INew Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2021.410

Reflexive Idempotent Property Skewed by Ring Endomorphism

Chenar Abdul Kareem Ahmed and Renas Tahsin M. Salim

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq

Received: 27.12.2018, Accepted: 23.4.2019 Published online: 22.02.2021.

Abstract: The notion of an α -skew reflexive idempotent ring has been introduced in this paper to extend the concept of skew reflexive idempotent ring and that of an α -rigid ring. First basic properties of α -skew reflexive idempotent rings have been considered, including some examples needed in the process. It has been prove that for a ring *R* with an endomorphism α and $n \ge 2$, if *R* satisfies the condition "eRfRfR = 0 implies eRf = 0 "and *R* is a right α -skew RIP ring, then $V_n(R)$ is a right $\overline{\alpha}$ -skew RIP ring. Also it has proven that if *R* is an algebra over a field *K* and *D* the Dorroh extension of *R* by *K*, where α is an endomorphism of *R* with $\alpha(1) = 1$, then *R* is a right α -skew RIP ring if and only if *D* is a right $\overline{\alpha}$ -skew RIP ring. It's shown that if *M* is a multiplicative closed subset of a ring *R* consisting of central regular elements and α an automorphism of *R*, then *R* is right α -skew RIP if and only if $M^{-1}R$ is right $\overline{\alpha}$ -skew RIP.

Keywords: reflexive ring, reflexive idempotent ring, α -skew RMI rings, matrix ring, α -rigid ring, Dorroh extension.

1 Introduction

Throughout this paper, all rings are associative with identity. We denote by R[x] the polynomial ring with an indeterminate *x* over *R*. Let \mathbb{Z} (resp., \mathbb{Z}_n) denotes the ring of integers (resp., the ring of integers modulo *n*). Denote the *n* by *n* full (resp., upper triangular) matrix ring over *R* by $Mat_n(R)$ (resp., $U_n(R)$). Denote $\{(a_{ij}) \in U_n(R) \mid \text{ the diagonal entries of } (a_{ij}) \text{ are all equal} \}$ by $D_n(R)$. Use e_{ij} for the matrix with (i, j)-entry 1 and elsewhere 0. Let Id(R) be the set of all idempotent elements of a ring *R*.

Recall that a ring is *reduced* if it has no non-zero nilpotent elements. A ring *R* is called *reversible* [7] if ab = 0 implies ba = 0, for $a, b \in R$, and a ring *R* is said to satisfy the *Insertion-of-Factors-Property* (simply, *IFP* ring) [5] if ab = 0 implies aRb = 0 for $a, b \in R$. A ring *R* is called *Ablian* if every idempotent is central. Commutative rings and reduced rings are clearly reversible. A simple computation gives that reversible rings are IFP and IFP rings are Abelian, but the converses does not hold in general. We will freely use these facts without reference.

A ring *R* is called *semi-prime* if aRa = 0, for every $a \in R$ implies a = 0, every semiprime rings is reduced but clearly the converse is not true.

Generalized reduced rings were extended by ring endomorphisms. According to Krempa [17], an endomorphism α of a ring *R* is called *rigid* if $a\alpha(a) = 0$ implies a = 0 for $a \in R$, and a ring *R* is called α -*rigid* [12] if there exists a rigid endomorphism α of *R*. Note that any rigid endomorphism of a ring is a monomorphism and α -rigid rings are reduced rings by [12, Proposition 5]. By Hashemi and Moussavi [9], a ring *R* is α -compatible if for each $a, b \in R$, $a\alpha(b) = 0$ if and only if ab = 0. Therefore every α -rigid ring is α -compatible, but the converse is not true.

^{*} Corresponding author e-mail: chenar.ahmed@uoz.edu.krd

In [4, Definition 2.1], an endomorphism α of a ring *R* is called *right skew reversible* if whenever ab = 0 for $a, b \in R$, $b\alpha(a) = 0$, and the ring *R* is called *right* α -*skew reversible* if there exists a right skew reversible endomorphism α of *R*. Similarly, left α -skew reversible rings are defined. A ring *R* is called α -*skew reversible* if it is both left and right α -skew reversible. Note that *R* is an α -rigid ring if and only if *R* is semiprime and right α -skew reversible for a monomorphism α of *R* by [4, Proposition 2.5(iii)]. (We change over from "an α -reversible ring" in [4] to "an α -skew reversible ring" to cohere with other related definitions).

In [21, Definition 2.1], an endomorphism α of a ring *R* is called *right (resp., left) skew reflexive* if whenever aRb = 0 for $a, b \in R$, $bR\alpha(a) = 0$, and the ring *R* is called *right (resp., left)* α -skew reflexive if there exist a right (resp., left) skew reflexive endomorphism α of *R*. A ring *R* is α -skew reflexive if it is both right and left α -skew reflexive. A ring *R* is reflexive if *R* is 1_R -reflexive ring, where 1_R denotes the identity endomorphism of *R*. Any domain *R* is obviously α -skew reflexive for any endomorphism α of *R*, but the converse need not hold by the [21, Example 2.2].

In [20], a ring R is said to have the reflexive-idempotents-property (simply, RIP) if R satisfies the property that

eRf = 0 implies fRe = 0 for any $e, f \in Id(R)$.

A ring R is called RIP if it satisfies the reflexive-idempotents-property. It can be easily checked that every one-sided idempotent reflexive ring is RIP, entailing that Abelian rings are RIP.

In [2, definition 3.1], an endomorphism α of a ring R is called a *right (resp., left) skew RMI* if whenever eMf = 0 for $e, f \in Id(R)$ and for a maximal ideal M of R, $fM\alpha(e) = 0$ (resp., $\alpha(f)Me = 0$). A ring R is called *right (resp., left)* α -skew RMI if there exists a right (resp., left) skew RMI endomorphism α of R. A ring R is called α -skew RMI if it is both left and right α -skew RMI. Both simple ring and domains are obviously α -skew RMI ring for any endomorphism α of given ring R, but the converses need not hold.

Motivated by the above facts, the concepts of α -skew RIP has been introduced, as a generalization of α -rigid rings. First basic examples and properties of α -skew RIP rings has been found. Also an α -skew RIP property of some kind of polynomials have been discussed. It has been prove that for a ring R with an endomorphism α and $n \ge 2$. If R satisfies the condition "eRfRfR = 0 implies eRf = 0 "and R is a right α -skew RIP ring, then $V_n(R)$ is a right $\overline{\alpha}$ -skew RIP ring. Also it has proven that if R is an algebra over a field K, and D be the Dorroh extension of R by K where α be an endomorphism of R with $\alpha(1) = 1$ then R is a right α -skew RIP ring if and only if D is a right $\overline{\alpha}$ -skew RMI ring. It shown that if M is a multiplicative closed subset of a ring R consisting of central regular elements and α an automorphism of R, then R is right α -skew RIP if and only if $M^{-1}R$ is right $\overline{\alpha}$ -skew RIP.

Throughout this paper, α denotes a nonzero endomorphism of given rings, unless specified otherwise.

2 Basic properties and characterizations of right α -skew RIP rings

In this section basic properties, characterizations and basic extensions of α -skew RIP rings and related concepts have been observed, including some kind of examples needed in the process. We begin with the following definition.

Definition 1. An endomorphism α of a ring *R* is said to have the *right (resp., left) skew reflexive idempotent property* (simply, skew RIP) if α satisfy the property

$$eRf = 0$$
 for $e, f \in Id(R), fR\alpha(e) = 0$ (resp., $\alpha(f)Re = 0$).

^{© 2021} BISKA Bilisim Technology

A ring *R* is called *right (resp., left)* α -skew *RIP* if there exists a right (resp., left) skew RIP endomorphism α of *R*. A ring *R* is called α -skew *RIP* if it is both left and right α -skew RIP.

A ring *R* is RIP if *R* is 1_R -RIP, where 1_R denotes the identity endomorphism of *R*. Any domains *R* is obviously α -skew RIP ring for any endomorphism α of given ring *R*, but the converses need not hold by the following example, which also shows that the α -skew RIP property is not left-right symmetric.

Example 1. Let S be an RIP ring. Consider a ring

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in S \right\}.$$

(1) Let $\alpha : R \to R$ be an endomorphism defined by

$$\alpha\left(\begin{pmatrix}a & b\\ 0 & c\end{pmatrix}\right) = \begin{pmatrix}a & 0\\ 0 & 0\end{pmatrix}$$

For

$$E = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, F = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \text{ and } E, F \in Id(R),$$

assume that ERF = 0. Then for any $\begin{pmatrix} u & v \\ 0 & w \end{pmatrix} \in R$, we have aua' = 0 and so aSa' = 0. Since S is RIP, aSa' = 0. This entails that $FR\alpha(E) = 0$ and hence R is a right α -skew RIP ring.

However, *R* is not left α -skew RIP. Since if we take

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, F = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $E, F \in Id(R)$.

Then, ERF = 0,

$$0 \neq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}^2 \right) = \alpha(F)E^2 \in \alpha(F)RE,$$

showing that *R* is not left α -skew RIP.

(2) Let $\beta : R \to R$ be an endomorphism defined by

$$\beta\left(\begin{pmatrix}a & b\\ 0 & c\end{pmatrix}\right) = \begin{pmatrix}0 & 0\\ 0 & c\end{pmatrix}$$

By the similar method to the proof (1), we can show that *R* is left β -skew RIP, but not right β -skew RIP.

Consider the reverse condition of a right α -skew RIP ring R,

(*)
$$eR\alpha(f) = 0$$
 for $e, f \in Id(R)$ implies $fRe = 0$.

The reverse condition of a right α -skew RIP ring does not hold by the following example.

Example 2. Recall the right α -skew RIP

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Z}_2 \right\},\$$

with the endomorphism α of *R* defined by

$$\alpha\left(\begin{pmatrix}a & b\\ 0 & c\end{pmatrix}\right) = \begin{pmatrix}a & 0\\ 0 & 0\end{pmatrix},$$

as in Example 1, R does not satisfy the condition (*): For

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, F = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} E, F \in Id(R), \text{ and } C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \in R,$$

we have $0 = EC\alpha(F) \in ER\alpha(F)$, but

$$0 \neq \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = ECF \in FRE.$$

Lemma 1. Every α -rigid ring is a reduced α -skew RIP with α a monomorphism.

Proof. Let *R* be α -rigid. Then *R* is reduced ring and α is a monomorphism. Assume that eRf = 0, for $e, f \in Id(R)$. Then erf = 0, for all $r \in R$ so efr = 0, since *R* is reduced, so we obtain $fr\alpha(e)\alpha(fr\alpha(e)) = fr\alpha(efr)\alpha^2(e) = 0$. This shows that $fr\alpha(e) = 0$ so $fR\alpha(e) = 0$, since *R* is α -rigid. Hence *R* is right α -skew RIP. Now by the similar argument to above from eRf = 0, we also have ref = 0, for all $r \in R$ since *R* is reduced. Thus we get $\alpha(\alpha(f)re)\alpha(f)re = \alpha^2(f)\alpha(ref)re = 0$. This shows that $\alpha(f)re = 0$, so $\alpha(f)Re = 0$, since *R* is α -rigid. This shows that *R* is left α -skew RIP. Whence *R* is α -skew RIP.

The converse of Lemma 1 does not hold by the following example.

Example 3. Let \mathbb{Z} be the ring of integers. Consider the ring

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}.$$

Let $\alpha : R \to R$ be an endomorphism defined by

$$\alpha\left(\begin{pmatrix}a & b\\ 0 & a\end{pmatrix}\right) = \begin{pmatrix}a & -b\\ 0 & a\end{pmatrix}.$$

It is clear that α is an automorphism, *R* is not semiprime and hence *R* is not α -rigid.

Now, for $E, F \in Id(R)$, let EBF = 0, for all $B \in R$ with

$$E = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, F = \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} \text{ and } B = \begin{pmatrix} m & n \\ 0 & m \end{pmatrix}.$$

Then we have amc = 0 and amd + anc + bmc = 0, for every *m*. This implies that a = 0 or c = 0. If a = 0, then bmc = 0 and hence b = 0 or c = 0. If c = 0, then amd = 0 for each $m \in R$, and hence a = 0 or d = 0. In both cases, we obtain $FB\alpha(E) = 0$. Hence *R* is right $\bar{\alpha}$ -skew RIP. Similarly we obtain *R* is a left $\bar{\alpha}$ -skew RIP. Therefore, *R* is $\bar{\alpha}$ -skew RIP.

^{© 2021} BISKA Bilisim Technology

For a non-empty subset X of a ring R, we write $r_R(X) = \{c \in R \mid Xc = 0\}$, which is called the *right annihilator* of X in R. Similarly, $\ell_R(X)$ denotes the left annihilator of X in R. We have the basic equivalence for right α -skew RIP rings as follows.

Proposition 1. For a ring R with an endomorphism α , the following are equivalent:

- (1) *R* is a right α -skew *RIP* ring.
- (2) For $e \in Id(R)$, $r_R(eR) \subseteq \ell_R(R\alpha(e))$.
- (3) For non-empty subsets E and F of Id(R), ERF = 0 implies $FR\alpha(E) = 0$.
- (4) IJ = 0 implies $J\alpha(I) = 0$, where I and J are any right (or left) ideals of Id(R).
- (5) IJ = 0 implies $J\alpha(I) = 0$, where I and J are any ideals of Id(R).

Proof. (1) \Leftrightarrow (2) and (3) \Rightarrow (4) \Rightarrow (5) are straightforward.

(2) \Rightarrow (3): Assume that the condition (2) holds. Let *E* and *F* be two non-empty subsets of Id(R) with ERF = 0. Then eRf = 0, for any $e \in E$, $f \in F$ and hence $fR\alpha(e) = 0$ by assumption. Thus, $FR\alpha(E) = \sum_{e \in E, f \in F} fR\alpha(e) = 0$.

 $(5) \Rightarrow (1)$: Assume that the condition (5) holds. Let eRf = 0, and $e, f \in Id(R)$. Then ReRfR = 0 and so the condition (5) implies that $fR\alpha(e) \subseteq RfR\alpha(ReR) = 0$. We conclude that *R* is a right α -skew RIP ring.

Proposition 2. Let α be an endomorphism of a ring *R*.

- (1) Let *R* be a reversible ring. Then *R* is right α -skew *RIP* if and only if *R* is left α -skew *RIP*.
- (2) If *R* is an α -skew *RIP* ring, then eRf = 0 for $e, f \in Id(R)$ implies $eR\alpha^{2k}(f) = 0$ and $\alpha^{2k-1}(f)Re = 0$, for a positive integer *k*.

Proof. (1) Let *R* be a reversible ring. Suppose that *R* is right α -skew RIP and eRf = 0 for $e, f \in Id(R)$. Then ef = 0 implies fe = 0 implies fRe = 0, so $eR\alpha(f) = 0$ then $e\alpha(f) = 0$, so $\alpha(f)e = 0$ hence $\alpha(f)Re = 0$, so *R* is left α -skew RIP. The converse can be shown by an almost same argument as above.

(2) Suppose that *R* is α -skew RIP and eRf = 0 for $e, f \in Id(R)$. Then $\alpha(f)Re = 0$ implies $eR\alpha^2(f) = 0$ implies $\alpha^3(f)Re = 0$, then $eR\alpha^4(f) = 0, \dots$, so we get $eR^{2k}(f) = 0$ and $\alpha^{2k-1}(f)Re = 0$, for $k \ge 1$ inductively. The reminder of the proof is similar to above.

Proposition 3. Let α be an endomorphism of a ring R, S a ring and suppose that $\sigma : R \to S$ a ring isomorphism. Then R is a right α -skew RIP ring if and only if S is a right $\sigma \alpha \sigma^{-1}$ -skew RIP ring.

Proof. Suppose R is a right α -skew RIP. Let e'Sf' = 0, for $e', f' \in Id(S)$, then there exists $e, f \in Id(R)$ such that $\sigma(e) = e', \sigma(f) = f'$ and $\sigma(R) = S$.

So e'Sf' = 0 implies $\sigma(e)\sigma(R)\sigma(f) = \sigma(0)$ and $\sigma(eRf) = \sigma(0)$, so eRf = 0, since σ is an isomorphism. Then $fR\alpha(e) = 0$ by hypothesis. This entails that

$$0 = \sigma(0) = \sigma(fR\alpha(e)) = \sigma(fR\alpha((\sigma^{-1}\sigma)(e))) = \sigma(f)\sigma(R)\sigma(\alpha(\sigma^{-1}(\sigma(e))) = f'S(\sigma\alpha\sigma^{-1})(e') = 0.$$

Thus *S* is a right $\sigma \alpha \sigma^{-1}$ -skew RIP ring.

Conversely, let *S* be a right $\sigma \alpha \sigma^{-1}$ -skew RIP and let eRf = 0 for $e, f \in Id(R)$. Set $\sigma(e) = e', \sigma(f) = f'$ and $\sigma(R) = S$. Then $e', f' \in Id(S)$ such that $e'Sf' = \sigma(eRf) = 0$. Since *S* is a right $\sigma \alpha \sigma^{-1}$ -skew RIP, we have $0 = f'S(\sigma \alpha \sigma^{-1})(e') = 0$, so $\sigma(fR\alpha(e)) = 0$. Since σ is an isomorphism $fR\alpha(e) = 0$. Shows that *R* is a right α -skew RIP ring. For an endomorphism α and an idempotent *e* of a ring *R* let $\alpha(e) = e$. Then we have an endomorphism $\bar{\alpha} : eRe \to eRe$ defined by $\bar{\alpha}(ere) = e\alpha(r)e$.

Proposition 4. Let *R* be a ring with an endomorphism α such that $\alpha(e) = e$, for $e^2 = e \in R$.

- (1) If R is a right α -skew RIP ring, then eRe is a right $\overline{\alpha}$ -skew RIP ring, for all $e \in Id(R)$.
- (2) If *e* is central for $e \in Id(R)$, then *R* is a right α -skew RIP ring if and only if *eR* and (1-e)R are right $\overline{\alpha}$ -skew RIP ring.

Proof. (1) Let *R* be a right α -skew RIP ring and $e \in Id(R)$. Suppose e'Rf' = 0 for $e', f' \in eRe$. Note that ee'e = e' and ef'e = f'. By claim, hence, $0 = e'Rf' = e'eRef' = ee'e(eRe)ef'e = ee'eRefe = e'Rf' = f'R\alpha(e')$, since *R* is a right α -skew RIP ring. Thus, $0 = f'R\alpha(e') = ef'e(eRe)e\alpha(e')e = ef'eR\overline{\alpha}(ee'e) = f'R\alpha(e')$. Showing that eRe is a right $\overline{\alpha}$ -skew RIP ring.

(2) Let $e \in Id(R)$ be central. Suppose that eR and (1-e)R are right $\bar{\alpha}$ -skew RIP rings, let e'Rf' = 0 for $e', f' \in R$. Recall that eR and (1-e)R, respectively. By the proof of (1). Then ee'(eR)ef' = 0 and (1-e)e'((1-e)R)(1-e)f' = 0. By hypothesis, we have $0 = ef'(eR)f'e'r\alpha(ee') = ef'(eR)e\alpha(e') = ef'R\alpha(e')$ and $0 = (1-e)f'((1-e)R)f'e'r\alpha((1-e)e') = (1-e)f'((1-e)R)((1-e)\alpha(e')) = (1-e)f'R\alpha(e')$.

Thus, $f'R\alpha(e') = ef'R\alpha(e') + (1-e)f'R\alpha(e') = 0$, showing that *R* is a right α -skew RIP ring.

The converse part follows from (1) directly.

The next Theorem gives the relationship between RIP and α -skew RIP rings under the condition that *R* is an α -compatible ring.

Theorem 1. Let R be an α -compatible ring. Then R is an RIP ring if and only if R is α -skew RIP ring.

*Proof.*Let *R* be an RIP ring and eRf = 0 for $e, f \in Id(R)$, then fRe = 0. So erf = 0, for all $r \in R$ and fre = 0 by hypothesis and $fc\alpha(e) = 0$ for all $c \in R$ (by α -compatibility), hence $fR\alpha(e) = 0$, and so *R* is right α -skew RIP ring. By the same method in above we get *R* is left α -skew RIP ring. Therefore *R* is an α -skew RIP ring.

Conversely, let *R* be an α -skew RIP ring and eRf = 0 for $e, f \in Id(R)$, so ecf = 0 for all $c \in R$. Then $fc\alpha(e) = 0$ by hypothesis and fce = 0 for all $c \in R$ (by α -compatibility), so fRe = 0. Therefore *R* is an RIP ring.

According the following Example, we see that the condition " α -compatibility "is not superfluous in Theorem 1.

Example 4. Consider the ring $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ with endomorphism $\alpha : R \to R$ defined by $\alpha((a,b)) = (b,a)$ with the usual addition and multiplication α is not compatible, for $a = (0,1), b = (1,0) \in Id(R)$, we have ab = 0, but $(0,0) \neq (0,1)^2 = a\alpha(b)$. The ring *R* is a commutative semiprime ring hence it is RIP. However, *R* is not an α -skew RIP. Indeed, for $a = (0,1), b = (1,0) \in Id(R)$ and $(1,1) \in R$, we have (0,1)(1,1)(1,0) = (0,0), but $(1,0)(1,1)(1,0) = (1,0) \neq (0,0) \in bR\alpha(a)$.

Recall that for a ring *R* with an endomorphism α and an ideal *I* of *R*, if *I* is an α -ideal (i.e., $\alpha(I) \subseteq I$) of *R*, then $\bar{\alpha} : R/I \to R/I$ defined by $\bar{\alpha}(a+I) = \alpha(a) + I$, for $a \in R$ is an endomorphism of a factor ring R/I. The class of right α -skew RIP ring is not closed under homomorphic images and vice versa in general, by help of [21, Example 2.8 and Example 2.9].

Proposition 5.Let *R* be a ring with an automorphism α and *I* an α -ideal of *R*. If *R*/*I* is a right $\overline{\alpha}$ -skew RIP and *I* is α -rigid as a ring without identity, then *R* is a right α -skew RIP ring.

© 2021 BISKA Bilisim Technology

Proof. Suppose that R/I is a right $\bar{\alpha}$ -skew RIP and I is α -rigid as a ring without identity. Let eRf = 0 for $e, f \in Id(R)$. Then (e+I)(f+I) = I and $e+I, f+I \in Id(R/I)$. Since R/I is right $\bar{\alpha}$ -skew RIP, $fR\alpha(e) \subseteq I$. Hence $fR\alpha(e)R\alpha(fR\alpha(e)R) = fR\alpha(eRf)\alpha(R\alpha(e)R) = 0$ implies $fR\alpha(e) = 0$ since I is an α -rigid ring. Thus, R is right α -skew RIP. \Box

The next example illuminates the condition "*I* is α -rigid as a ring without identity "of Proposition 5 cannot be weakened by the condition "*I* is a right α -skew RIP as a ring without identity".

Example 5. Consider $R = U_3(F)$ over a division ring F and an automorphism α of R defined by

$$\alpha\left(\begin{pmatrix}a \ b\\ 0 \ c\end{pmatrix}\right) = \begin{pmatrix}a \ -b\\ 0 \ c\end{pmatrix}.$$

For

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, F = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \text{ and } E, F \in Id(R),$$

we have ERF = 0, but $0 \neq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = F^2 \alpha(E) = FR\alpha(E)$, showing that *R* is not right α -skew RIP.

Clearly, the ideal $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ of *R* is right α -skew RIP, but not α -rigid (as a ring without identity), and the factor ring

$$R/I = \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} + I \mid a, c \in F \right\}.$$

Thus R/I is right $\bar{\alpha}$ -skew RIP.

Proposition 6. Let A be a commutative ring satisfying a condition that ef = 0 for $e, f \in Id(A)$ implies e = -e or f = -f. Then the ring

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in A \right\}$$

is α -skew RIP, where α is an automorphism of R defined by

$$\alpha\left(\begin{pmatrix}a&b\\0&a\end{pmatrix}\right) = \begin{pmatrix}a&-b\\0&a\end{pmatrix}.$$

Proof. Let EAF = 0, for non-zero

$$E = \begin{pmatrix} e & f \\ 0 & e \end{pmatrix}, F = \begin{pmatrix} e_1 & f_1 \\ 0 & e_1 \end{pmatrix} \in Id(R).$$

Then EF = 0, so we have $ee_1 = 0$ and $ef_1 + fe_1 = 0$.

Case 1. Either e = 0 or $e_1 = 0$. Let e = 0. Then $f \neq 0$ and $fe_1 = 0$, entailing $e_1r(-f) = 0$ for all $r \in R$. This yields

$$\begin{pmatrix} e_1 & f_1 \\ 0 & e_1 \end{pmatrix} \begin{pmatrix} r & s \\ 0 & r \end{pmatrix} \begin{pmatrix} 0 & -f \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & e_1 r f \\ 0 & 0 \end{pmatrix} = 0$$

© 2021 BISKA Bilisim Technology

for every $\binom{r \ s}{0 \ r} \in R$, and hence $FR\alpha(E) = 0$. The computation for the case of $e_1 = 0$ is similar, also obtaining $FR\alpha(E) = 0$.

Case 2. If $e \neq 0$ and $e_1 \neq 0$, then we have e = -e or $e_1 = -e_1$ by the condition of A. Since A is commutative, then we get

$$e_1re = 0, e_1rf + f_1re = (-e_1)r(-f) + f_1re = 0,$$

and

$$e_1r(-f) + f_1r(-e) = (-e_1)rf + f_1re = 0,$$

for all $r \in R$. If e = -e, then we get

BISKA

$$0 = e_1 r(-f) + f_1 r(-e) = e_1 r(-f) + f_1 re = 0.$$

If $e_1 = -e_1$, then we have

$$0 = -((-e_1)rf + f_1r(-e)) = -(-e_1)rf - f_1r(-e) = (-e_1)r(-f) + f_1re = e_1r(-f) + f_1re = 0.$$

Consequently, we get $FR\alpha(A)$ in any case.

3 Extensions of right α -skew RIP ring

In this section several kinds of ring extensions which have role in ring theory are extended, being concerned with right α -skew RIP rings.

Given a ring *R* and an (R,R)-bimodule *M*, the *trivial extension* of *R* by *M* is the ring $T(R,M) = R \oplus M$ with the usual addition and the following multiplication: $(r_1,m_1)(r_2,m_2) = (r_1r_2,r_1m_2+m_1r_2)$. This is isomorphic to the ring of all matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r \in R$, $m \in M$ and the usual matrix operations are used. Note that $T(R,R) = D_2(R)$ and For an endomorphism α of a ring *R* and the trivial extension T(R,R) of R, $\bar{\alpha} : T(R,R) \to T(R,R)$ defined by

$$\bar{\alpha}\left(\begin{pmatrix}a&b\\0&a\end{pmatrix}
ight)=\begin{pmatrix}lpha(a)&lpha(b)\\0&lpha(a)\end{pmatrix},$$

is an endomorphism of T(R,R). Since T(R,0) is isomorphic to R, we can identify the restriction of $\bar{\alpha}$ by T(R,0) to α . We have the following.

Proposition 7. If *R* is a division ring, then T(R,R) is a right $\bar{\alpha}$ -skew RIP.

Proof. Let *R* be a division ring. Suppose that ET(R,R)F = 0, for

$$E = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix}, F = \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} \text{ and } E, F \in Id(T(R,R)).$$

Then, we have

$$\begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix} \begin{pmatrix} 0 & R \\ 0 & 0 \end{pmatrix} \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} = 0,$$

© 2021 BISKA Bilisim Technology

implies erf = 0. Since R is a division ring, so R is a domain and erf = 0 implies e = 0 or rf = 0, so we have e = 0 or r = 0 or f = 0, so from

$$\begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} \begin{pmatrix} 0 & R \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha(e) & 0 \\ 0 & \alpha(e) \end{pmatrix} = 0,$$

we get $fr\alpha(e) = 0$ and this implies that $FT(R,R)\bar{\alpha}(E) = 0$. Thus T(R,R) is a right $\bar{\alpha}$ -skew RIP ring.

For $n \ge 2$, let $Mat_n(R)$ (resp., $U_n(R)$) denote the $n \times n$ full matrix (rep., upper triangular matrix ring) over a ring R. For an endomorphism α of R, the map $\bar{\alpha}$: $Mat_n(R) \to Mat_n(R)$ defined by $\bar{\alpha}((a_{ij})) = (\alpha(a_{ij}))$ is an endomorphism of $Mat_n(R)$. Note that the extended map $\bar{\alpha}$ of any subring S with $\alpha(S) \subseteq S$ of $Mat_n(R)$ for $n \ge 2$ is similarly defined component-wise. Use e_{ij} for the matrix (i, j)-entry 1 and elsewhere 0.

Proposition 8. Let R be a ring with endomorphism α . Then R is a right α -skew RIP ring if and only if $Mat_n(R)$ is a right $\bar{\alpha}$ -skew RIP ring, for all n > 2.

Proof. Suppose that R is a right α -skew RIP ring. Let $S = Mat_n(R)$ and EF = 0 for ideals E, F of Id(S). Using an elementary ring theoretic argument, there exists ideals I and J and of Id(R) such that $E = Mat_n(I), F = Mat_n(J)$. Then

$$Mat_n(IJ) = Mat_n(I)Mat_n(J) = EF = 0,$$

implies IJ = 0. Since R is a right α -skew RIP ring, then $J\alpha(I) = 0$ by Proposition 1 (5). This yields $F\bar{\alpha}(E) = 0$, and so S is a right $\bar{\alpha}$ -skew RIP ring for all $n \ge 2$ by Proposition 1 (5).

Conversely, Suppose that $Mat_n(R)$ is right $\bar{\alpha}$ -skew RIP for all $n \ge 2$. Let eRf = 0 for $e, f \in Id(R)$. For $E = e \sum_{i=1}^{n} E_{ii}$, $F = f \sum_{i=1}^{n} E_{ii} \in Id(Mat_n(R))$, we have $EMat_n(R)F = 0$, and so $FMat_n(R)\bar{\alpha}(E) = 0$ by hypothesis. This implies that $fR\alpha(e) = 0$, showing that *R* is right α -skew RIP ring.

The following example shows that both $U_n(R)$ and $D_m(R)$ over any ring R cannot be right $\bar{\alpha}$ -skew RIP ring for any $n \ge 2$ and $m \ge 3$ respectively, and hence the class of right α -skew RIP rings is not closed under subrings, noting that $Mat_n(R)$ over right α -skew RIP ring for $n \ge 2$ is right $\overline{\alpha}$ -skew RIP.

Example 6. Let α be an endomorphism of any non-zero ring R with $\alpha(1) = 1$ (e.g., R is an α -rigid ring).

- (1) Consider a ring $S = U_n(R)$ for $n \ge 2$. For $e = E_{22}$, $f = E_{11} \in Id(U_n(R))$, we have eSf = 0. But $fS\bar{\alpha}(e) = RE_{12} \neq 0$. This shows that $U_n(R)$ is not right $\bar{\alpha}$ -skew RIP for $n \geq 2$.
- (2) Consider a ring $S = D_n(R)$ for $n \ge 3$. For $e = E_{(n-1)n}$, $f = E_{(n-2)(n-1)} \in Id(D_n(R))$, we have eSf = 0, but $fS\bar{\alpha}(e) \ne 0$, showing that $D_n(R)$ is not right $\bar{\alpha}$ -skew RIP for $n \geq 3$.

Note that if R is an α -rigid ring. Then the ring $S = D_3(R)$ is not $\overline{\alpha}$ -skew RIP by (2). For $e = E_{23} = f \in Id(D_3(R))$, we have eSf = 0 and for any $n \ge 0$, we get $eS\bar{\alpha}^n(f) = 0$. This illuminates that the converse of the Proposition 2(2) does not hold in general.

The converse of Proposition 4(1) does not hold in general. For the non right α -skew RMI R, $R = U_2(Z)$ in Example 6(1) but for $e = e_{11} \in Id(R)$, $eRe \cong Z$ is a right α -skew RIP clearly for any endomorphism α .

Proposition 9. Let α be an endomorphism of a ring R. If R is a right α -skew reversible ring, then R is right α -skew RIP.

Proof. Assume that *R* is α -skew RIP and eRf = 0 for $e, f \in Id(R)$. Then efr = 0 for any $r \in R$ and so $(fr)\alpha(e) = 0$. Thus $fR\alpha(e) = 0$, showing that R is α -skew RIP.

 \Box

The converse of Proposition 9 is not hold by the following example.

Example 7. Consider a ring $R = M_2(\mathbb{Z})$ with an automorphism α of R defined by

$$\alpha\left(\begin{pmatrix}a \ b\\ 0 \ c\end{pmatrix}\right) = \begin{pmatrix}a \ -b\\ 0 \ c\end{pmatrix},$$

R is a right α -skew RIP ring by Proposition 8 but, it is not a right α -skew reversible ring For

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \text{ and } A, B \in R.$$

we have AB = 0, but $0 \neq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = B\alpha(A)$, showing that *R* is not a right α -skew reversible ring.

For a ring *R* and $n \ge 2$, let $V_n(R)$ be the ring of all matrices (a_{ij}) in $D_n(R)$ such that $a_{st} = a_{(s+1)(t+1)}$ for $s = 1, \ldots, n-2$ and $t = 2, \ldots, n-1$. Note that $V_n(R) \cong \frac{R[x]}{x^n R[x]}$.

Lemma 2. If *R* is a reduced ring, then eRfRf = 0 if and only if eRf = 0 for $e, f \in Id(R)$.

Proof. For $e, f \in Id(R)$, eRfRf = 0 implies that eRfRfR = 0, and so $(eRfR)^2 = eRfReRfR \subseteq eRfRfR = 0$. Since R is reduced eRfR = 0 and so eRf = 0. The converse is obvious.

The converse of Lemma 2 does not hold by the following Example.

Example 8. Let \mathbb{Z}_2 be the ring of integer modulo 2. Consider the ring

$$R = \left\{ \begin{pmatrix} a \ b \\ 0 \ a \end{pmatrix} \mid a, b \in \mathbb{Z}_2 \right\},\$$

It is clear that R is not reduced ring. But R satisfies the relation ERF = 0 if and only if ERFRFR = 0. For

$$E = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix}, F = \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} \in Id(\mathbb{R}).$$

Indeed if ERF = 0, then ERFRFR = 0. Now let ERFRFR = 0, so we have

$$\begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix} \begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix} \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} \begin{pmatrix} r_1 & r_2 \\ 0 & r_1 \end{pmatrix} \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} = 0.$$

We have $er_1fr_2f = 0$ implies $er_1f^2r_2 = 0$, $r_1, r_2 \in \mathbb{Z}_2$. Now if $r_2 = 0$, then it is trivial, so $r_2 = 1$ and $er_1f^2 = 0$ implies $er_1f = 0$ since \mathbb{Z}_2 is reduced. Therefore ERF = 0.

Theorem 2. (1) Let *R* be a ring with an endomorphism α and $n \ge 2$. If *R* satisfies the condition "eRfRfR = 0 implies eRf = 0 "and *R* is a right α -skew RIP ring, then $V_n(R)$ is a right $\bar{\alpha}$ -skew RIP ring.

(2) If $V_n(R)$ is a right $\bar{\alpha}$ -skew RIP, then R is right α -skew RIP.

^{© 2021} BISKA Bilisim Technology

Proof. (1) Suppose that *R* satisfies the condition "eRfRfR = 0 implies eRf = 0 "and *R* is a right α -skew RIP ring. We use $(a_1, a_2, \ldots, a_n) \in V_n(R)$ to denote

$$\begin{pmatrix} a_1 \ a_2 \ a_3 \ \cdots \ a_n \\ 0 \ a_1 \ a_2 \ \cdots \ a_{n-1} \\ 0 \ 0 \ a_1 \ \cdots \ a_{n-2} \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \ \cdots \ a_1 \end{pmatrix},$$

Let $EV_n(R)F = 0$ for $E = (e_1, e_2, e_3, \dots, e_n)$, $F = (f_1, f_2, f_3, \dots, f_n)$ and $E, F \in Id(V_n(R))$. For any $r \in R$, $E(r, 0, \dots, 0)B = 0$. Thus we have the following equations:

$$e_1 r f_1 = 0 \tag{1}$$

$$e_1 r f_2 + e_2 r f_1 = 0 \tag{2}$$

$$e_1 r f_3 + e_2 r f_2 + e_3 r f_1 = 0 \tag{3}$$

$$e_1 r f_{n-1} + e_2 r f_{n-2} + \dots + e_{n-1} r f_1 = 0$$
(4)

$$e_1 r f_n + e_2 r f_{n-1} + \dots + e_{n-1} r f_2 + e_n r f_1 = 0.$$
(5)

From Eq. (I), we see

$$e_1 R f_1 = 0 \text{ and } f_1 R \alpha(e_1) = 0.$$
 (6)

If we multiply Eq. (II) on the right-hand side by sf_1 for any $s \in R$, then $e_1rf_2sf_1 + e_2rf_1sf_1 = 0$ and hence $e_2Rf_1 = 0$ by Lemma 2 and Eq.(VI), and $e_1Rf_2 = 0$. Thus

÷

$$f_1 R\alpha(e_2) = 0 \text{ and } f_2 R\alpha(e_1) = 0.$$
 (7)

If we multiply Eq. (III) on the right-hand side by sf_1 for any $s \in R$, then

$$e_1rf_3sf_1 + e_2rf_2sf_1 + e_3rf_1sf_1 = 0,$$

so $e_3rf_1 = 0$ by Lemma 2 and the above. Then Eq. (III) becomes

$$e_1 r f_3 + e_2 r f_2 = 0 \tag{8}$$

If we multiply Eq. (VIII) on the right-hand side by sf_2 for any $s \in R$, then $e_2rf_2 = 0$ and $e_1rf_3 = 0$ by the similar argument to above. Thus, we have

$$e_i R f_j$$
, and $f_j R \alpha(e_i) = 0$ for all $2 \le i + j \le 4$.

Inductively, we assume that

$$e_i R f_j$$
, and $f_j R \alpha(e_i) = 0$ for all $i + j \le n$.

If we multiply Eq. (V) on the right-hand side by $s_1f_1, s_2f_2, ..., s_{n-1}f_{n-1}$ for any $s_1, s_2, ..., s_{n-1} \in R$, in turn, then

$$e_n R f_1 = 0, e_{n-1} R f_2 = 0, \dots, e_2 R f_{n-1} = 0$$
 and $e_1 R f_n = 0$,

by the similar computation to above, and so

$$f_i R\alpha(e_i) = 0$$
 for all $i + j = n + 1$.

Consequently, we get $FR\bar{\alpha}(E) = 0$ and therefore $V_n(R)$ is a right $\bar{\alpha}$ -skew RIP ring.

(2) It follows from the similar computation to the proof of the sufficient condition in Proposition 8 \Box

Corollary 1.Let R be a ring with an endomorphism α and $n \ge 2$. If R is an α -rigid, then $V_n(R)$ is a right $\overline{\alpha}$ -skew RIP ring

Corollary 2. Let R be a semiprime ring with an endomorphism α . Then the following are equivalent:

- (1) R is right α -skew RIP.
- (2) The trivial extension T(R,R) of R is right $\bar{\alpha}$ -skew RIP.
- (3) $R[x]/(x^n)$ is right $\bar{\alpha}$ -skew RIP, for $n \ge 2$.

Theorem 3. A ring R is right α -skew RIP if and only if $D_n(R)$ is right α -skew RMI, for $n \ge 2$.

Proof. Assume that *R* is right α -skew RIP. Let \mathcal{M} be a maximal ideal of $D_n(R)$. Then there exists a maximal ideal *M* of *R*

such that $\mathcal{M} = \begin{cases} \begin{pmatrix} m & K & K \\ 0 & m & K \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m \end{pmatrix} \mid m \in M \end{cases}$. Suppose that $E\mathcal{M}F = 0$, for $E = (e_{ij})$, $F = (f_{kl})$ and $E, F \in Id(D_n(R))$.

 $\left(\begin{array}{cc} 0 & 0 & \cdots & m \end{array}\right)$ Let $A = (a_{uv})$ be any in \mathcal{M} . Set $e_{ii} = e = e^2 \neq 0$, $a_{uu} = a$, $f_{kk} = f = f^2 \neq 0$, for all $i, u, k = 1, \dots, n$. Then $e_{ij} \in ReR$ and $f_{kl} \in RfR$, for all i, j, k, l by help of the proof of [19, Theorem 3.9].

Note that *a* (resp., a_{12}) runs over *M* (resp., *R*). From *EAF* = 0, we get

$$0 = \begin{pmatrix} e & e_{12} \\ 0 & e \end{pmatrix} \begin{pmatrix} a & a_{12} \\ 0 & a \end{pmatrix} \begin{pmatrix} f & f_{12} \\ 0 & f \end{pmatrix} = \begin{pmatrix} eaf & eaf_{12} + ea_{12}f + e_{12}af \\ 0 & eaf \end{pmatrix},$$

entailing eaf = 0 and $eaf_{12} + ea_{12}f + e_{12}af = 0$. But eaf implies eMf = 0 because a is an arbitrary in M. So we get $eaf_{12} + e_{12}af = 0$ because $e_{ij} \in ReR$ and $f_{kl} \in RfR$. Thus $ea_{12} = 0$, so eRf = 0 because a_{12} runs over R. Since R is right α -skew RIP, eRf = 0 gives $fR\alpha(e) = 0$. This result yields $F \mathscr{M}\overline{\alpha}(E) = 0$ by using again the fact that $e_{ij} \in ReR$ and $f_{kl} \in RfR$ for all i, j, k, l. Therefore $D_n(R)$ is right α -skew RMI.

Conversely, assume that $D_n(R)$ is right α -skew RMI for $n \ge 2$ and let eRf = 0 for $e, f \in Id(R)$. Then $E = e \sum_{i=1}^{n} E_{ii}, F = f \sum_{i=1}^{n} E_{ii}$ and $E, F \in Id(D_n(R))$, and note that

$$\mathcal{M} = \left\{ \begin{pmatrix} m \ R \ \cdots \ R \\ 0 \ m \cdots \ R \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \cdots \ m \end{pmatrix} \mid m \in M \right\}$$

^{© 2021} BISKA Bilisim Technology

is a maximal ideal of $D_n(R)$ for any maximal ideal M of R. From eRf = 0 we obtain $E\mathscr{M}F = 0$. Since $D_n(R)$ is right α -skew RMI, $F\mathscr{M}\bar{\alpha}(E) = 0$ and this yields

$$0 = \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} \begin{pmatrix} m & r \\ 0 & m \end{pmatrix} \begin{pmatrix} \alpha(e) & 0 \\ 0 & \alpha(e) \end{pmatrix} = \begin{pmatrix} fm\alpha(e) & fr\alpha(e) \\ 0 & fm\alpha(e) \end{pmatrix},$$

where *r* is an arbitrary in *R*. So we have $fR\alpha(e) = 0$, thus *R* is right α -skew RIP.

Theorem 4. Let *R* be a ring with an endomorphism α .

- (1) If $D_2(R)$ over a ring R is a right $\bar{\alpha}$ -skew RMI, then R is a right α -skew RIP.
- (2) If R has two or more maximal ideals and R is a right α -skew RMI ring, then R is a right α -skew RIP.

Proof. (1) Note first that a maximal ideal of $D_2(R)$ is of the form $\left\{ \begin{pmatrix} m & r \\ 0 & m \end{pmatrix} \mid m \in M, r \in R \right\}$, where *M* is a maximal ideal of *R*. Let $D_2(R)$ be a right $\bar{\alpha}$ -skew RMI ring and suppose that eRf = 0, for $e, f \in Id(R)$. Then

$$\begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix} \begin{pmatrix} m & r \\ 0 & m \end{pmatrix} \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} = 0,$$

for all $m \in M$ and $r \in R$. Since $D_2(R)$ is a right $\overline{\alpha}$ -skew RMI, we have

$$\begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} \begin{pmatrix} m & r \\ 0 & m \end{pmatrix} \begin{pmatrix} \alpha(e) & 0 \\ 0 & \alpha(e) \end{pmatrix} = 0.$$

This yields $fR\alpha(e) = 0$, so *R* is a right α -skew RIP ring.

(2) Let *R* be a ring and M_1, M_2 two distinct maximal ideals of *R*. Then $M_1 + M_2 = R$, say $1 = m_1 + m_2$ for $m_i \in M_i$. Assume that eRf = 0 for $e, f \in Id(R)$. Then $eM_1f = 0$ and $eM_2f = 0$. Here *R* is a right α -skew RMI so $fM_1\alpha(e) = 0$ hence $fM_2\alpha(e) = 0$. Therefore $fr\alpha(e) = f(rm_1 + rm_2)\alpha(e) = 0$ for every $r \in R$, entailing that $fR\alpha(e) = 0$.

Theorem 5. A ring R is right α -skew RIP if and only if $D_n(R)$ is right α -skew RIP for $n \ge 2$.

*Proof.*Assume that *R* is a right α -skew RIP. Suppose that $ED_n(R)F = 0$ for $E = (e_{ij})$, $F = (f_{kl})$ and $E, F \in Id(D_n(R))$. Let $A = (a_{uv})$ be any in $D_n(R)$. Set $e_{ii} = e = e^2 \neq 0$, $a_{uu} = a$, $f_{kk} = f = f^2 \neq 0$, for all i, u, k = 1, ..., n. Then $e_{ij} \in ReR$ and $f_{kl} \in RfR$, for all i, j, k, l by help of the proof of [19, Theorem 3.9].

Note that *a* (resp., a_{12}) runs over *R* (resp., *R*). From EAF = 0, we get

$$0 = \begin{pmatrix} e & e_{12} \\ 0 & e \end{pmatrix} \begin{pmatrix} a & a_{12} \\ 0 & a \end{pmatrix} \begin{pmatrix} f & f_{12} \\ 0 & f \end{pmatrix} = \begin{pmatrix} eaf & eaf_{12} + ea_{12}f + e_{12}af \\ 0 & eaf \end{pmatrix},$$

entailing eaf = 0 and $eaf_{12} + ea_{12}f + e_{12}af = 0$. But eaf implies eRf = 0 because a is an arbitrary in R. So we get $eaf_{12} + e_{12}af = 0$ because $e_{ij} \in ReR$ and $f_{kl} \in RfR$. Thus $ea_{12} = 0$, so eRf = 0 because a_{12} runs over R. Since R is right α -skew RIP, eRf = 0 gives $fR\alpha(e) = 0$. This result yields $FD_n(R)\bar{\alpha}(E) = 0$ by using again the fact that $e_{ij} \in ReR$ and $f_{kl} \in RfR$ for all i, j, k, l. Therefore $D_n(R)$ is right α -skew RIP.

Conversely, assume that $D_n(R)$ is right α -skew RIP for $n \ge 2$ and suppose eRf = 0 for $e, f \in Id(R)$. Then $E = e\sum_{i=1}^{n} E_{ii}, F = f\sum_{i=1}^{n} E_{ii}$ and $E, F \in Id(D_n(R))$, and note that From eRf = 0 we obtain $ED_n(R)F = 0$. Since $D_n(R)$

is right α -skew RIP, $FD_n(R)\bar{\alpha}(E) = 0$ and this yields

$$0 = \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix} \begin{pmatrix} m & r \\ 0 & m \end{pmatrix} \begin{pmatrix} \alpha(e) & 0 \\ 0 & \alpha(e) \end{pmatrix} = \begin{pmatrix} fm\alpha(e) & fr\alpha(e) \\ 0 & fm\alpha(e) \end{pmatrix},$$

where *r* is an arbitrary in *R*. So we have $fR\alpha(e) = 0$, thus *R* is right α -skew RIP.

Recall that an element *u* of a ring *R* is *right regular* if ur = 0 implies r = 0 for $r \in R$. Similarly, *a left regular* is defined, and *regular* means if it is both left and right regular (and hence not a zero divisor). A multiplicatively closed (m.c., for short) subset *M* of a ring *R* is said to satisfy the *right Ore condition* if for each $a \in R$ and $b \in M$, there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. It is shown, by [24, Theorem 2.1.12], that *S* satisfies the right Ore condition and *S* consists of regular elements if and only if the right quotient ring of *R* with respect to *S* exists. Suppose that the right quotient ring *Q* of *R* exists. For an automorphism α of *R* and any $au^{-1} \in Q(R)$ where $a \in R$ and $u \in S$, the induced map $\bar{\alpha} : Q(R) \to Q(R)$ defined by $\bar{\alpha}(au^{-1}) = \alpha(a)\alpha(u)^{-1}$ is also an endomorphism. Note that the right quotient ring *Q* of an α -rigid ring *R* is $\bar{\alpha}$ -rigid, where α is an automorphism of *R*. As a parallel result to this, we have the following result whose proof is modified from the proof of [19, Theorem 2.11]. Let *R* be a ring with the classical right quotient ring Q(R). Then each automorphism α of *R* extends to Q(R) by setting $\bar{\alpha}(ab^{-1}) = \alpha(a)(\alpha(b))^{-1}$ for $a, b \in R$, assuming that $\alpha(b)$ is regular for each regular element $b \in R$.

Theorem 6. Let S be an m.c. subset of a ring R and α an automorphism of R. Suppose that S satisfies the right Ore condition and S consists of regular elements. If R is right α -skew RIP, then the right quotient ring Q of R with respect to S is right $\overline{\alpha}$ -skew RIP.

Proof. Suppose that *R* is a right α -skew RIP. Let $E = eu^{-1}$, $F = fv^{-1}$ with $e, f \in Id(R)$ and $u, v \in S$. Then we have $0 = EQF = eQ(fv^{-1})$, since $Q = u^{-1}Q$. Thus $e(rs^{-1})(fv^{-1}) = 0$ for any $rs^{-1} \in Q$. By hypothesis, there exists $c \in Id(R)$ and $w \in S$ such that $s^{-1}f = cw^{-1}$. Hence, $0 = e(rs^{-1})(fv^{-1}) = ercw^{-1}v^{-1}$ for any $r \in R$, so we have eRc = 0 and $cR\alpha(e) = 0$. From eRc = 0 and fw = sc, we get 0 = ersc = erfw, for any $r \in R$ and hence eRf = 0 and $fR\alpha(e) = 0$. Since $v^{-1}Q = Q$, $FQ\overline{\alpha}(E) = fQ(\alpha(e)\alpha^{-1}(u))$. Consider $f(rt^{-1})\alpha(e)\alpha^{-1}(u)$ for any $rt^{-1} \in Q$. For $\alpha(e)$ and t, there exist $d \in R$ and $l \in S$ such that $\alpha(e)l = td$ and $t^{-1}\alpha(e) = dl^{-1}$. Since α is an automorphism, there exist $l', t', d' \in Id(R)$ such that $l = \alpha(l'), t = \alpha(t')$ and $d = \alpha(d')$, and hence el' = t'd'. The facts that eRf = 0 and el' = t'd' imply 0 = el'rf = t'd'rf for any $r \in R$, so d'Rf = 0 and hence $fR\alpha(d') = fRd = 0$. Since $fRd = 0, 0 = frdl^{-1}\alpha^{-1}(u) = f(rt^{-1})\overline{\alpha}(eu^{-1})$ for any $rt^{-1} \in Q$ and thus $FQ\overline{\alpha}(E) = 0$. Therefore Q is right $\overline{\alpha}$ -skew RIP.

The following proposition is obtained by applying the method in the proof of Theorem 6

Proposition 10. Let M be an m.c. subset of a ring R consisting of central regular elements and α an automorphism of R. Then R is right α -skew RIP if and only if $M^{-1}R$ is right $\overline{\alpha}$ -skew RIP.

Recall that if α is an endomorphism of a ring R, then the map $R[x] \to R[x]$ defined by $\sum_{i=0}^{m} a_i x^i \mapsto \sum_{i=0}^{m} \alpha(a_i) x^i$ is an endomorphism of the polynomial ring R[x] and clearly this map extends α . We still denote the extended maps $R[x] \to R[x]$ by $\overline{\alpha}$. The ring of *Laurent polynomials* in x, coefficients in a ring R, consists of all formal sums $\sum_{i=k}^{n} r_i x_i$ with the usual addition and multiplication, where $r_i \in R$ and k, n are (possibly negative) integers. We denote this by $R[x;x^{-1}]$. For an endomorphism α of R, we denote the map $R[x;x^{-1}] \to R[x;x^{-1}]$ by the same endomorphism as in the polynomial ring R[x] above. The following result extends the class of right α -skew RIP rings.

Corollary 3. For a ring R with an automorphism α , R[x] is a right $\bar{\alpha}$ -skew RIP if and only if $R[x;x^{-1}]$ is a right $\bar{\alpha}$ -skew RIP.

Proof. It directly follows from Proposition 6. For, let $M = \{1, x, x^2, \dots\}$, where *M* is a multiplicatively closed subset of R[x] such that $R[x, x^{-1}] = M^{-1}R[x]$.

© 2021 BISKA Bilisim Technology

Let *R* be a ring with an endomorphism α . Suppose that R[x] is a right $\bar{\alpha}$ -skew RIP ring and eRf = 0 for $e, f \in Id(R)$. Then eR[x]f = 0 by [10, Lemma 2.1], so $fR[x]\bar{\alpha}(e) = 0$ and $fR\alpha(e) = 0$. Thus *R* is right α -skew RIP.

Recall that a ring *R* is called *quasi-Armendariz* [10] provided that $a_i R b_j = 0$ for all *i*, *j* whenever $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j$ and $f(x), g(x) \in R[x]$ satisfy f(x)R[x]g(x) = 0. Semiprime rings are quasi-Armendariz by [10, Corollary 3.8], but the converse does not hold in general.

Proposition 11. Let R be a quasi-Armendariz ring with an endomorphism α . Then the following are equivalent:

- (1) R is right α -skew RIP.
- (2) R[x] is right $\bar{\alpha}$ -skew RIP.
- (3) $R[x;x^{-1}]$ is right $\bar{\alpha}$ -skew RIP.

Proof. It suffices to show (1) \Rightarrow (2) by Corollary 3 and the above argument. Assume that *R* is right α -skew RIP. Let f(x)R[x]g(x) = 0] for $f(x) = \sum_{i=0}^{m} e_i x^i$, $g(x) = \sum_{j=0}^{n} f_j x^j$ and $f(x), g(x) \in Id(R[x])$. Since *R* is quasi-Armendariz and right α -skew RIP, we have $e_i R f_j = 0$ for all *i*, *j* and hence $f_j R \alpha(e_i) = 0$. This entails that $g(x)R[x]\bar{\alpha}(f(x)) = 0$ and so R[x] is right $\bar{\alpha}$ -skew RIP.

Let *R* be an algebra over a commutative ring *S*. Due to Dorroh [8], the *Dorroh extension* of *R* by *S* is the Abelian group $R \oplus S$ with multiplication given by $(r_1, s_1)(r_2, s_2) = (r_1r_2 + s_1r_2 + s_2r_1, s_1s_2)$ for $r_i \in R$ and $s_i \in S$. We use *D* to denote the Dorroh extension of *R* by *S*.

For an endomorphism α of R and the Dorroh extension D of R by S, $\bar{\alpha} : D \to D$ defined by $\bar{\alpha}(r,s) = (\alpha(r),s)$ is an S-algebra homomorphism.

In the following, we give some other example of right α -skew RIP rings.

Theorem 7. Let *R* be an algebra over a commutative ring *S* and α an endomorphism of *R* with $\alpha(1) = 1$. Then *R* is a right α -skew RIP ring if and only if The Dorroh extension *D* of *R* by *S* is a right $\overline{\alpha}$ -skew RIP ring.

Proof. First, note that $s \in S$ is identified with $s1 \in R$, so $R = \{r+s \mid (r,s) \in D\}$. Suppose that R is a right α -skew RIP ring with $\alpha(1) = 1$ and suppose that $(e_1, s_1)D(e_2, s_2) = 0$ for $(e_1, s_1), (e_2, s_2) \in Id(D)$. Since $(e_i, s_i) = (e_i^2 + 2s_ie_i, s_i^2)$, we have that $(e_i + s_i1)^2 = e_i^2 + 2s_ie_i + s_i^2 1 = e_i + s_i1$ is an idempotent in R. Since

$$(e_1, s_1)(r, 0)(e_2, s_2) = (e_1 r e_2 + s_1 r e_2 + s_2 e_1 r + s_1 s_2 r, 0) = (0, 0),$$

and

$$(e_1 + s_1 1)r(e_2 + s_2 1) = e_1re_2 + s_1re_2 + s_2e_1r + s_1s_2r_3$$

for $(e_1 + s_1 1), (e_2 + s_2 1) \in Id(R)$ and $r \in R$, we have $(e_1, s_1)R(e_2, s_2) = 0$. Since R is a right α -skew RIP ring, we get

$$0 = (e_2 + s_2 1)R\alpha(e_1 + s_1 1) = (e_2 + s_2 1)R(\alpha(e_1) + s_1).$$

Hence

$$e_2 r \alpha(e_1) + s_2 r \alpha(e_1) + s_1 e_2 r + s_1 s_2 r = 0$$

for all $r \in R$. Let $(r, 0) \in D$. Then

$$(e_2, s_2)(r, 0)(\alpha(e_1), s_1) = ((e_2r + s_2r)\alpha(e_1) + s_1(e_2r + s_2r), 0) = (e_2r\alpha(e_1) + s_2r\alpha(e_1) + s_1e_2r + s_1s_2r, 0) = (0, 0),$$

showing that $(e_2, s_2)D\bar{\alpha}(e_1, s_1) = 0$. Therefore *D* is a right $\bar{\alpha}$ -skew RIP ring.

Conversely, suppose that *D* is a right $\bar{\alpha}$ -skew RIP and suppose eRf = 0 for $e, f \in Id(R)$. Then e(r+s)f = 0, for any $(r,s) \in D$. This implies (e,0)(r,s)(f,0) = 0, for any $(r,s) \in D$. Since *D* is a right $\bar{\alpha}$ -skew RIP, we have $(f,0)(r,s)\bar{\alpha}(e,0) = 0$ and hence $f(r+s)\alpha(e) = 0$, proving that $fR\alpha(e) = 0$. Thus *R* is a right α -skew RIP ring.

Corollary 4. Let *R* be an algebra over a commutative ring *S*, and *D* be the Dorroh extension of *R* by *S*. If *R* is *RIP* and *S* is domain, then *D* is *RIP*.

Theorem 8. Let *R* be an algebra over a field *K*, and *D* the Dorroh extension of *R* by *K*. Let α be an endomorphism of *R* with $\alpha(1) = 1$. Then *R* is a right α -skew RIP ring if and only if *D* is a right $\overline{\alpha}$ -skew RMI ring.

Proof. First, note that $\mathcal{M} = R \oplus \{0\}$ is the unique maximal ideal of D, since every $(r, s) \in D$ is a unit when $s \neq 0$ by the proof of [14, Proposition 1.5] and that $s \in K$ is identified with $s1 \in R$ and so $R = \{r + s \mid (r, s) \in D\}$.

Suppose that *R* is a right α -skew RIP ring with $\alpha(1) = 1$ and let $(e_1, s_1) \mathcal{M}(e_2, s_2) = 0$ for $(e_1, s_1), (e_2, s_2) \in Id(D)$. Since $(e_i, s_i) = (e_i^2 + 2s_i e_i, s_i^2)$, we have that $(e_i + s_i 1)^2 = e_i^2 + 2s_i e_i + s_i^2 1 = e_i + s_i 1$ is an idempotent in *R*. Since

$$(e_1, s_1)(r, 0)(e_2, s_2) = (e_1re_2 + s_1re_2 + s_2e_1r + s_1s_2r, 0) = (0, 0),$$

and

$$(e_1 + s_1 1)r(e_2 + s_2 1) = e_1re_2 + s_1re_2 + s_2e_1r + s_1s_2r$$

for $(e_1 + s_1 1), (e_2 + s_2 1) \in Id(R)$ and $r \in R$. For any $(r, 0) \in \mathcal{M}$, we have $(e_1, s_1)R(e_2, s_2) = 0$. Since R is a right α -skew RIP ring, we get

$$0 = (e_2 + s_2 1)R\alpha(e_1 + s_1 1) = (e_2 + s_2 1)R(\alpha(e_1) + s_1).$$

Hence

$$e_2 r \alpha(e_1) + s_2 r \alpha(e_1) + s_1 e_2 r + s_1 s_2 r = 0,$$

for all $r \in R$. Let $(r, 0) \in \mathcal{M}$. Then

$$(e_2, s_2)(r, 0)(\alpha(e_1), s_1) = ((e_2r + s_2r)\alpha(e_1) + s_1(e_2r + s_2r), 0) = (e_2r\alpha(e_1) + s_2r\alpha(e_1) + s_1e_2r + s_1s_2r, 0) = (0, 0),$$

showing that $(e_2, s_2) \mathscr{M} \bar{\alpha}(e_1, s_1) = 0$. Therefore, *D* is a right $\bar{\alpha}$ -skew RMI ring.

Conversely, suppose that *D* is a right $\bar{\alpha}$ -skew RMI ring and let eRf = 0 for $e, f \in Id(R)$. Then

$$(e,0)\mathcal{M}(f,0) = (eRf,0) = (0,0).$$

^{© 2021} BISKA Bilisim Technology

Since *D* is a right $\bar{\alpha}$ -skew RMI ring,

$$(f,0)\mathcal{M}\bar{\alpha}(e,0)=(f,0)\mathcal{M}(\alpha(e),0)=0,$$

and it implies that $fR\alpha(e) = 0$. Thus *R* is a right α -skew RIP ring.

Lemma 3. Let *R* be a right α -skew *RIP* ring with $\alpha(1) = 1$. Then for any $e, f \in Id(R)$, eRf = 0 implies $fR\alpha^n(e) = 0$ for any positive integer *n*.

Proof. Let eRf = 0 with $e, f \in Id(R)$, then we have $fR\alpha^n(e) = 0$ since R is right α -skew RIP. Note that $fR\alpha(e) = (1).fR.\alpha(e) = 0$, this implies that $\alpha(e).fR.\alpha(1) = \alpha(e).fR.(1) = 0$. It follows that $(1).fR.\alpha^2(e) = 0$ by hypothesis. Continuing this process, we have $fR\alpha^n(e) = 0$ for any positive integer n.

We note that if *R* is a right α -skew RIP ring with eRf = 0 for $e, f \in Id(R)$. Then we have $fR\alpha(e) = 0$, and so $\alpha(e)R\alpha(f) = 0$. By induction hypothesis, we can obtain $\alpha^n(e)R\alpha^n(f) = 0$ for any positive integer *n*. However, we have the following corollary.

Corollary 5. Let *R* be a right α -skew *RIP* ring with $\alpha(1) = 1$. Then for any $e, f \in Id(R)$, eRf = 0 implies $\alpha^m(e)R\alpha^n(f) = 0$ for any positive integer *n*,*m*.

Let *R* be a ring and α a monomorphism of *R*. Now we consider the Jordan's construction of an over-ring of *R* by α (see [15] for more details). Let $A(R, \alpha)$ be the subset $\{x^{-i}rx^i | r \in R \text{ and } i \geq 0\}$ of the skew Laurent polynomial ring $R[x, x^{-1}; \alpha]$. Note that for $j \geq 0$, $x^j r = \alpha^j(r)x^j$ implies $rx^{-j} = x^{-j}\alpha^j(r)$ for $r \in R$. This yields that for each $j \geq 0$, we have $x^{-i}rx^i = x^{-(i+j)}\alpha^j(r)x^{i+j}$. It follows that $A(R, \alpha)$ forms a subring of $R[x, x^{-1}; \alpha]$ with the following natural operations: $x^{-i}rx^i + x^{-j}sx^j = x^{-(i+j)}(\alpha^j(r) + \alpha^i(s))x^{i+j}$ and $(x^{-i}rx^i)(x^{-j}sx^j) = x^{-(i+j)}\alpha^j(r)\alpha^i(s)x^{i+j}$ for $r, s \in R$ and $i, j \geq 0$. Note that $A(R, \alpha)$ is an over-ring of *R*, and the map $\overline{\alpha} : A(R, \alpha) \to A(R, \alpha)$ defined by $\overline{\alpha}(x^{-i}rx^i) = x^{-i}\alpha(r)x^i$ is an automorphism of $A(R, \alpha)$. Jordan showed, with the use of left localization of the skew polynomial $R[x; \alpha]$ with respect to the set of powers of *x*, that for any pair (R, α) , such an extension $A(R, \alpha)$ always exists in [15]. This ring $A(R, \alpha)$ is usually said to be the *Jordan extension* of *R* by α .

Finally, we give the following Proposition:

Proposition 12. For a ring R with a monomorphism α , R is right α -skew RIP if and only if the Jordan extension $A = A(R, \alpha)$ of R by α is right $\overline{\alpha}$ -skew RIP.

*Proof.*It is enough to show the necessity. Suppose that *R* is right α -skew RIP and eAf = 0, for $e = x^{-i}rx^i$, $f = x^{-j}sx^j \in Id(A)$, for $i, j \ge 0$ and for $c = x^{-k}tx^k \in A = A(R, \alpha)$. Then, $r, s \in Id(R)$ obviously. From ecf = 0, we get

$$(x^{-i}rx^{i})(x^{-k}tx^{k})(x^{-j}sx^{j}) = 0,$$

then we have

$$x^{-(i+k+j)}(\alpha^{j+k}(r)\alpha^{j+i}(t)\alpha^{k+i}(s))x^{(i+k+j)} = 0.$$

This implies that

$$\alpha^{j+k}(r)\alpha^{j+i}(t)\alpha^{k+i}(s) = 0.$$

Since *R* is right α -skew RIP, we have

$$\alpha^{k+i}(s)\alpha^{j+i}(t)\alpha^{j+k+1}(r) = 0$$

Therefore, we obtain

$$fc\alpha(e) = (x^{-j}sx^j)(x^{-k}tx^k)(x^{-i}\alpha(r)x^i) = x^{-(i+k+j)}(\alpha^{i+k}(s)\alpha^{j+i}(k)\alpha^{j+k+1}(r))x^{(i+k+j)} = 0$$

Thus, the Jordan extension A of R by α is a right $\bar{\alpha}$ -skew RIP ring.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

- C. A. K. Ahmad, A.M. Abdul-Jabbar, T.K.Kwak and Y. Lee, *Reflexivity with maximal ideal axes*, Communications in Algebra, 45, (2017), 4348-4361.
- [2] A. M. Abdul-Jabbar, C. A. K. Ahmad and T. K. Kwak, *Skew reflexive property with maximal ideal axes*, Accepted in the Zanco Journal of Pure and Applied in the Salahaddin University (2017).
- [3] E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Sco. 18(1974), 470-473.
- [4] M. Başer, C. Y. Hong and T. K. Kwak, ON extended reversible rings, Algebra Colloq. 16 (2009), 37-48.
- [5] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.
- [6] V. Camillo, T. K. Kwak and Y. Lee, Ideal-symmetric and semiprime rings, Comm. Algebra 41(2013), 4504-4519.
- [7] P. M. Cohn, *Reversible rings*, Bull. London Math. Soc. 31(1999), 641-648.
- [8] J. L. Dorroh, Concerning adjunctins to algebras, Bull. Amer. Math. Soc. 38 (1932), 85-88.
- [9] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta. Math. Hungar, 151(2000),215-226.
- [10] Y. Hirano, On annihilator ideals of a polynomial ring over a non commutative ring, J. Pure Appl. Algebra 168 (2002), 215-226.
- [11] C. Huh, Y. Lee and A.Smoktunowice, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761.
- [12] C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2002), 37-52.
- [13] S. U. Hwang, Y. C. Jeon and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), 186-199.
- [14] H. L. Jin, D.W. Jung, Y. Lee, S. J. Ryu, H. J. Sung and S. J. Yun, *Insertion-of-Factors-Property with factors maximal ideals*, J. Korean Math. Soc. (to appear).
- [15] D.A. Jordan, Bijective extensions of injective ring endomorphisms, J. Lond. Math. Soc. 25 (1982), 435-448.
- [16] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.
- [17] J. Krempa, Some example of reduced rings, Algebra Colloq. 3 (1996),289-300.
- [18] T. K. Kwak, *Extensions of extended symmetric rings*, Bull. Korean Math. Soc. 44 (2007), 777-788.
- [19] T.K. Kwak and Y. Lee, Reflexive property of rings, Comm. Algebra, 40(2012), 1576-1594.
- [20] T. K. Kwak and Y. Lee, Reflexive property on idempotents, Bull. Korean Math. Soc. 50 (2013), 1957-1972.
- [21] T. K. Kwak, Y. Lee and S. J. Yun, Reflexive property skewed by ring endomorphisms, Korean J. Math. 22 (2014), 217-234.
- [22] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), 1709-0724.
- [23] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14(1971) 359-368.
- [24] J. C. McConnell and J. C. Robson, Non commutative Noetherian Rings, John Wiley & Son Ltd., 1987.
- [25] L. Zhao. and X. Zhu, Extensions of α -reflexive rings, Asian-Europ. J. Math. 5 (2012) 1250013 (10 pages).