
NTMSCI 8, No. 4, 1-8 (2020) 1

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2020.408

Stability of fractional neutral systems with time varying
delay based on delay decomposition approach
Yener Altun

Department of Business Administration, Management Faculty, Van Yuzuncu Yil University, 65080, Van, Turkey

Received: 10 December 2020, Accepted: 27 December 2020
Published online: 29 December 2020.

Abstract: The approach in this paper is present asymptotically stability of fractional neutral systems under Riemann-Liouville (R-
L) derivatives. Some sufficient conditions are devised to such systems based on the Lyapunov method. The difficulty of obtaining a
fractional-order Lyapunov functional lies in how to design a positively defined functional V and easily determine whether the fractional
derivative of V is less than zero. The method we deal with in this study provides an advantage in terms of directly calculating integer
ordered derivatives of Lyapunov functionals. By improving a delay decomposition approach, the stability conditions for the solution of
fractional system were established in terms of linear matrix inequalities (LMIs) which can be easily tested. Finally, an example with
numerical simulation is given to illustrate the universality and the validity of proposed method.
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1 Introduction

Fractional calculus is a mathematical subject of about 300 years. In the past thirty years, fractional calculus has been
found in many various and widespread fields of science and engineering. To describe real world problems, it has been
proved that fractional-order calculus is more enough and general than the integer calculus. For this, researchers in the
field of mathematics alone do not have a keen interest in fractional calculus. At the same time, fractional systems have
received great interest in many scientific areas such as control theory, aircraft stabilization, biophysics, chemical
engineering processes, distributed networks, neural networks, nuclear reactors, and population Dynamics and etc. (see
[1-23]). For this, interest in the stability analysis of various fractional time delay systems has been increasing quickly in
recent years, especially due to its successful applications in common areas of engineering. Therefore, time delay
fractional systems and the stability analysis problem for these systems are an important topic both from a theoretical and
practical point of view. When the related literature is examined, it is seen that many researchers focus their attention on
the stability issue of neutral systems which has a more general class than the delayed type, via different approaches. In
this direction, in this study, we improve a delay decomposition approach in fractional neutral systems with time varying
delay and obtain novel robust stability criteria.

Motivated and considered by the above discussions, this study searches the asymptotically stability of fractional neutral
systems with a delay decomposition approach. We can summarize the main goal of this paper and its contribution to the
related literature as follows. First, this paper on the stability of fractional neutral systems with delay decomposition
approach is still under development. Therefore, we assert novel stability criteria on the stability of considered fractional
system with delay decomposition approach for further improvements. According to the present results in [4, 5, 7, 10, 13],
the results of this study are more general. Second, there appears to be very few papers in the literature on the stability of
fractional neutral systems with the delay decomposition approach. In this sense, the theoretical results of this paper will
contribute to the current related literature. Third, in this paper, some basic inequalities in terms of proof technique are
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used to reduce conservatism and a suitable Lyapunov functional is constructed. Finally, an example with numerical
simulation is evaluated to show the universality and the validity of theoretical results.

2 Problem description

In this research paper, we consider the following fractional neutral system with time varying delay

t0Dq
t x(t)−Ct0Dq

t x(t− τ) = Ax(t)+Bx(t− τ(t)), t ≥ 0, (1)

with the initial conditions

t0D−(1−q)
t x(t) = ϕ(t), t ∈ [−τ,0],

where 0≤ q≤ 1, t0Dq
t x(.) shows a q order R-L fractional derivative of x(.),x(t)∈ Rn is the state vector, A,B and C ∈ Rn×n

are constant matrixes and differentiable function τ(t) is a variable delay function satisfying for all t ≥ 0,

0≤ τ(t)≤ τ, τ̇(t)≤ δ < 1, (2)

where τ and δ are some positive constants.

Definition 1. The R-L fractional integral and derivative with order q of x(t) are described as follows, respectively ([17])

t0D−q
t x(t) =

1
Γ (q)

∫ t

t0
(t− s)q−1x(s)ds, (q > 0),

t0Dq
t x(t) =

1
Γ (m−q)

dm

dtm

∫ t

t0
(t− s)m−q−1x(s)ds, (0≤ m−1≤ q < m),

where Γ (·) states the Gamma function.

Lemma 1. For sufficiently good functions x(t), if p > q > 0, then the following equality ([9])

t0Dq
t (t0D−p

t x(t)) =t0 Dq−p
t x(t),

holds. In particular, this equality holds if x(t) is integrable.

Lemma 2. Let x(t) ∈ Rn be a vector of differentiable vector. Then, the following inequality holds for any time instant
t ≥ 0, ([9])

1
2 t0Dq

t (x
T (t)M̃x(t))≤ xT (t)M̃t0Dq

t x(t), 0 < q < 1,

where M̃ ∈ Rn×n is a constant, square, symmetric and positive semi-definite matrix.

Lemma 3. Given matrices ∆1,∆2,∆3 where ∆1 = ∆ T
1 ,∆3 = ∆ T

3 and ∆3 > 0. Then ∆1 +∆ T
2 ∆
−1
3 ∆2 < 0 if and only if ([4])[

∆1 ∆ T
2

∆2 −∆3

]
< 0 or

[
−∆3 ∆2

∆ T
2 −∆1

]
< 0.

3 Main results

In this section, by applying delay decomposition approach and constructing an appropriate Lyapunov functional associated
with the R-L fractional derivative and fractional integral, we propose a novel stability criterion for the fractional system
(1).
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Theorem 1. Let ‖D‖ < 1. If 0 ≤ τ(t) ≤ βτ for given scalars β (0 < β < 1),τ(> 0) and δ , the system (1) with (2) is
asymptotically stable if there exist matrices P = PT > 0,R = RT > 0,Hi = HT

i ≥ 0,Ui =UT
i ≥ 0,(i = 1,2,3), such that

Ψ̃ =



Ψ̃11 Ψ̃12 0 0 Ψ̃15 Ψ̃16

Ψ̃ T
12 Ψ̃22 0 0 0 Ψ̃26

0 0 Ψ̃33 0 0 0
0 0 0 Ψ̃44 0 0

Ψ̃ T
15 0 0 0 Ψ̃55 Ψ̃56

Ψ̃ T
16 Ψ̃ T

26 0 0 Ψ̃ T
56 Ψ̃66


< 0, (3)

with

Ψ̃11 =AT P+PA+H1 +H3,Ψ̃12 = PB,Ψ̃15 = PC,

Ψ̃16 =AT [R+βτU1 +(1−β )τU2 +βτU3],Ψ̃22 =−(1−δ )H3,

Ψ̃26 =BT [R+βτU1 +(1−β )τU2 +βτU3],Ψ̃33 =−H2,Ψ̃44 = H2−H1,

Ψ̃55 =−R,Ψ̃56 =CT [R+βτU1 +(1−β )τU2 +βτU3],

Ψ̃66 =− [R+βτU1 +(1−β )τU2 +βτU3].

Proof. Construct the following Lyapunov functional

V (xt) =
3

∑
i=1

Vi(xt), (4)

where

V1 =t0Dq−1
t (xT (t)Px(t)),

V2 =
∫ t

t−βτ

xT (s)H1x(s)ds+
∫ t−βτ

t−τ

xT (s)H2x(s)ds+
∫ t

t−τ(t)
xT (s)H3x(s)ds+

∫ 0

−τ

(t0Dq
t x(t +ξ ))T R(t0Dq

t x(t +ξ ))dξ

V3 =
∫ 0

−βτ

∫ t

t+ϕ

(t0Dq
ξ

x(ξ ))TU1(t0Dq
ξ

x(ξ ))dξ dϕ +
∫ −βτ

−τ

∫ t

t+ϕ

(t0Dq
ξ

x(ξ ))TU2(t0Dq
ξ

x(ξ ))dξ dϕ

+
∫ 0

−τ(t)

∫ t

t+ϕ

(t0Dq
ξ

x(ξ ))TU3(t0Dq
ξ

x(ξ ))dξ dϕ.

From Definition 1., we know that, V1,V2 and V3 are positive definite functional. By Lemma 1 and Lemma 2, calculating
time derivative V (xt) along the trajectory of system (1), we obtain

V̇ (xt) =
3

∑
i=1

V̇i(xt), (5)

where

V̇1(xt) =t0 Dq
t (x

T (t)Px(t))≤ 2xT (t)Pt0Dq
t (x(t))

=2xT (t)P[Ax(t)+Bx(t− τ(t))+Ct0Dq
t x(t− τ)] (6)

=xT (t)(PA+AT P)x(t)+2xT (t)PBx(t− τ(t))+2xT (t)PCt0Dq
t x(t− τ)
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V̇2(xt) =xT (t)(H1 +H3)x(t)− xT (t− τ(t))(1− τ̇(t))H3x(t− τ(t))

+ xT (t−βτ)(H2−H1)x(t−βτ)− xT (t− τ)H2x(t− τ)

+(t0Dq
t x(t))T R(t0Dq

t x(t))− (t0Dq
t x(t− τ))T R(t0Dq

t x(t− τ)) (7)

≤xT (t)(H1 +H3)x(t)− xT (t− τ(t))(1−δ )H3x(t− τ(t))

+ xT (t−βτ)(H2−H1)x(t−βτ)− xT (t− τ)H2x(t− τ)

+(t0Dq
t x(t))T R(t0Dq

t x(t))− (t0Dq
t x(t− τ)))T R(t0Dq

t x(t− τ))

V̇3(xt) =(t0Dq
t x(t))T (βτU1 +(1−β )τU2 + τ(t)U3)t0Dq

t x(t)

−
∫ t

t−βτ

(t0Dq
s x(s))TU1(t0Dq

s x(s))ds−
∫ t−βτ

t−τ

(t0Dq
s x(s))TU2(t0Dq

s x(s))ds

− (1− τ̇(t))
∫ t

t−τ(t)
(t0Dq

s x(s))TU3(t0Dq
s x(s))ds

≤(t0Dq
t x(t))T (βτU1 +(1−β )τU2 +βτU3)t0Dq

t x(t) (8)

−
∫ t

t−βτ

(t0Dq
s x(s))TU1(t0Dq

s x(s))ds−
∫ t−βτ

t−τ

(t0Dq
s x(s))TU2(t0Dq

s x(s))ds

− (1−δ )
∫ t

t−τ(t)
(t0Dq

s x(s))TU3(t0Dq
s x(s))ds.

From (7) and (8), the operator for term (t0Dq
t x(t))T [R+βτU1 +(1−β )τU2 +βτU3]t0Dq

t x(t) is as follows:

(t0Dq
t x(t))T [R+βτU1 +(1−β )τU2 +βτU3]t0Dq

t x(t)

=[Ax(t)+Bx(t− τ(t))+Ct0Dq
t x(t− τ)]T [R+βτU1 +(1−β )τU2 +βτU3]

× [Ax(t)+Bx(t− τ(t))+Ct0Dq
t x(t− τ)]

=xT (t)AT [R+βτU1 +(1−β )τU2 +βτU3]Ax(t)

+ xT (t)AT [R+βτU1 +(1−β )τU2 +βτU3]Bx(t− τ(t))

+ xT (t)AT [R+βτU1 +(1−β )τU2 +βτU3]Ct0Dq
t x(t− τ)

+ xT (t− τ(t))BT [R+βτU1 +(1−β )τU2 +βτU3]Ax(t)

+ xT (t− τ(t))BT [R+βτU1 +(1−β )τU2 +βτU3]Bx(t− τ(t)) (9)

+ xT (t− τ(t))BT [R+βτU1 +(1−β )τU2 +βτU3]Ct0Dq
t x(t− τ)

+(t0Dq
t x(t− τ))TCT [R+βτU1 +(1−β )τU2 +βτU3]Ax(t)

+(t0 Dq
t x(t− τ))TCT [R+βτU1 +(1−β )τU2 +βτU3]Bx(t− τ(t))

+(t0Dq
t x(t− τ))TCT [R+βτU1 +(1−β )τU2 +βτU3]Ct0Dq

t x(t− τ).

Combining (6)-(9) yields that

V̇ (xt) ≤ ξ
T (t)Σξ (t)−

∫ t

t−βτ

(t0Dq
s x(s))TU1(t0 Dq

s x(s))ds−
∫ t−βτ

t−τ

(t0Dq
s x(s))TU2(t0Dq

s x(s))ds

−
∫ t

t−τ(t)
(t0Dq

s x(s))T ((1−δ )U3)(t0Dq
s x(s))ds,

where
ξ

T (t) =
[

xT (t) xT (t− τ(t)) xT (t− τ)) xT (t−βτ) (t0Dq
t x(t− τ))T

]
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and

Σ =


Σ11 Σ12 0 0 Σ15

Σ T
12 Σ22 0 0 Σ25

0 0 Σ33 0 0
0 0 0 Σ44 0

Σ T
15 Σ T

25 0 0 Σ55

 ,

with

Σ11 =AT P+PA+H1 +H3 +AT [R+βτU1 +(1−β )τU2 +βτU3]A,

Σ12 =PB+AT [R+βτU1 +(1−β )τU2 +βτU3]B,

Σ15 =PC+AT [R+βτU1 +(1−β )τU2 +βτU3]C,

Σ22 =BT [R+βτU1 +(1−β )τU2 +βτU3]B− (1−δ )H3,

Σ25 =BT [R+βτU1 +(1−β )τU2 +βτU3]C,

Σ33 =−H2,

Σ44 =H2−H1,

Σ55 =−R+CT [R+βτU1 +(1−β )τU2 +βτU3]C.

For ξ (t) 6= 0 and 0≤ τ(t)≤ βτ, if Σ < 0,V̇ (xt) is negative-definite. From Lemma 3, if condition (3) is met, system (1) is
asymptotically stable.

Theorem 2. Let ‖D‖ < 1. If βτ ≤ τ(t) ≤ τ for given scalars β (0 < β < 1),τ(> 0) and δ , the system (1) with (2) is
asymptotically stable if there exist matrices P = PT > 0,R = RT > 0,Hi = HT

i ≥ 0,Ui =UT
i ≥ 0,(i = 1,2,3), such that

Π̃ =



Π̃11 Π̃12 0 0 Π̃15 Π̃16

Π̃ T
12 Π̃22 0 0 0 Π̃26

0 0 Π̃33 0 0 0
0 0 0 Π̃44 0 0

Π̃ T
15 0 0 0 Π̃55 Π̃56

Π̃ T
16 Π̃ T

26 0 0 Π̃ T
56 Π̃66


< 0. (10)

with

Π̃11 =AT P+PA+H1 +H3,Π̃12 = PB,Π̃15 = PC,

Π̃16 =AT [R+βτU1 +(1−β )τU2 + τU3],Π̃22 =−(1−δ )H3,

Π̃26 =BT [R+βτU1 +(1−β )τU2 + τU3],Π̃33 =−H2,Π̃44 = H2−H1,

Π̃55 =−R,Π̃56 =CT [R+βτU1 +(1−β )τU2 + τU3],

Π̃66 =− [R+βτU1 +(1−β )τU2 + τU3].

Proof. Consider the Lyapunov functional defined by (4) in Theorem 1 for the proof of this theorem. For βτ ≤ τ(t) ≤ τ ,
calculating time derivative V (xt) along the trajectory of system (1), we have

V̇ (xt)≤λ
T (t)Ωλ (t)−

∫ t

t−βτ

(t0 Dq
s x(s))TU1(t0Dq

s x(s))ds

−
∫ t−βτ

t−τ

(t0Dq
s x(s))TU2(t0 Dq

s x(s))ds−
∫ t

t−τ(t)
(t0Dq

s x(s))T ((1−δ )U3)(t0Dq
s x(s))ds,

© 2020 BISKA Bilisim Technology

www.ntmsci.com


6 Y.Altun: Stability of fractional neutral systems...

where
λ

T (t) =
[

xT (t) xT (t− τ(t)) xT (t− τ)) xT (t−βτ) (t0Dq
t x(t− τ))T

]
and

Ω =


Ω11 Ω12 0 0 Ω15

Ω T
12 Ω22 0 0 Ω25

0 0 Ω33 0 0
0 0 0 Ω44 0

Ω T
15 Ω T

25 0 0 Ω55

 ,

with

Ω11 =AT P+PA+H1 +H3 +AT [R+βτU1 +(1−β )τU2 + τU3]A,

Ω12 =PB+AT [R+βτU1 +(1−β )τU2 + τU3]B,

Ω15 =PC+AT [R+βτU1 +(1−β )τU2 + τU3]C,

Ω22 =BT [R+βτU1 +(1−β )τU2 + τU3]B− (1−δ )H3,

Ω25 =BT [R+βτU1 +(1−β )τU2 + τU3]C,Ω33 =−H2,

Ω44 =H2−H1,Ω55 =−R+CT [R+ τU1 +(1−β )τU2 + τU3]C.

For λ (t) 6= 0 and βτ ≤ τ(t)≤ τ, if Ω < 0,V̇ (xt) is negative-definite. From Lemma 3, if condition (10) is met, system (1)
is asymptotically stable.

4 Numerical example

In this section, we give an example with numerical simulation to show the advantages and validity of our results.

Example 1. Consider the following fractional neutral system for t ≥ 0,

t0Dq
t x(t)−

[
0.4 0
0 0.1

]
t0Dq

t x(t− τ) =

[
−2.5 −0.2
0.1 −4.2

]
x(t)+

[
−0.1 0.1
−0.2 0.1

]
x(t− τ(t)), (11)

where x(t) =
[

x1(t) x2(t)
]T

and

0≤ τ(t) = 0.4sin2(t)≤ 0.4 = τ. (12)

Applying Theorem 1 and Theorem 2 to above system (11) with (12), for β = 0.05, let us choose

P =

[
15 0
0 18

]
,R =

[
4 1
1 2

]
,

H1 =

[
18.34 −0.04
−0.04 5,42

]
,H2 =

[
12.26 −0.36
−0.36 0,48

]
,H3 =

[
1.22 −0.14
−0.14 0.02

]
,

U1 =

[
24.02 4.04
4.04 14.18

]
,U2 =

[
2.62 −0.09
−0.09 1.12

]
,U3 =

[
0.12 −0.01
−0.01 0.02

]
.

Thus, considering above assumptions and taking advantage of MATLAB-Simulink the all eigenvalues of the LMIs defined
by (3) and (10) are λmax(Ψ̃)≤−0.0991 and λmax(Π̃)≤−0.1163, respectively. This ensures that system (11) with (12) is
asymptotically stable.
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Fig. 1: The state response of system (11) for (12).

5 Conclusion

This paper studies the problem of asymptotically stability for fractional neutral systems under R-L derivatives. By
developing a delay decomposition approach, some novel stability criteria are obtained in terms of linear matrix
inequalities (LMIs) based on the Lyapunov method. An example with numerical simulation is presented to demonstrate
the universality and the validity of the considered system. Finally, the theoretical results of this paper contribute to
generalize and expand the present ones in the literature.
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