β︸︷︷︸

0

+HH
Γ

β

α c
vvY c︸︷︷︸

0

+HH
Γ

β

α γ
vvY γ︸︷︷︸

0

+HH
Γ

β

α γ︸ ︷︷ ︸
0

(vvY )γ)

+HH X̃α(∂α
vvY β︸︷︷︸

0

+HH
Γ

β

α c
vvY c︸︷︷︸

0

+HH
Γ

β

α γ
vvY γ︸︷︷︸

0

+HH
Γ

β

α γ︸ ︷︷ ︸
0

(vvY )γ)

= 0

by virtue of (5), (9) and (16). Thirdly, if J = β , then we have(HH
∇HH X̃ (

vvY )
)β

= HH X̃aHH
∇a

vvY β︸︷︷︸
0

+HH X̃α HH
∇α

vvY β︸︷︷︸
0

+HH X̃α HH
∇α

vvY β︸︷︷︸
0

= Xa(∂a(
vvY )β︸ ︷︷ ︸
0

+HH
Γ

β
a c(

vvY )c +HH
Γ

β
a γ︸ ︷︷ ︸

0

(vvY )γ +HH
Γ

β
a γ︸ ︷︷ ︸

0

(vvY )γ)

+Xα(∂α(
vvY )β +HH

Γ
β

α c(
vvY )c +HH

Γ
β

α γ (
vvY )γ︸ ︷︷ ︸

0

+HH
Γ

β

α γ︸ ︷︷ ︸
Γ

β
α γ

(vvY )γ)

+
(
−yε

Γ
α

ε βY β

)
(∂αY β︸ ︷︷ ︸

0

+HH
Γ

β

α c
vvY c︸︷︷︸

0

+HH
Γ

β

α γ
vvY γ︸︷︷︸

0

+HH
Γ

β

α γ︸ ︷︷ ︸
0

(vvY )γ)

= Xα
∂αY β +Xα

Γ
β

α γY γ = Xα

(
∂αY β +Γ

β

α γY γ

)
= (∇XY )β

by virtue of (5), (9) and (16). On the other hand, we know that vv (∇XY ) have the components

vv (∇XY ) =

 0
0
(∇XY )β


with respect to the coordinates (xb,xβ ,xβ ) on t(Bm). Thus, we have HH∇HH X̃ (

vvY ) = vv (∇XY ) in t(Bm).

5 Conclusion

In this paper, we consider horizontal lifting problem of projectable linear connection on M to the semi-tangent bundle tM.
In this context, the following equations have been obtained:

(i) HH∇vvX (
vvY ) = 0,

(ii) HH∇vvX (
HHỸ ) = 0,

(iii) HH∇ccX̃ (
HHỸ ) = HH (∇XY ) ,

(iv) HH∇HH X̃ (
vvY ) = vv (∇XY ) .

© 2021 BISKA Bilisim Technology
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