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Abstract: In this work, a novel technique called ”adaptive modified projective combination synchronization (AMPCS)” for
synchronizing non-identical fractional-order hyper-chaotic systems with unknown parameters has been introduced. The purpose of the
suggested technique is to ensure synchronization between two non-identical master systems and one slave system by employing a
diagonal matrix, Lyapunov stability theory, adaptive control, adaptive law of parameter, and some techniques of fractional calculus.
An application of synchronization in secure communication has been performed. The important feature of the suggested (AMPCS)
technique is to create high security in secure communication.
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1 Introduction

One of the most well-known strategies of chaos synchronization is the adaptive modified projective synchronization
planned by Park in 2008 [1]. The advantages of this strategy are the various sorts of synchronization like projective
synchronization, anti synchronization, and complete synchronization may be found. In 2011 Runzi et al. [2] proposed a
new strategy for synchronizing two drive systems and one response system in which the trajectories of two drive systems
and one response system become identical, it referred to as combination synchronization. Nowadays, there are several
kinds for combination synchronization, projective combination synchronization [4], adaptive generalized combination
synchronization [5], dual combination synchronization [6,7], combination-combination synchronization [8],
dual-function projective synchronization [9]. This has actuated the researchers to develop a novel strategy up a diagonal
matrix we synchronize both two different drive systems and one response system. The novelty and contribution of this
research are to propose an easy technique to accomplish modified projective combination synchronization between
almost all non-identical fractional-order chaotic and hyper-chaotic systems with unknown parameters by employing
Lyapunov stability theory, diagonal matrix, adaptive control, the parameter update laws and some techniques of
fractional calculus. Three points of interest that can make this study a great deal attractive, the primary we tend to apply
the (AMPCS) technique for synchronizing non-identical fractional-order chaotic and hyper-chaotic systems with
unknown or known parameters. The secondary, the proposed (AMPCS) technique will synchronize practically almost all
non-identical fractional-order chaotic and hyper-chaotic systems. Then thirdly, this technique creates high security in
secure communication and cryptography.

This paper is organized as follows:
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in section 2, we present some basic fractional calculus that we will utilize in our primary outcomes. In section 3,
provides the (AMPCS) scheme. In section 4, we take three non-identical fractional-order hyper-chaotic systems with
unknown parameters (Lorenz system, Chen system, and Lü system) to display the effectiveness and viability of the
proposed (AMPCS) technique. Application of APMCS in secure communication is drawn in Section 5. Finally, section 6
points out concluding remarks.

2 Some basic about fractional calculus

We begin this section with the Gamma function playing a key role in the theory of fractional calculus. Then, we present
the definition and some properties of the Caputo fractional derivative that we will use in our main results.
The Gamma function Γ (z) is defined by the integral [10]:

Γ (z) =
∞∫

0

e−ttz−1dt. (1)

The Caputo fractional derivative operator of order q ∈ R+ of function x(t) is defined by [10]:

cDq
t x(t) =

1
Γ (n−q)

t∫
0

(t− s)n−q−1x(n)(s)ds, (2)

where t ≥ 0,n−1 < q < n ∈ Z+ and x(n)(s) denotes the n-th derivative of x with respect to s.

Lemma 1. [12] Let x ∈ Rn be a continuous and derivable function, then ∀q ∈ (0.1)

1
2

cDq
t [x

T (t)x(t)]≤ xT (t)cDq
t x(t). (3)

Lemma 2. [10] The Caputo fractional derivative is a linear operator

cDq
t (x(t)+ y(t)) = cDq

t x(t)+ cDq
t y(t)

In order to investigate the stability of equilibrium points of fractional-order systems, we consider the following fractional-
order system:

cDq
t x(t) = F(x(t)) (4)

where 0 < q < 1 and x ∈ Rn.

Theorem 1. [11] If there exists a positive definite Lyapunov function V (x) such that Dq
t V (x)≤ 0 , for all t ≥ t0, then the

trivial solution of system (4) is asymptotically stable.

3 The scheme of (AMPCS)

Consider the two fractional-order drive systems with unknown parameters, respectively, as follows:

cDq
t x = f (x)+F(x)α (5)

cDq
t y = g(y)+G(y)β (6)
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and the one fractional-order response system with unknown parameters as:

cDq
t z = h(z)+H(y)δ +u (7)

where 0 < q < 1 are the fractional-orders, f (x),g(y),h(z) ∈ Rn, are vector functions; F(x) ∈ Rn×m,G(y) ∈ Rn×p,
H(z) ∈ Rn×r are matrix functions; α ∈ Rm,β ∈ Rp,δ ∈ Rr are unknown parameter vectors. Our goal is to design
(MPCS) between two drive systems (5,6) and one response system (7) by constructing an effective adaptive controller.

In this paper, the combination synchronization error between the two drive and response systems is defined by

e = (x+ y)−θz,

where θ is diagonal matrix which called scaling factor matrix θ = diag(θ11,θ22, . . . ,θnn), θii 6= 0, (i = 1 . . .n). Then

[c]l cDq
t e = ( cDq

t x+ cDq
t y)−θ

cDq
t z = ( f (x)+F(x)α +g(y)+G(y)β )−θh(z)−θH(z)δ −θu. (8)

Theorem 2. The controller u is proposed as the following

u = θ
−1 f (x)+θ

−1F(x)α̃ +θ
−1g(y)+θ

−1G(y)β̃ −h(z)−H(z)δ +θ
−1ke, (9)

and adaptive law of parameter is taken as 
cDq

t α̃ = [F(x)]T e+ ε(α− α̃),
cDq

t β̃ = [G(y)]T e+η(β − β̃ ),
cDq

t δ̃ = [−H(z)]T θe+ν(δ − δ̃ )

(10)

Then, the (MPCS) between two drive systems (5,6) and the one response system (7) can be achieved by using the controller
(9) and parameter updating law (10).

Proof. According to the controller u, we get:

cDq
t e = F(x)(α− α̃)+G(y)(β − β̃ )−θH(z)(δ − δ̃ )− ke.

The Lyapunov function is chosen as
V = 1

2 XT X , (11)

where X = (eT ,(α− α̃)T ,(β − β̃ )T ,(δ − δ̃ )T ). Next, taking the fractional-order derivative of the Lyapunov function

cDq
t V = cDq

t (
1
2 XT X).

Now, from lemma (1) we get:

cDq
t V = cDq

t (
1
2 XT X)≤ XT cDq

t X

from which we get

cDq
t V = eT cDq

t e− (α− α̃)T cDq
t α̃− (β − β̃ )T cDq

t β̃ − (δ − δ̃ )T cDq
t δ̃

= −eT ke− (α− α̃)T
ε(α− α̃)− (β − β̃ )T

η(β − β̃ )− (δ − δ̃ )T
ν(δ − δ̃ ). (12)

Let λ = min(ki,ε j,ηκ ,δι .)1≤ i≤ n,1≤ j ≤ m,1≤ κ ≤ p,1≤ ι ≤ r. Then

cDq
t V = −λ (eT e+(α− α̃)T (α− α̃)+(β − β̃ )T )(β − β̃ )+(δ − δ̃ )T (δ − δ̃ ))

≤ −λ ‖ X ‖2 (13)

© 2021 BISKA Bilisim Technology

www.ntmsci.com


98 T. Houmor, H. Zerimeche and A. Berkane: A secure communication Scheme based on adaptive modified...

(1) (2) (3)

Fig. 1: (1): Strange attractors of FO hyper-chaotic Lorenz system. (2): Strange attractors of FO hyper-chaotic Chen system.
(3): Strange attractors of FO hyper-chaotic Lü system.

Then the error system is globally asymptotically stable . Therefore, the two drive systems (5,6) and one response system
(7) synchronized in the sense of (MPCS).

4 Example

In this section, we apply (AMPCS) for synchronizing three different fractional-order hyper-chaotic systems. We take the
fractional-order Lorenz system [16] and the fractional-order Chen system [17] as the two drive systems and the fractional-
order Lü system [18] as the one response system. The first drive system is presented by:

cDq
t x1 = α1(x2− x1)+ x4

cDq
t x2 = α2x1− x1x3− x2

cDq
t x3 = x1x2−α3x3

cDq
t x4 =−x2x3 +α4x4

(14)

Where (x1,x2,x3,x4)
T is the state vector of the system. When the parameters are selected as α1 = 10,α2 = 28,α3 =

8/3,α4 = −1 and q = 0.98 and the initial value is (x1(0),x2(0),x3(0),x4(0))T = (1.5,3,−1,3), system exhibits chaotic
behaviors as shown in Fig.1.1. The second drive system is presented by:

cDq
t y1 = β1(y2− y1)+ y4

cDq
t y2 = β2y1− y1y3 +β3y2

cDq
t y3 = y1y2−β4y3

cDq
t y4 = y2y3 +β5y4

(15)

Where (y1,y2,y3,y4)
T is the state vector of the system. This system exhibits chaotic behaviors when β1 = 35, β2 = 7,

β3 = 12, β4 = 3, β5 = 0.3, q = 0.98 and the initial value is y(0) = (2,3,5). Attractors of the fractional-order Lü system
are shown in Fig.1.2. The response system is

cDq
t z1 = δ1(z2− z1)+ z4 +u1

cDq
t z2 =−z1z3 +δ2z2 +u2

cDq
t z3 = z1z2−δ3z3 +u3

cDq
t z4 = z1z3 +δ4z4 +u4

(16)
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where (z1,z2,z3,z4)
T is the state vector of the system u= (u1,u2,u3,u4)

T is the controller.. When δ1 = 36, δ2 = 20, δ3 = 3,
δ4 = −1, q = 0.98, (u1,u2,u3,u4) = (0,0,0) and the initial value is x(0) = (0.2,0,2), system exhibits chaotic behaviors
as shown in Fig.1.3. Compare systems (14,15) and (16) with systems (5,6) and (7), we get

f (x) =


x4

−x2− x1x3

x1x2

−x2x3

 , F(x) =


x2− x1 0 0 0

0 x1 0 0
0 0 −x3 0
0 0 0 x4


α = (α1,α2,α3,α4)

T is the unknown parameter vector of the system (14).

g(y) =


y4

−y1y3

y1y2

y2y3

 , G(y) =


y2− y1 0 0 0 0

0 y1 y2 0 0
0 0 0 −y3 0
0 −y3 0 0 y4


β = (β1,β2,β3,β4,β5)

T is the unknown parameter vector of the system (15).

h(z) =


z4

−z1z3

z1z2

z1z3

, H(z) =


z2− z1 0 0 0

0 z2 0 0
0 0 −z3 0
0 0 0 z4


δ = (δ1,δ2,δ3,δ4)

T is the unknown parameter vector of the system (16). According to theorem (2), the controller is
taken as:

u =θ
−1 f (x)+θ

−1F(x)α̃ +θ
−1g(y)+θ

−1G(y)β̃ −h(z)−H(z)δ +θ
−1ke

=


1

θ11
0 0 0

0 1
θ22

0 0
0 0 1

θ33
0

0 0 0 1
θ44




x4

−x2− x1x3

x1x2

−x2x3

+


1

θ11
0 0 0

0 1
θ22

0 0
0 0 1

θ33
0

0 0 0 1
θ44




x2− x1 0 0 0
0 x1 0 0
0 0 −x3 0
0 0 0 x4




α̃1

α̃2

α̃3

α̃4

+


1

θ11
0 0 0

0 1
θ22

0 0
0 0 1

θ33
0

0 0 0 1
θ44




y4

−y1y3

y1y2

y2y3



+


1

θ11
0 0 0

0 1
θ22

0 0
0 0 1

θ33
0

0 0 0 1
θ44




y2− y1 0 0 0 0
0 y1 y2 0 0
0 0 0 −y3 0
0 −y3 0 0 y4




β̃1

β̃2

β̃3

β̃4

β̃5

−


z4

−z1z3

z1z2

z1z3



−


z2− z1 0 0 0

0 z2 0 0
0 0 −z3 0
0 0 0 z4




δ̃1

δ̃2

δ̃3

δ̃4

+


1

θ11
0 0 0

0 1
θ22

0 0
0 0 1

θ33
0

0 0 0 1
θ44




k1e1

k2e2

k3e3

k4e4


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Fig. 2: State trajectories of FO Lorenz, FO Chen and FO Lü hyper-chaotic systems for θ11 = 1 , θ22 = 0.5 and θ33 =−1

Fig. 3: State trajectories of adaptive parameters (17) and (18).

and, the updating laws to identify the unknown system parameters can be designed as


cDq

t α̃1 = (x2− x1)e1 + ε1(α1− α̃1)
cDq

t α̃2 = x1e2 + ε2(α2− α̃2)
cDq

t α̃3 =−x3e3 + ε3(α3− α̃3)
cDq

t α̃4 = x4e4 + ε2(α4− α̃4)

,



cDq
t β̃1 = (y2− y1)e1 +η1(β1− β̃1)

cDq
t β̃2 = y1e2 +η2(β2− β̃2)

cDq
t β̃3 = y2e2 +η3(β3− β̃3)

cDq
t β̃4 =−y3e3 +η4(β4− β̃4)

cDq
t β̃5 = y4e4 +η5(β5− β̃5)

(17)

and 
cDq

t δ̃1 =−θ11(z2− z1)e1 +ν1(δ1− δ̃1)
cDq

t δ̃2 =−θ22z2e2 +ν2(δ2− δ̃2)
cDq

t δ̃3 = θ33z3e3 +ν3(δ3− δ̃3)
cDq

t δ̃4 =−θ44z4e3 +ν4(δ4− δ̃4)

(18)

For this numerical simulation, the Adams-Bashforth-Moulton method has been used. Also, a time step size of 0.01 was
employed. The initial values of the two drive systems and the response system are
x(0) = (1.5,3,−1,3),y(0) = (−1,−3,2,5) and z(0) = (−10,−14,12,10), respectively, q = 0.98 and the initial values of
the uncertain parameters are arbitrarily taken as α̃(0) = (20,35,−2,−5), β̃ (0) = (40,15,20,6,2), δ (0) = (40,35,5,2)
and the initial states of the error system are e(0) = (−9.5,−2,5,13); εi = 1,(i = 1 . . .4),ηi = 1,(i = 1 . . .5) and
δi = 1(i = 1 . . .4), the control gain is given by ki = 1,(i = 1 . . .4), we choose arbitrarily the scaling matrix as
θ11 = 1,θ22 = 0.5,θ33 =−1,θ33 =−0.5. The numerical simulation is shown in Fig.2.
The state trajectories for the behavior of the error system is illustrated in Fig.4, which shows the error vectors converge
to zero in infinite time with the control law. Fig.3 illustrates the estimated values of the unknown parameter tend to
α1 = 10,α2 = 28,α3 = 8/3,α3 = −1, β1 = 35,β2 = 7,β3 = 12,β4 = 3,β5 = 0.3, and δ1 = 36,δ2 = 20,δ3 = 3,δ4 = −1
as time goes to infinity, respectively.
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Fig. 4: State trajectories of the synchronization error system.

(1) (2) (3)

Fig. 5: (1) the original message signal. (2) the encrypted signal. (3) decrypted signal.

5 Application to secure communication

In this section, we apply the proposed (AMPCS) to secure communication. An original message signal
m(t) = 3 ∗ sin(πt/2) is mixed with master signals x1 + y1 and encrypted as s(t). s(t) is attached with slave signal. The
decrypted message signal is given by mm(t) = s(t)− z1. The original message signal is recovered by performing the
desired adaptive modified projective combination synchronization on applying controllers at the receiving end. Fig.5 (1),
(2), (3) gives the original message signal, the encrypted signal and decrypted signal respectively.

6 Conclusions

(AMPCS) of fractional-order hyperchaotic systems with uncertain parameters are studied in the present article. By
utilizing a diagonal matrix, Lyapunov stability theory, adaptive control and some techniques of fractional calculus. This
technique applies particularly to almost all fractional-order chaotic and hyper-chaotic systems. Furthermore, various
kinds of synchronization could be found by this technique such as projective combination synchronization, anti
combination synchronization and complete combination synchronization. The suggested scheme of (AMPCS) will be
helpful for a specialist during their practical applications in the field of secure communication and cryptography. In the
future direction, we can investigate another control for improving the modified projective combination synchronization
technique.
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