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Abstract: We apply the Laplace transform method to logistic growth model in a population and prey-predator models.Among the
techniques appearing in research literature, this method is very effective in terms of accuracy, stability and convergence of solutions.
Analytical and numerical results are given and compared. We show that the Laplace transform method we have presented in this work
gives accurate approximate solutions to nonlinear problems of physics, mathematics and biology.
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1 Introduction

Many scientists have tried to solve nonlinear differential equations appearing in the research literature [1,5,6,10-12].
However, most of the methods they use require a tedious analysis to solve their model equations. The Laplace transform
method (LTM) is a particular integral transform invented by the French mathematician Pierre-Simon Laplace, and
systematically developed by the British physicist Oliver Heaviside, to simplify the solutions of many differential
equations that describe physical processes. LTM turns differential equations into polynomial equations, which are easier
to handle. Once solved, use of the inverse Laplace transform method reverts to the time domain. However, for the
nonlinear equations, LTM can not be used alone. Therefore, for the nonlinear case we use the series expansion of the
dependent variable to get the solution.

In this paper we aim to give an application of this method to couple of nonlinear biological models that consist of a
logistic growth model in a population and a prey-predator model. First, we study the logistic growth model in a
population [9]

dU
dt

= sU(1−U/A), (1)

where s and A are positive constants. Here U =U(t) represents the population of the species at time t, and sU(1−U/A) is
the per capita growth rate, and A is the carrying capacity of the environment. Non-dimensionalization of Eq.(1) by setting
[9]

u(τ) =
U(t)

A
, τ = st,
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results in

du
dτ

= u(1−u). (2)

If U(0) =U0, then u(0) =U0/A, and the analytical solution of Eq.(2) follows easily

u(τ) =
1

1+(A/U0−1)e−τ
. (3)

Next, we study the Predator-Prey Models: Lotka-Volterra systems as an interacting species model defined by [9]

dU
dτ

=U(e−V f ), (4)

dV
dτ

=V (gU−h), (5)

where e, f ,g and h are constants. Here U =U(t) is the prey population and V =V (t) that of the predator at time t. We can
non-dimensionalize the system (4)-(5) [9] by setting

u(τ) =
gU(t)

h
, v(τ) =

fV (t)
e

, τ = et, β = h/e,

and it becomes

du
dτ

= u(1− v), (6)

dv
dτ

= β [g(u,v)− v] . (7)

In section 2, we apply the LTM [2,3,7,8] to the models of the form Eq.(2) and Eqs.(6)-(7), respectively.

2 Laplace transform method (LTM)

2.1 LTM for logistic growth model

In this subsection we consider the model equation of the form

du
dτ

= u− f (u), u(0) = u0, (8)

where f is a nonlinear function of u. We look for the solution u satisfying (8). Therefore, we assume the solution, u of (8)
has an infinite series representation of the form

u = u(τ) =
∞

∑
n=0

anτ
n, (9)

and it satisfies the required conditions for the existence of the Laplace transform, L defined by

L (u(t)) =
∫

∞

0
e−stu(t)dt, t ≥ 0, (10)
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provided that this integral exists. Applying the Laplace transform to the both sides of the differential equation in (8) we
get

sU(s)−u0 =U(s)−F(s), (11)

where U(s) =L (u(t)) and F(s) =L { f (u(t))} are the Laplace transforms of the functions u(t) and f (u(t)), respectively.
Solving (11) for U(s) we obtain

U(s) = u0
1

s−1
− F(s)

s−1
. (12)

Therefore, assuming the inverse Laplace transform L −1 exists and applying it to (12) we end up with

u(t) = u0 exp(t)−L −1
(

F(s)
s−1

)
. (13)

2.2 LTM for prey-predator model

In this subsection we study the system of non-linear differential equations of the form

du
dτ

= u− f (u,v), (14)

dv
dτ

= β [g(u,v)− v] , (15)

with initial conditions

u(0) = u0, v(0) = v0, (16)

where f and g are nonlinear functions of u and v. Here β is some positive constant. We look for the solutions (u,v)
satisfying (14)-(16). We assume the solutions u and v of the system (14)-(15) have the following infinite series expansions
of the form

u = u(τ) =
∞

∑
n=0

anτ
n, v = v(τ) =

∞

∑
n=0

bnτ
n, (17)

and they satisfy the required conditions for the existence of their Laplace transforms. Applying the Laplace transform to
the system (14)-(15) and using (16) we get

sU(s)−u0 =U(s)−F(s),

sV (s)− v0 = β (G(s)−V (s)), (18)

where U(s) = L (u(t)), F(s) = L { f (u(t),v(t))}, V (s) = L (v(t)), G(s) = L {g(u(t),v(t))} are the Laplace transforms
of the functions u(t), f (u(t),v(t)), v(t) and g(u(t),v(t)), respectively.
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Solving (18) for U(s) and V (s) we get

U(s) = u0
1

s−1
− F(s)

s−1
,

V (s) = v0
1

s+β
+β

G(s)
s+β

. (19)

If we assume the inverse Laplace transforms exist and apply them to the system (19) we find

u(t) = u0 exp(t)−L −1
(

F(s)
s−1

)
,

v(t) = v0 exp(−β t)+βL −1
(

G(s)
s+β

)
, (20)

which are the desired solutions of the initial value problem (14)-(16).

3 Applications and results

Example 1. We consider the initial value problem (8). For numerical computations we take N0 = 2 and A = 1. Therefore,
u0 = N0/A = 2. We let f (u) = u2 as in (2) so that one has

f (u) =

(
∞

∑
n=0

antn

)2

= a2
0 +2a0a1t +(2a0a2 +a2

1)t
2 +(2a0a3 +2a1a2)t3 + · · · .

We then obtain

F(s) =
a2

0
s
+

2a0a1

s2 +
4a0a2 +2a2

1
s3 +

12a0a3 +12a1a2

s4 + · · · .

Using (12) one gets

U(s) =
2

s−1
− F(s)

s−1
,

=
2

s−1
−
{

a2
0

s(s−1)
+

2a0a1

s2(s−1)
+

4a0a2 +2a2
1

s3(s−1)
+

12a0a3 +12a1a2

s4(s−1)
+ · · ·

}
.

If we apply the inverse Laplace transform to this equation and use (9) we get

a0 +a1t +a2t2 +a3t3 + ...=2
(

1+ t +
t2

2!
+

t3

3!
+ ...

)
−a2

0t− (
a2

0
2
+a0a1)t2−

(
a2

0
6
+

a0a1

3
+

2a0a2

3
+

a2
1

3

)
t3−·· ·

=2+(2−a2
0)t +

(
1−

a2
0

2
−a0a1

)
t2

+

(
1
3
−

a2
0

6
− a0a1

3
− 2a0a2

3
− a2

1
3

)
t3 + · · · .

(21)
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Equating coefficients of power t yields

a0 = 2, a1 = 2−a2
0 =⇒ a1 =−2,

a2 = 1−
a2

0
2
−a0a1 =⇒ a2 = 3,

a3 =
1
3
−

a2
0

6
− a0a1

3
− 2a0a2

3
− a2

1
3

=⇒ a3 =−
13
3
,

...

As a result, one obtains the solution u(t) from (9) as follows

u(t) = 2−2t +3t2− 13
3

t3 + · · · , (22)

which is the exactly solution obtained in Eq.(3) in the closed form. This solution is precisely the same as the one we
obtained in [4].

Let φn(t) be the nth partial sums of the series (9), i.e,

φn(t) =
n

∑
k=0

aktk. (23)

As one sees from Fig.1 that we have obtained a very close approximation to the exact solution of logistic growth model
in the time interval [0,0.15] by calculating only 4 terms of the series in (23). This tells us that the speed of convergence of
LTM is very fast. Of course, the total errors can be made small, for t > 0.15 by finding new terms of the related series.
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Fig. 1: Solution to the logistic growth model in a population.
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Example 2. We now solve the problem (14)-(16) with initial data u(0) = 1.3, v(0) = 0.6. We proceed as in section 2.2.
We take β = 1, f (u,v) = g(u,v) = uv in (14)-(15) so that we have

f (u,v) = g(u,v) =

(
∞

∑
n=0

antn

)(
∞

∑
n=0

bntn

)
= a0b0 +(a0b1 +a1b0)t +(a0b2 +a1b1 +a2b0)t2 + · · · ,

and the corresponding Laplace transforms of these functions become

F(s) = G(s) =
a0b0

s
+

a0b1 +a1b0

s2 +
2a0b2 +2a1b1 +2a2b0

s3 + · · · .

Using (19) one gets

U(s) =
1.3

s−1
− F(s)

s−1
,

=
1.3

s−1
−
{

a0b0

s(s−1)
+

a0b1 +a1b0

s2(s−1)
+

2a0b2 +2a1b1 +2a2b0

s3(s−1)
+ · · ·

}
,

V (s) =
0.6

s+1
+

G(s)
s+1

,

=
0.6

s+1
+

{
a0b0

s(s+1)
+

a0b1 +a1b0

s2(s+1)
+

2a0b2 +2a1b1 +2a2b0

s3(s+1)
+ · · ·

}
.

If we apply the inverse Laplace transform to these equation and use (17) we get

a0 +a1t +a2t2 +a3t3 + ...=1.3
(

1+ t +
t2

2!
+

t3

3!
+ · · ·

)
−a0b0t− (a0b0 +a0b1 +a1b0)

t2

2!

−(a0b0 +a0b1 +a1b0 +2a0b2 +2a1b1 +2a2b0)
t3

3!
−·· ·

=1.3+(1.3−a0b0)t +(1.3−a0b0−a0b1−a1b0)
t2

2!

+(1.3−a0b0−a0b1−a1b0−2a0b2−2a1b1−2a2b0)
t3

3!
+ · · · ,

(24)

and

b0 +b1t +b2t2 +b3t3 + ...= 0.6
(

1− t +
t2

2!
− t3

3!
+ · · ·

)
+a0b0t +(a0b1 +a1b0−a0b0)

t2

2!

+(a0b0−a0b1−a1b0 +2a0b2 +2a1b1 +2a2b0)
t3

3!
−·· ·

= 0.6+(a0b0−0.6)t +(0.6−a0b0 +a0b1 +a1b0)
t2

2!

+(−0.6+a0b0−a0b1−a1b0 +2a0b2 +2a1b1 +2a2b0)
t3

3!
+ · · · .

(25)
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Equating coefficients of power t yields

a0 = 1.3, a1 = 1.3−a0b0 =⇒ a1 = 0.52

a2 =
1
2!

(1.3−a0b0−a0b1−a1b0) =⇒ a2 =−0.013

a3 =
1
3!

(1.3−a0b0−a0b1−a1b0−2a0b2−2a1b1−2a2b0) =⇒ a3 =−0.1122

... (26)

b0 = 0.6, b1 = a0b0−0.6 =⇒ b1 = 0.18

b2 =
1
2!

(0.6+a0b1 +a1b0−a0b0) =⇒ b2 = 0.183

b3 =
1
3!

(−0.6+a0b0−a0b1−a1b0 +2a0b2 +2a1b1 +2a2b0) =⇒ b3 = 0.0469

... (27)

The remaining terms of the series may be obtained in this manner. Writing these terms into Eq.(17) we get the approximate
solutions to the problem (14)-(16):

u(t) = 1.3+0.52t−0.013t2−0.1122t3−·· · ,
v(t) = 0.6+0.18t +0.183t2 +0.0469t3 + · · · ,

(28)

which are exactly the same as the ones we obtained in [4].

Figures (2) & (3) show the comparisions of the numerical solutions and Laplace transform solutions of the system
(14)-(16). Numerical solutions of the system are obtained with the built-in Matlab ordinary differential equation solver
(Ode45) while Laplace transform solutions are obtained by using only four terms of the series.
It is seen from the last two figures that the numerical solutions and Laplace transform solutions of the system (14)-(16)
are very close to each other in the time interval [0,0.6]. A further approximation may be achieved by calculating new
terms to the Laplace transform solutions for t ≥ 0.6.

As result, the Laplace transform method studied in this work gives very accurate approximate solutions to nonlinear
problems of physics, mathematics, biology, etc. It also does not require linearization and biologically unrealistic
assumptions.
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Fig. 2: Solutions to the system (14)-(16) showing the Prey Population.
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Fig. 3: Solutions to the system (14)-(16) showing the Predator Population.
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