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Abstract: This study deals with the singularly perturbed multi-point boundary value problem and an effective numerical method. The
method analysis singularly perturbed problem with multi-point boundary value as theoretically and experimentally. It is shown that the
presented method has first-order approximation in the discrete maximum norm. The numerical results are presented in table and graphs,
and these results come out the validity of the theoretical analysis of our method.
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1 Introduction

Consider the following second-order linear singularly perturbed multi-point boundary value problem

−εu′′+b(x)u(x) = f (x) , 0 < x < 1, (1)

u(0) = 0, (2)

u(1) =
m

∑
i=1

ciu(si)+d, (3)

where 0 < ε � 1 is a small perturbation parameter; b,d,m and ci are given constants, 0 < si < 1, i = 1,2, ...m; and
b(x)≥ b2 > 0 and f (x) are assumed to be continuous functions in [0,1] , and moreover

−∞ <
m

∑
i=1

ciw0 (si)< 1,

w0 (x) =
1− e−

2bx√
ε

1− e−
2b√

ε

e
b(x−1)√

ε .

It is a well known fact that differential equations with a small parameter ε multiplying the highest-order derivative terms
are called singularly perturbed differential equations. Standard numerical methods for solving singularly perturbed
problems are fail to give accurate results and unstable due to the perturbation parameter ε . Therefore, there are some
fitted numerical methods to solve equations like these, such finite difference methods, finite element methods etc. So, we
prefer to use finite difference method for solving this problem in this paper.
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Singular perturbation problems arise in chemical-reactor theory, control theory, oceanography, fluid mechanics, quantum
mechanics, hydro mechanical problems, meteorology, electrical networks and other physical models [13,14,17,18,19,
20,21,22]. Singularly perturbed differential equations with nonlocal boundary value have been studied by many authors.
According to some references, existence and uniqueness of nonlocal problems can be seen in [1,4,22]. A finite
difference scheme on an uniform mesh for solving linear (nonlinear) singularly perturbed problem with nonlocal
condition have been found in [1,2,3,5,6,7,8,9,10,11,12,15,16].

In the above aforementioned papers, related studies to singularly perturbed problems are related only with the ordinary
cases. In addition, available studies for the numerical solution of singularly perturbed problems with multi-point
boundary conditions have not widespread yet. It can be seen in [5,10] that various difference schemes exist for
multi-point and integral boundary conditions.

In this present paper, we use finite difference method on a Shishkin mesh for the numerical solution of the nonlocal
problem (1)-(3). This method is shown uniformly convergent of first-order on Shishkin mesh, in discrete maximum
norm. Some properties of the exact solution of the problem described in (1)-(3) is investigated in Section 2. Finite
difference schemes on Shishkin mesh for the problem (1)-(3) are constructed in Section 3. The error analysis for the
difference scheme is performed in Section 4. Finally, We formulate the iterative algorithm for solving the discrete
problem and a numerical example present to find the solution of approximation in Section 5.

Henceforth, C, C0 and C1 will mean positive constants independent of ε and the mesh parameter.

2 Some properties of the continuous problem

Here we establish very important asymptotic properties of the exact solution of the problem (1)-(3) that will be used to
anaylze appropriate finite difference problem.

Lemma 1. If b(x) and f (x) be sufficiently smooth on interval [0,1] and

m

∑
i=1

ciw(si)< 1, (4)

where w0 (x)≥ |w(x)| is the solution of the following problem

−εw′′+b(x)w(x) = 0,

w(0) = 0,w(1) = 1.

Then, the solution of the problem (1)-(3) satisfies the following inequalities:

‖u(x)‖C[0,1] ≤C0, (5)

where
C0 = |v(x)|+ |λ | |w(x)| ,

and ∣∣u′ (x)∣∣≤C1

{
1+

1√
ε

(
e−

bx√
ε + e−

b(1−x)√
ε

)}
, 0 < x < 1. (6)
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Proof. Let us take u(1) = λ and the solution of the problem (1)-(3) as

u(x) = v(x)+λw(x) ,

where

λ =

d +
m
∑

i=1
civ(si)

1−
m
∑

i=1
ciw(si)

,

and the function v(x) is the solution of the following problem

−εv′′+b(x)v(x) = f (x) ,

v(0) = 0,v(1) = 0.

Now, we use the maximum principle for the evaluation of the functions v(x) and w(x), and so we have

|v(x)| ≤ |v(0)|+ |v(1)|+b−2 ‖ f‖C[0,1] ≤ b−2 ‖ f‖C[0,1] ≤C1, (7)

and
|w(x)| ≤ |w(0)|+ |w(1)| ≤ 1. (8)

Finally, from (7) and (8), we obtain

|u(x)|= |v(x)|+ |λ | |w(x)| ≤C1 + |λ | ≤C0,

which proves (5).

Next, we will examine the inequality (6). Differentiating the Equation (1), we get the relation

−εu′′′ (x)+b(x)u′ (x) = Φ (x) , (9)

where
Φ (x) = f ′ (x)−b′ (x)u(x) .

After doing some calculation in the Equation (9), we obtain

∣∣u′ (x)∣∣≤C+
C√

ε

(
e−

bx√
ε + e−

b(1−x)√
ε

)
≤C

{
1+

1√
ε

(
e−

bx√
ε + e−

b(1−x)√
ε

)}
,

(see in [8]). Eventually, we have the inequality (6). And so, the proof of Lemma 1 is completed.

3 The Establishment of difference scheme

In here, we discretize the problem (1)-(3) using a finite difference method on a piecewise uniform mesh of Shishkin type.
The Shishkin mesh is introduced for this study as follows.
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3.1 Shishkin mesh

The approximation to the solution u of the problem (1)-(3) will be computed on a Shishkin mesh. For a divisible by four
positive integer N, we divide the interval [0,1] into the three subintervals [0,σ ], [σ ,1−σ ] and [1−σ ,1] . In practice, we
usually has σ � 1, and so the mesh is fine on the intervals [0,σ ] and [1−σ ,1] and coarse on the interval [σ ,1−σ ] . Here
σ is transition point which is called as following:

σ=min
{

1
4
,b−1

ε lnN
}
. (10)

We introduce a set of the mesh points ω̄N = {xi}N
i=0 ,

ω̄N =


xi = ih(1), for i = 0,1,2, ..., N

4 ;
xi = σ +

(
i− N

4

)
h(2), for i = N

4 +1, ..., 3N
4 ;

xi = 1−σ +
(
i− 3N

4

)
h(3), for i = 3N

4 +1, ...,N;
h(1) = 4σ

N , h(2) = 2(1−2σ)
N , h(3) = 4σ

N .

h(2)+
1
2

(
h(1)+h(3)

)
=

2
N
, h(k) ≤ N−1, k = 1,3, N−1 ≤ h(2) ≤ 2N−1.

For each i≥ 1 we set the step-size hi = xi− xi−1, i = 1,2, ...,N.

3.2 Construction of the difference scheme on Shishkin mesh

We introduce an any non-uniform mesh on the interval [0,1]

ωN = {0 < x1 < x2 < ... < xN−1 < 1} ,

and
ω̄N = ωN ∪{x0 = 0,xN = 1} .

Before describing our numerical method, we introduce some notations for the mesh functions. We define the following
finite difference for any mesh function gi = g(xi) given on ω̄N :

gx̄,i =
gi−gi−1

hi
, gx,i =

gi+1−gi

hi+1
, go

x,i
=

gx,i +gx̄,i

2
,

gx̂,i =
gi+1−gi

}i
,gx̄x̂,i =

gx,i−gx̄,i

}i
,}i =

hi +hi+1

2
,

‖g‖
∞
≡ ‖g‖

∞,ω̄N
:= max

06i6N
|gi| .

Now, we construct the difference scheme for the Equation (1). Firstly, we will integrate the Equation (1) over (xi−1,xi+1) ,

δi}−1
i

xi+1∫
xi−1

Lu(x)ϕi(x)dx = δi}−1
i

xi+1∫
xi−1

f (x)ϕi(x)dx, i = 1, ...N, (11)
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here {ϕi(x)}N−1
i=1 is the basis functions that {ϕi(x)}N−1

i=1 has the following form

ϕi(x) =


ϕ
(1)
i (x) = shγi(x−xi)

shγih
, xi−1 < x < xi,

ϕ
(2)
i (x) = shγi(xi+1−x)

shγih
, xi < x < xi+1,

0, x /∈ (xi−1,xi+1) ,

where γi =
√

bi
ε

; ϕ
(1)
i (x) and ϕ

(2)
i (x), respectively, are the solution of the problems as:

−εϕ
′′
+biϕ = 0, xi−1 < x < xi,

ϕ (xi−1) = 0, ϕ (xi) = 1.

−εϕ
′′
+biϕ = 0, xi < x < xi+1,

ϕ (xi) = 1, ϕ (xi+1) = 0.

After doing some arrangements in the Equation (11), we have

δi}−1
i

xi+1∫
xi−1

u′(x)ϕ ′i(x)dx+δibi}−1
i

xi+1∫
xi−1

u(x)ϕi(x)dx = f i +Ri, (12)

where

Ri = δi}−1
i

xi+1∫
xi−1

[b(xi)−b(x)]u(x)ϕi(x)dx+δi}−1
i

xi+1∫
xi−1

[ f (x)− f (xi)]ϕi(x)dx, (13)

and

δi =

}−1
i

xi+1∫
xi−1

ϕi(x)dx

−1

.

Using the interpolating quadrature rules (2.1) and (2.2) from [4] with weight functions ϕi(x) on subintervals (xi−1,xi+1)

from (12), we obtain the following precise relation:

lui :=−εθiux̄x̂,i +biui = fi +Ri, i = 1, ...,N, (14)

where

θi =
bih2

i

4εsh2
(

γihi
2

) . (15)

If we neglect Ri in the Equation (14), we can suggest the following difference scheme for the problem (1)-(3):

lyi :=−εθiyx̄x̂,i +biyi = fi, i = 1, ...,N, (16)

y0 = 0, (17)

yN =
m

∑
i=1

ciyNi (xNi)+d, (18)

where xNi is the mesh point nearest to si, and θi is given by (15).
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4 Uniform error estimates

In this part, we will investigate the convergence of the method for the problem (1) and (3). We will give the error function
zi = yi−ui, i = 0,1, ...,N, where zi is the solution of the discrete problem

−εθizx̄x̂,i +bizi= Ri, i = 1, ...,N, (19)

z0 = 0, (20)

zN =
m

∑
i=1

cizNi , (21)

where Ri and θi are defined by (13) and (15), respectively.

Lemma 2. Let zi be the solution (19)-(21) and
m

∑
i=1

ciz2 (si) 6= 1.

Then the estimate
‖z‖

∞,ω̄N
≤C‖R‖

∞,ωN
, (22)

holds.

Proof. Let z(x) = z1 (x)+λ z2 (x) be the solution of the discrete problem (19)-(21), where z1 (x) and z2 (x) are the solution
of the following problems, respectively:

−εθizx̄x̂,i +bizi = Ri, i = 1, ...,N,

z1 (0) = 0, z1 (1) = 0,

and
−εθizx̄x̂,i +bizi = 0, i = 1, ...,N,

z2 (0) = 0, z2 (1) = 1,

where

λ =

d +
m
∑

i=1
ciz1 (si)

1−
m
∑

i=1
ciz2 (si)

,

1−
m

∑
i=1

ciz2 (si) 6= 0.

According to the maximum principle for z1(x) and z1(x), we have the following evaluations:

|z1 (x)| ≤ |z1 (0)|+ |z1 (1)|+b−2 ‖R‖
∞,ωN
≤C‖R‖

∞,ωN
, (23)

and
|z2 (x)| ≤ |z2 (0)|+ |z2 (1)| ≤ 1. (24)

© 2021 BISKA Bilisim Technology



NTMSCI 9, No. 2, 15-25 (2021) / www.ntmsci.com 21

Next, we have from (23) and (24)

|z(x)| ≤ |z1 (x)|+ |λ | |z2 (x)| ≤ b−2 ‖R‖
∞,ωN

+ |λ | ≤C‖R‖
∞,ωN

,

which proves Lemma 2.

Lemma 3. Under the assumptions of section 1 and Lemma 2 the solution of the problem (1)-(3) satisfies the following
estimates for the remainder term Ri :

‖R‖
∞,ω̄N
≤CN−1 lnN. (25)

Proof. The reminder term Ri can be rewritten with (2) and using mean value theorem as

|Ri| ≤ δi}−1
i

xi+1∫
xi−1

ChiC0ϕi(x)dx+δi}−1
i

xi+1∫
xi−1

Chiϕi(x)dx≤Chi.

Now, we will evaluate Ri for the intervals [0,σ ] , [σ ,1−σ ] and [1−σ ,1] , respectively.
In the first case, for 1

4 > b−1ε lnn = σ and the interval [0,σ ] :

|Ri| ≤Ch(1) ≤ 4Cσ

N
≤ 4b−1ε lnN

N
≤CN−1 lnN, i = 1, ...,

N
4
−1.

In the second case, for 1
4 > b−1ε lnn = σ and the interval [σ ,1−σ ] :

|Ri| ≤Ch(2) =
2C (1−2σ)

N
=

2C
(
1−2b−1ε lnN

)
N

≤CN−1 lnN, i =
N
4
+1, ...,

3N
4
−1.

In the third case, for 1
4 > b−1ε lnn = σ and the interval [1−σ ,1] :

|Ri| ≤Ch(3) =
4Cσ

N
≤ 4b−1ε lnN

N
≤CN−1 lnN, i =

3N
4

+1, ...,N.

and then, we evaluate Ri for i = N
4 and i = 3N

4 , respectively:∣∣∣R N
4

∣∣∣≤Ch =Ch(1) =C4σN−1 ≤ 4CN−1b−1
ε lnN ≤CN−1 lnN,

and ∣∣∣R 3N
4

∣∣∣≤Ch =Ch(2) = 2C
(
1−2b−1

ε lnN
)

N−1 ≤CN−1 lnN.

According to all these situations, we have
|Ri| ≤Chi ≤CN−1 lnN.

This completes the proof of Lemma 3.

We can state the convergence result of this study the following Theorem 4.

Theorem 1. Let u(x) be the solution of the problem (1)-(3) and yi be the solution of the difference scheme (16)-(18). Then,
the following uniform error estimate satisfies

‖y−u‖
∞,ω̄N
≤CN−1 lnN.
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5 Algorithm and numerical results

Here an effective algorithm has been given for the solution of the difference scheme (16)-(18) and numerical results have
also been displayed in table and graphs.

(a) We give the algorithm for the solution of the difference scheme (16)-(18):(
εθi

}ihi

)
yi−1−

(
2εθi

hihi+1
+bi

)
yi +

(
εθi

}ihi+1

)
yi+1 =− fi, i = 1, ...,N−1,

Ai =
εθi

}ihi
,Bi =

εθi

}ihi+1
,Ci =

2εθi

hihi+1
+bi,

α1 = 0, β1 = 0, α N
10+1 = 0, β N

10+1 = µ1,

α 2N
10 +1 = 0, β 2N

10 +1 = µ2, α 5N
10 +1 = 0, β 5N

10 +1 = µ3,

α 9N
10 +1 = 0, β 9N

10 +1 = µ4,αi+1 =
Bi

Ci−Aiαi
, βi+1 =

Fi +Aiβi

Ci−Aiαi
, i = 1, ...,N−1,

y(n)i = αi+1y(n)i+1 +βi+1, i = N−1, ...,2,1.

(b) We examine the following problem to see how the method works:

−εu′′ (x)+u(x) =−cos2 (πx)−2επ
2 cos(2πx) , 0 < x < 1,

u(0) = 0, u(1) = 0.03u(0.9)+0.2u(0.1)+0.5u(0.2)+0.09u(0.5)+d,

where

d = 0.192+
0.4415e

1√
ε

1+ e−
1√
ε

.

We have the exact solution of this problem as

u(x) =
exp
(
− x√

ε

)
+ exp

(
x−1√

ε

)
1+ exp

(
− 1√

ε

) − cos2 (πx) .

The corresponding ε− uniform convergence rates are computed using the formula

PN =
ln
(
eN/e2N

)
ln2

.

The error estimates are denoted by
eN = max

ε
eN

ε , eN
ε = ‖y−u‖

∞,ω̄N
.

6 Conclusion

In this study, we have offered an effective finite difference method for solving second-order linear singularly perturbed
multi-point boundary value problem. The method has display uniform convergence with respect to the perturbation
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Table 1: The computed maximum pointwise errors eN and rates of convergence pN

ε N = 20 N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280
2−4 0.021418 0.006108 0.002110 0.0010691 0.000537 0.000269 0.000135

1.81 1.53 0.98 0.99 0.99 0.99 1.01
2−5 0.043843 0.021665 0.011007 0.005546 0.002741 0.001317 0.000614

1.01 0.97 0.98 1.01 1.05 1.09 1.15
2−6 0.058022 0.027151 0.014254 0.007787 0.004269 0.002315 0.001237

1.09 0.92 0.87 0.86 0.88 0.90 0.92
2−7 0.071795 0.029787 0.014522 0.008021 0.004490 0.002520 0.001403

1.26 1.03 0.85 0.83 0.83 0.84 0.83
2−8 0.096957 0.033896 0.014905 0.007592 0.004166 0.002377 0.001323

1.51 1.18 0.97 0.86 0.81 0.84 0.83
eN 0.096957 0.033896 0.014905 0.008021 0.004490 0.002520 0.001403
pN 1.51 1.18 0.97 0.83 0.83 0.84 0.83

Fig. 1: Comparison of approximate solution and exact solution for N = 80, ε = 2−4.

Fig. 2: Exact solution distribution for N = 40, ε = 2−4, ...,2−8.

© 2021 BISKA Bilisim Technology

www.ntmsci.com


24 D.Arslan: An effective approximation for singularly perturbed problem

Fig. 3: Error distribution for N = 20, ε = 2−4,ε = 2−5,ε = 2−6.

parameter ε. Also, the method is first order convergent in the discrete maximum norm. Numerical example shows that
recommended method has a good approximation characteristic as: in table and graphics, when N takes increasing values,
it is seen that the convergence rate of the smooth convergence speed pN is first order. The exact solution and approximate
solution curves are almost identical as shown in Figure 1. In Figure 2, as ε values decrease, the graph approaches more
towards the coordinate axes in the boundary layer region around x = 0 and x = 1. In Figure 3, the errors in these regions
are maximum because of the irregularity caused by the sudden and rapid change of solution in the boundary layer region
around x = 0 and x = 1 for different values ε . Thus, numerical results prove that the proposed scheme is working very
well.
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