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Abstract: In this study, some novel approaches related to the delay-independent stability for Riemann Liouville’s nonlinear fractional
neutral systems (RL-NFNSs) are presented. These approaches are based on the Lyapunov functional method and the linear matrix
inequality (LMI) technique. By constructing a meaningful Lyapunov functional associated with fractional integral and derivative terms,
several sufficient conditions to derive delay-independent asymptotically stability of the equilibrium point are constructed. Illustrative
examples demonstrate the validity and effectiveness of the proposed theoretical results. MATLAB-Simulink is applied to illustrate the
behaviors of the paths of solutions of the considered system for a special case. All these results are expected to be used in the study of
nonlinear fractional neutral systems.
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1 Introduction

Fractional calculus is concerned with the derivatives and integrals of optional non-integer order. Fractional calculus has
piqued the interest of many researchers as an extension of integer-order differentiation and integration. To investigate the
stability of fractional neutral systems is more difficult than the stability of integer-order neutral systems. Therefore,
investigating the stability of fractional neutral systems, which plays an important role in both theory and applications, is
necessary and interesting. Initially, fractional order derivatives as pure mathematical theory are studied only by
mathematicians. In the last few decades, many researchers pointed that fractional order calculus, that is, non-integer
order calculus is also applicable to many fields, such as control systems [1,2], economics [3], diffusion [4], biological
systems [5,6] , HIV infection models [7], viscoelastic materials [8], neural networks [9], and so on. Fractional dynamical
systems in both Caputo’s and RL sense have recently gained prominence as a dominant method for depicting and
modeling certain physical processes with heredity and memory characteristics [10].

Investigating the stability of non-integer order systems is more complex than the integer-order systems. When the
relevant literature is reviewed, various approaches to the stability of fractional order linear and nonlinear systems have
attracted attention in recent years. The authors used a variety of techniques to conduct their research, including the
Lyapunov functional method, LMI, integral inequalities, perturbation techniques, model transformations, and so on
[11-27]. In particular, the Lyapunov functional method presents a very powerful approach to analyzing the qualitative
behaviors of fractional order systems. However, the non-integer derivative of the Lyapunov functionals is
computationally quite difficult. That is the main reason why there are very few studies for stability of delayed fractional
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systems.

This research paper, which is based on the above discusses, deals with the asymptotically stability of RL-NFNSs. When
compared to integer-order neutral systems with delay, it is seen that the works related to the stability of delayed
fractional order, that is, non-integer order neutral systems are still in the process of benefiting. The main purpose and
contribution of this study can be summarized as follows:

NFNS has a more general structure than linear fractional systems. It is not easy to calculate fractional derivatives of
Lyapunov functionals constructed for these systems. To overcome the difficulty arising from fractional derivatives and
time delays, we derived an appropriate Lyapunov functional that includes the terms fractional derivative and integral. The
proposed method avoids calculating non-integer order derivative of Lyapunov functionals. Therefore, the method used in
the study provides an advantage in terms of directly calculating integer ordered derivatives of Lyapunov functions.

The purpose of this study is to search the delay-independent asymptotically stability of RL-NFNSs with a descriptive
system approach. For this, some basic inequalities, Lyapunov functional method and LMI technique were used.

Two examples are presented to demonstrate the applicability of the proposed theoretical results for the system considered
in this study. MATLAB-Simulink was used to illustrate the behaviors of the solutions of the systems discussed in the
examples.

Finally, we consider that the theoretical findings of this study would add to the existing literature and studies on the
qualitative properties of NFNS.

2 Preliminaries

In this study, which motivated by above discussions, we consider the following RL-NFNS with delay

RL
t0 Dq

t x(t) =−Ax(t)+Bx(t−δ (t))+CRL
t0 Dq

t x(t−δ (t))+F f (x(t)+Gg(x(t−δ (t)), (1)

with the given initial condition
RL
t0 Dq−1

t x(t) = ϑ(t), t ∈ [−δM, 0], (2)

where x(t) ∈ ℜn is state vector; RL
t0 Dq

t x(·) states a q order RL derivative of x(·) with q ∈ (0, 1) ; A ∈ ℜn×n is a diagonal
matrix and B, C, F, G ∈ℜn×n are constant matrices with ‖C‖< 1; f and g ∈ℜn represent the nonlinear terms of system
(1) with respect to x(t) and x(t−δ (t)),respectively, which satisfy that

‖ f (x(t))‖ ≤ λ1 ‖x(t)‖ , ‖g(x(t−δ (t)))‖ ≤ λ2 ‖x(t−δ (t))‖ , (3)

where λ1 ≥ 0 and λ2 ≥ 0 are given positive constants.

Constraint (3) can be rewritten as

f T (x(t)) f (x(t))≤ λ
2
1 xT (t)x(t), gT (x(t−δ (t)))g(x(t−δ (t)))≤ λ

2
2 xT (t−δ (t))x(t−δ (t)). (4)
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Moreover, the differentiable function δ (t) is a variable delay and for positive constants δM and δd ,

0≤ δ (t)≤ δM, δ̇ (t)≤ δd < 1 . (5)

To prove our main result, we need the following property, basic definition and lemma.

Definition 1. ([21]) The RL fractional integral and RL fractional derivative are defined as, respectively

t0D−q
t x(t) =

1
Γ (q)

t∫
t0

(t− s)q−1x(s)ds, (q > 0) ,

t0Dq
t x(t) =

1
Γ (n−q)

dn

dtn

t∫
t0

x(s)

(t− s)q+1−n ds, (n−1≤ q < n) .

Proposition 1. ([21]) For x(t) ∈ℜn, if p > q > 0, then the following relation holds

t0Dq
t (t0D−p

t x(t)) = t0Dq−p
t x(t).

Lemma 1. ([18]) For a vector of differentiable function x(t) ∈ℜn and constant matrix W =W T (≥ 0) ∈ℜn×n, then

1
2 t0 Dq

t
{

xT (t)Wx(t)
}
≤ xT (t)W t0Dq

t {x(t)} , q ∈ (0,1),

for all t ≥ t0.

3 Asymptotic Stability Results

We will conduct a delay-independent stability analysis of uncertain RL-NFNS with time varying delay and nonlinear
uncertainties defined by (1) in this section. We can reconstruct system (1) using the descriptor system below:

RL
t0 Dq

t x(t) =y(t)

y(t) =−Ax(t)+Bx(t−δ (t))+CRL
t0 Dq

t x(t−δ (t))+F f (x(t)+Gg(x(t−δ (t)) (6)

Theorem 1. Let ‖C‖ < 1. The RL-NFNS described by (1) with (2) is asymptotically stable, if there exist real matrices
K2,K3 and symmetric matrices K1 > 0,L1 > 0,L2 > 0 and scalars εi,λi ≥ 0, (i = 1,2) such that the following LMI holds

Ω =
(
Ω jk
)
< 0, (7)

where Ω is a 6 × 6 symmetric matrix with the elements Ω11 = −(KT
2 A + AK2) + L1 + ε1λ 2

1 I,Ω12 =

K1−KT
2 −AK3,Ω13 = KT

2 B,Ω14 = KT
2 C,Ω15 = KT

2 F,Ω16 = KT
2 G,Ω22 = −(K3 +KT

3 ) + L2,Ω23 = KT
3 B,Ω24 = KT

3 C,

Ω25 = KT
3 F,Ω26 = KT

3 G,Ω33 =−(1−δd)L1 + ε2λ 2
2 I,Ω34 = Ω35 = Ω36 = 0,Ω44 =−(1−δd)L2,Ω45 = Ω46 = 0,Ω55 =

−ε1I,Ω56 = 0,Ω66 =−ε2I.

Proof. For this theorem, we define the following descriptor type Lyapunov functional including the fractional derivative
and integral terms

W (t) =W1(t)+W2(t), (8)
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where

W1(t) = RL
t0 Dq−1

t [(xT (t) yT (t))

[
I 0
0 0

][
K1 0
K2 K3

](
x(t)
y(t)

)
],

W2(t) =
t∫

t−δ (t)

xT (s)L1x(s)ds+
t∫

t−δ (t)

yT (s)L2y(s)ds.

From Definition 1, we know that W1(t) and W2(t) are positive-definite functionals. Here, the functional W (t) corresponds
to the descriptor system and the delay-independent stability with respect to the discrete delays (see, [28]). By Property 1
and Lemma 1, computing the differential of W (t) along the solutions of RL-NFNS in (1)

Ẇ1(t) =RL
t0 Dq

t [(xT (t) yT (t))

[
I 0
0 0

][
K1 0
K2 K3

](
x(t)
y(t)

)
]

≤2xT (t)K1
RL
t0 Dq

t (x(t))

=2(xT (t) yT (t))

[
K1 KT

2

0 KT
3

](
RL
t0 Dq

t (x(t))
0

)
.

From descriptor system (6), we have

Ẇ1(t)≤2(xT (t) yT (t))

[
K1 KT

2

0 KT
3

]y(t)
0


=2(xT (t) yT (t))

[
K1 KT

2

0 KT
3

](
y(t)

−y(t)−Ax(t)+Bx(t−δ (t))+Cy(t−δ (t))

)

+2(xT (t) yT (t))

[
K1 KT

2

0 KT
3

](
0

F f (x(t)+Gg(x(t−δ (t))

)
=− xT (t)(KT

2 A+AK2)x(t)+2xT (t)(K1−KT
2 −AK3)y(t)

− yT (t)(K3 +KT
3 )y(t)+2xT (t)KT

2 Bx(t−δ (t))

+2yT (t)KT
3 Bx(t−δ (t))+2xT (t)KT

2 Cy(t−δ (t))

+2yT (t)KT
3 Cy(t−δ (t))+2xT (t)KT

2 F f (x(t))

+2xT (t)KT
2 Gg(x(t−δ (t)))+2yT (t)KT

3 F f (x(t))

+2yT (t)KT
3 Gg(x(t−δ (t))). (9)

Computing the differential of W2(t), we obtained

Ẇ2(t) =xT (t)L1x(t)− (1− δ̇ (t))xT (t−δ (t))L1x(t−δ (t))

+ yT (t)L2y(t)− (1− δ̇ (t))yT (t−δ (t))L2y(t−δ (t))

≤xT (t)L1x(t)− (1−δd)xT (t−δ (t))L1x(t−δ (t))

+ yT (t)L2y(t)− (1−δd)yT (t−δ (t))L2y(t−δ (t)). (10)

© 2021 BISKA Bilisim Technology



NTMSCI 9, No. 2, 48-56 (2021) / www.ntmsci.com 52

Therefore, according to (9) and (10), we can conclude that

Ẇ (t) = Ẇ1(t)+Ẇ2(t)≤ η
T (t)Ω0η(t),

where

η
T =

[
xT (t) yT (t) xT (t−δ (t)) yT (t−δ (t)) f T (x(t)) gT (x(t−δ (t)))

]
,

and

Ω0 =



−(KT
2 A+AT K2)+L1 K1−KT

2 −AK3 KT
2 B KT

2 C KT
2 F KT

2 G
∗ −(K3 +KT

3 )+L2 KT
3 B KT

3 C KT
3 F KT

3 G
∗ ∗ −(1−δd)L1 0 0 0
∗ ∗ ∗ −(1−δd)L2 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


.

Existence of real matrices K2,K3 and symmetric matrices K1 > 0,L1 > 0 and L2 > 0 is a necessary condition for
asymptotically stability of system (1) such that

η
T (t)Ω0η(t)≤ 0, (11)

for all η(t) 6= 0, where (11) means that it is semi negative definite whenever neither x(t) nor x(t−δ (t))is zero. Note that
for any ε1,ε2 ≥ 0,it follows from (4) that

η
T (t)Ω0η(t)+ ε1(λ

2
1 xT (t)x(t)− f T (x(t)) f (x(t)))+ ε2(λ

2
2 xT (t−δ (t))x(t−δ (t))

−gT (x(t−δ (t)))g(x(t−δ (t))))< 0,

for ∀η(t) 6= 0. Thus, if there exist real matrices K2,K3 and symmetric matrices K1 > 0,L1 > 0,L2 > 0 and scalar ε1,ε2 ≥ 0
such that LMI (7) is satisfied, then the fractional system (1) is asymptotically stable.

Remark 1. If the time delay δ (t) = δ is a constant, the following corollary is easily obtained.

Corollary 1. Let ‖C‖< 1. The RL-NFNS defined by (1) with (2) and δ (t) = δ (constant) is asymptotically stable, if there
exist real matrices K2,K3 and symmetric matrices K1 > 0,L1 > 0,L2 > 0 and scalars εi,λi ≥ 0, (i = 1,2) such that the
following LMI holds

Ψ =
(
Ψjk
)
< 0,

where Ψ is a 6×6 symmetric matrix with the elements Ψ11 =−(KT
2 A+AK2)+L1 + ε1λ 2

1 I,Ψ12 = K1−KT
2 −AK3,Ψ13 =

KT
2 B,Ψ14 = KT

2 C,Ψ15 = KT
2 F,Ψ16 = KT

2 G,Ψ22 = −(K3 + KT
3 ) + L2,Ψ23 = KT

3 B, Ψ24 = KT
3 C, Ψ25 = KT

3 F, Ψ26 =

KT
3 G, Ψ33 =−L1 + ε2λ 2

2 I, Ψ34 =Ψ35 =Ψ36 = 0,Ψ44 =−L2, Ψ45 =Ψ46 = 0, Ψ55 =−ε1I, Ψ56 = 0, Ψ66 =−ε2I.

Remark 2. Consider system (1) with C = 0;

RL
t0 Dq

t x(t) =−Ax(t)+Bx(t−δ (t))+F f (x(t)+Gg(x(t−δ (t)), (12)

© 2021 BISKA Bilisim Technology

www.ntmsci.com


53 Y. Altun: Delay-independent stability criteria ...

with the given initial condition

RL
t0 Dq−1

t x(t) = ϑ(t), t ∈ [−δM, 0], (13)

where x(t) ∈ ℜn is state vector; t0Dq
t x(·)states a q order RL derivative of x(·) with q ∈ (0, 1) ; A ∈ ℜn×nis a diagonal

matrix and B, F, G ∈ ℜn×n are constant matrices; f and g ∈ ℜn satisfying the conditions in (4) represent the nonlinear
terms of system (12) with respect to x(t) and x(t− δ (t)),respectively. Here, the differentiable function δ (t) is a variable
delay that satisfies the conditions in (5).

Corollary 2. The RL nonlinear fractional system defined by (12) with (13) is asymptotically stable, if there exist real
matrices K2,K3 and symmetric matrices K1 > 0,L1 > 0,L2 > 0 and scalars εi,λi ≥ 0, (i = 1,2) such that the following
LMI holds

Ψ̃ =
(
Ψ̃jk
)
< 0, (14)

where Ω is a 6×6 symmetric matrix with the elements Ψ̃11 =−(KT
2 A+AK2)+L1 +ε1λ 2

1 I,Ψ̃12 = K1−KT
2 −AK3, Ψ̃13 =

KT
2 B, Ψ̃14 = 0, Ψ̃15 = KT

2 F, Ψ̃16 = KT
2 G, Ψ̃22 =−(K3 +KT

3 )+L2,Ψ̃23 = KT
3 B, Ψ̃24 = 0, Ψ̃25 = KT

3 F, Ψ̃26 = KT
3 G, Ψ̃33 =

−(1−δd)L1 + ε2λ 2
2 I, Ψ̃34 = Ψ̃35 = Ψ̃36 = 0,Ψ̃44 =−(1−δd)L2, Ψ̃45 = Ψ̃46 = 0, Ψ̃55 =−ε1I, Ψ̃56 = 0, Ψ̃66 =−ε2I.

4 Illustrative Examples with Numeric Simulations

To show the usefulness of the employed method, we present the following examples with simulation results.

Example 1. For n = 2, as a particular state of (1), we consider the following RL-NFNS

RL
t0 Dq

t x(t) =−Ax(t)+Bx(t−δ (t))+CRL
t0 Dq

t x(t−δ (t))+F f (x(t)+Gg(x(t−δ (t)) (15)

where 0 < q≤ 1, δ (t) = 0.2 ,

A =

[
6.92 0

0 6.92

]
, B =

[
0.6 −1.2
−1.1 1.3

]
, C =

[
0.02 0

0 0.01

]
, F =

[
0.03 0

0 0.06

]
, G =

[
0.1 0
0 0.2

]
.

Let us choose ε1 = 1.2 ,ε2 = 1.4 ,λ1 = 0.3 ,λ2 = 0.4 ,

K1 =

[
1.6 0
0 1.6

]
, K2 =

[
1.8 0
0 1.8

]
, K3 =

[
0.12 0

0 0.12

]
,

L1 =

[
4 0.1

0.1 2

]
and L2 =

[
0.01 0

0 0.02

]
.

By MATLAB-Simulink, under the above assumptions, we can easily obtain that all the eigenvalues in LMI defined in
(7) are λmax(Ω) ≤ −0.0076 . Thus, according to Theorem 1, this shows that the origin of system (15) is asymptotically
stable.

Example 2. For n = 2, as a particular state of (1) with C = 0, we consider the following RL nonlinear fractional system

RL
t0 Dq

t x(t) =−Ax(t)+Bx(t−δ (t))+F f (x(t)+Gg(x(t−δ (t)), (16)
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Fig. 1: The behavior of orbits of RL-NFNS (15) for δ (t) = 0.2 .

where 0 < q≤ 1, δ (t) = 0.3 ,

A =

[
5.2 0
0 5.2

]
, B =

[
0.5 −0.2
−0.1 1.2

]
, F =

[
0.2 0
0 0.5

]
, G =

[
0.3 0
0 0.1

]
.

Let us choose ε1 = 2.6 ,ε2 = 0.6 ,λ1 = 0.5 ,λ2 = 0.7 ,

K1 =

[
2.7 0
0 2.7

]
, K2 =

[
6.4 0
0 6.4

]
, K3 =

[
1.12 0

0 1.12

]
,

L1 =

[
8 0.2

0.2 6

]
and L2 =

[
0.2 0
0 0.3

]
.

By MATLAB-Simulink, under the above assumptions, we can easily obtain that all the eigenvalues in LMI defined in (14)
are λmax(Ψ̃)≤−0.14 . Thus, according to Corollary 1, this shows that the origin of system (16) is asymptotically stable.

5 Conclusion

In this paper, some new sufficient conditions concerning the delay-independent asymptotically stability of RL-NFNS are
derived. These stability criteria have been derived by constructing an appropriate Lyapunov functional and expressing in
terms of LMI to derive delay-independent asymptotically stability of the equilibrium point. The employed method avoids
computing fractional-order derivative of Lyapunov functionals. The proposed method is suitable for general RL-NFNS.
Also, two examples are given to illustrate the usefulness of the theoretical results of addressed RL-NFNS. Moreover, the
theoretical results of this paper are supported by the numerical simulations in Figure 1 and Figure2. Finally, the presented
results provide contribution to the control and design of RL-NFNSs.
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Fig. 2: The behavior of orbits of RL-NFNS (16) for δ (t) = 0.3 .
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