
NTMSCI 3, No. 3, 116-128 (2015) 116

New Trends in Mathematical Sciences
http://www.ntmsci.com

Taylor polynomial approach for systems of linear
differential equations in normal form and residual error
estimation
Betül Yetişkin Ateş, Muhammed Çetin and Mehmet Sezer
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Abstract: The purpose of this paper is to give a matrix method based on Taylor polynomials for solving linear differential equations
system with variable coefficients in the normal form under the initial conditions by using residual error function. The presented method
converts the problem into a system of algebraic equations via the matrix operations and collocation points. In order to demonstrate the
accuracy of solution and efficiency of the method, two numerical examples are given with the help of computer programmes written in
Maple and Matlab.

Keywords: Taylor collocation method; approximate solution; differential equations system; collocation points; residual error analysis.

1 Introduction

In many scientific problems, the differential equations systems have been encountered. Some of these differential
equation systems do not have analytic solutions, so numerical methods are required. Many mathematicians have solved
the systems of linear differential equations by using various methods such as Adomian decomposition method [1,2,3],
Adomian-Pade technique [4], Variational iteration mathod [5], Differential transform method [6-9], Linearizability
criteria [10,11], finite difference method [12], Trigonometric approximation [13] and Product summability transform
method [14].

Taylor, Bessel, Berstein, Chebyshev, Legendre, Hermite, Laguerre, Exponential, Bernoulli matrix methods are used for
solving differential and integral equations, integro-differential-difference equations and their systems [15-31].

In this study, we give Taylor collocation method for solving the linear differential equations system in the normal form as

L [yi(x)] = yi
′(x)−

m

∑
j=1

pi, j(x)y j(x) = gi(x), (0 ≤ a ≤ x ≤ b) (1)

under the initial conditions
yi(a) = ci, (i = 1,2, ...,m) (2)

where yi(x), (i = 1,2, ...,m) are unknown functions, pi, j(x) and gi(x) are the known continuous functions defined on
interval [a,b], and ci are the real constants.
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In this paper, by developing the Taylor collocation method with the help of the residual error function used in [20-23,],
we obtain approximate solutions of the system (1) expressed in the truncated Taylor series form

yi,N,M(x) = yi,N(x)+ ei,N,M(x), ( i = 1,2, ...,m)

where

yi ∼= yi,N(x) =
N

∑
n=0

ai,nxn (3)

is the Taylor polynomial solution and

ei,N,M(x) =
M

∑
n=0

a∗i,nxn , (M > N)

is the estimated error function based on the residual error function. Here ai,n and a∗i,n, (n = 0,1,2, ...,N) are the unknown
Taylor coefficients.

In order to find the solutions of the system (1) with the initial conditions (2), we can use the collocation points defined by

xk = a+
b−a

N
k, k = 0,1, ...,N, 0 ≤ a ≤ x ≤ b. (4)

2 Fundamental matrix relations

We can write the approximate solutions yi,N(x), i=1,2,. . . ,m, given by Eq.(3) in the matrix form

yi,N(x) = X(x)Ai, ( i = 1,2, ...,m) (5)

where
X(x) =

[
1 x x2 · · · xN

]
and

Ai =
[

ai,0 ai,1 ai,2 · · · ai,N

]T
.

From Eq.(5), we can express the approximate solutions yi,N(x) as

Y(x) = X(x)A. (6)

where

Y(x) =


y1,N(x)
y2,N(x)

...
ym,N(x)

, X(x) =


X(x) 0 · · · 0

0 X(x) · · · 0
...

...
. . .

...
0 0 · · · X(x)

, A =


A1

A2
...

Am

.

Also, the relation between the matrix X(x) and its derivative X′(x) is

X′(x) = X(x)B (7)
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where

B =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0

 .

By using the relations (5) and (7), we obtain the following matrix relation

y′i,N(x) = X(x)BAi, (i = 1,2, ...,m) . (8)

Hence, we can write the system (8) as
Y′(x) = X(x)BA (9)

where

Y′(x) =


y′1,N(x)
y′2,N(x)

...
y′m,N(x)

, B =


B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B

.

3 Method for solution

We can write the system (1) in the matrix form

Y′(x) = P(x)Y(x)+G(x) (10)

where

P(x) =


p1,1(x) p1,2(x) · · · p1,m(x)
p2,1(x) p2,1(x) · · · p2,1(x)

...
...

. . .
...

pm,1(x) pm,2(x) · · · pm,m(x)

, G(x) =


g1(x)
g2(x)

...
gm(x)

.

By substituting the collocation points (4) into Eq.(10), we obtain the system of matrix equations

Y′(xk) = P(xk)Y(xk)+G(xk) , (k = 0,1, ...,N).

Briefly, the fundamental matrix equation is
Y′ = PY+G (11)

where

P =


P(x0) 0 · · · 0

0 P(x1) · · · 0
...

...
. . .

...
0 0 · · · P(xN)

, Y =


Y(x0)

Y(x1)
...

Y(xN)

, Y′ =


Y′(x0)

Y′(x1)
...

Y′(xN)

, G =


G(x0)

G(x1)
...

G(xN)

.

By using the relations (6) and (9) along with the collocation points (4), we obtain

Y(xk) = X(xk)A and Y′(xk) = X(xk)BA, (k = 0,1, ...,N)
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or briefly
Y = XA and Y′ = XBA (12)

where

X =


X(x0)

X(x1)
...

X(xN)

, X(xs) =


X(xk) 0 · · · 0

0 X(xk) · · · 0
...

...
. . .

...
0 0 · · · X(xk)

.

By substituting the relations given by (12) into Eq.(11), we gain the fundamental matrix equation as

{
XB−PX

}
A = G. (13)

In Eq.(13) the full dimensions of the matrices P, X, B, A and G are m(N + 1)× m(N + 1), m(N + 1)× m(N + 1),
m(N +1)×m(N +1), m(N +1)×1 and m(N +1)×1, respectively.

The fundamental matrix equation (13) corresponding to Eq.(1) can be written in the form

WA = G or [W;G] . (14)

This is a linear system of m(N +1)algebraic equations in m(N +1) the unknown Taylor coefficients such that

W = XB−PX = [wp,q] , p,q = 1,2, ...,m(N +1).

By using the conditions (4) and the relations (6), the matrix form for the conditions is obtained as

X(a)A = C (15)

where
C =

[
c1 c2 · · · cm

]T
.

Hence, the fundamental matrix form for conditions is

UA = C or [U;C] (16)

such that
U = X(a).

Consequently, we obtain the Taylor polynomial solution of the system (1) under the initial conditions (2) by replacing the
row matrices (16) by last rows of the matrix (14). Then, we obtain the new augmented matrix

W̃A = G̃ or
[
W̃; G̃

]
. (17)

If rank W̃ =rank
[
W̃; G̃

]
= m(N +1), then we can write

A =
(

W̃
)−1

G̃. (18)
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By solving this linear system, the unknown Taylor coefficients matrix A is determined and ai,0,ai,1, ...,ai,N (i = 1,2, ...,m)

are substituted in Eq.(3). Thus, we find the Taylor polynomial solutions

yi,N(x) =
N

∑
n=0

ai,nxn, (i = 1,2, ...,m) .

4 Residual Correction and Error Estimation

In this section, we will give an error estimation for the Taylor polynomial solutions (3) with the residual error function
[20-23,24,27,29]. In addition, we will develop the Taylor polynomial solutions (3) by means of the residual error function.
Firstly, we can define the residual function of the Taylor collocation method as

Ri,N(x) = L [yi,N(x)]−gi(x), (i = 1,2, ...,m) . (19)

Here, yi,N(x) represent the Taylor polynomial solutions given by (3) of the problem (1) and (2). Hence, yi,N(x) satisfies
the problem  y′i,N(x)−

m
∑
j=1

pi, j(x)y j,N(x) = gi(x)+Ri,N(x), (i = 1,2, ...,m)

yi,N(a) = ci, (i = 1,2, ...,m).

Also, the error function ei,N(x) can be defined as

ei,N(x) = yi(x)− yi,N(x) (20)

where yi(x) are the exact solutions of the problem (1) and (2). From Eqs.(1), (2), (19) and (20), we obtain a system of
error differential equations

L [ei,N(x)] = L [yi(x)]−L [yi,N(x)] =−Ri,N(x)

with the homogeneous initial conditions

ei,N(a) = 0, (i = 1,2, ...,m),

or openly, the error problem can be expressed as e′i,N(x)−
m
∑
j=1

pi, j(x)e j,N(x) =−Ri,N(x), (i = 1,2, ...,m)

ei,N(a) = 0, (i = 1,2, ...,m).
(21)

Here, the nonhomegeneous initial conditions

yi(a) = ci and yi,N(a) = ci

are reduced to homogeneous initial conditions
ei,N(a) = 0.

The error problem (21) can be solved by using the prosedure given in Section 3. Thus, we obtain the approximation

ei,N,M(x) =
M

∑
n=0

a∗i,nxn , (M > N, i = 1,2, ...,m)
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to ei,N(x). Consequently, the corrected Taylor polynomial solution yi,N,M(x) = yi,N(x)+ ei,N,M(x) is obtained by means of
the polynomials yi,N(x) and ei,N,M(x) . Also, we construct the error function ei,N(x) = yi(x)− yi,N(x), the estimated error
function ei,N,M(x) and the corrected error function Ei,N,M(x) = ei,N(x)− ei,N,M(x) = yi(x)− yi,N,M(x).

5 Numerical Examples

In this section, two numerical examples are given to demonstrate the efficiency and applicability of the method. The
computations related to the examples are calculated by using the Maple programme and the figures are drawn in Matlab.
In tables and figures, we calculate the values of the Taylor polynomial solutions yi,N(x), the corrected Taylor polynomial
solutions yi,N,M(x) = yi,N(x) + ei,N,M(x), estimated error functions ei,N,M(x) and corrected absolute error functions
|Ei,N,M(x)|= |yi(x)− yi,N,M(x)|.

Example 1 : Consider the linear differential equations system given by
y(1)1 (x)− y3(x) =−cos(x)

y(1)2 (x)− y3(x) =−ex

y(1)3 (x)− y1(x)+ y2(x) = 0

, 0 ≤ x ≤ 1 (22)

with the initial conditions

y1(0) = 1, y2(0) = 0 and y3(0) = 2

which has the exact solution y1(x) = ex, y2(x) = sin(x) and y3(x) = ex + cos(x) [7]. The set of the collocation points for
a = 0, b = 1 and N = 2 is calculated as {

x0 = 0, x1 =
1
2
, x2 = 1

}
.

From Eq.(13), the fundamental matrix equation of the problem (22) is written as

{
XB−PX

}
A = G.

By appliying the procedure in Section 3, the approximate solutions by means of the Taylor polynomials of the problem
(22) for N = 2 are obtaied as

y1,2(x) = 1+ x+0.67061360741023699830x2,

y2,2(x) = x−0.1005251013995184324x2,

y3,2(x) = 2+ x+0.19278467720243885767x2.

In order to calculate the corrected Taylor polynomial solutions, let us consider the error problem
e′1,2(x)− e3,2(x) =−R1,2(x),
e′2,2(x)− e3,2(x) =−R2,2(x),
e′3,2(x)− e1,2(x)+ e2,2(x) =−R3,2(x)

(23)

such that e1,2(0) = 0, e2,2(0) = 0, e3,2(0) = 0 and the residual functions are
R1,2(x) = y′1,2(x)− y3,2(x)+ cos(x)
R2,2(x) = y′2,2(x)− y3,2(x)+ ex

R3,2(x) = y′3,2(x)− y1,2(x)+ y2,2(x).
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By solving the error problem (23) for M = 3 with the method in Section 3, the estimated Taylor error function
approximations e1,2,3(x), e2,2,3(x) and e3,2,3(x) are obtained as

e1,2,3(x) =−0.198342522463333336x2 +0.238386300344444440x3,

e2,2,3(x) = (0.922148375866666676e−1)x2 −0.152417435955555569x3,

e3,2,3(x) =−0.236207314336666668x2 +0.290461694969999962x3.

Hence, we can calculate the corrected Taylor polynomial solutions y1,2,3(x), y2,2,3(x) and y3,2,3(x) as

y1,2,3(x) = 1+ x+0.4722710849x2 +0.238386300344444440x3,

y2,2,3(x) = x− (0.831026381e−2)x2 −0.152417435955555569x3,

y3,2,3(x) = 2+ x− (0.434226371e−1)x2 +0.290461694969999962x3.

Similarly we can calculate the corrected Taylor polynomial solutions for N = 2 and M = 5 as

y1,2,5(x) = 1+ x+0.4997685849x2 +0.168225454862777624x3

+(0.377211001762152444e−1)x4 +(0.125314366180554194e−1)x5,

y2,2,5(x) = x+(0.453421e−4)x2 −0.166989019477499944x3

+(0.782935853298638574e−3)x4 +(0.764087047222199168e−2)x5,

y3,2,5(x) = 2+ x− (0.938985e−4)x2 +0.167226488756944570x3

+(0.820919222569445051e−1)x4 +(0.934385828125017249e−2)x5,

and for N = 2 and M = 9 as

y1,2,9(x) = 1+ x+0.50000000432 +0.166666599243195352x3 +(0.416670828610961054e−1)x4

+(0.833202202396421399e−2)x5 +(0.139106498306773574e−2)x6

+(0.196782559969577166e−3)x7 +(0.247511344531048394e−4)x8

+(0.352065501130205405e−5)x9,

y2,2,9(x) = x+(0.1341e−6)x2 − (0.166668546848332878)x3 +(0.113679634867747126e−4)x4

+(0.829617310724284352e−2)x5 +(0.704477670598890882e−4)x6

−(0.275912593465932334e−3)x7 +(0.459553932872225344e−4)x8

−(0.863843029863531342e−5)x9,

y3,2,9(x) = 2+ x− (0.121e−7)x2 +0.166666815135405600x3 +(0.833324772620436250e−1)x4

+(0.833609272867619212e−2)x5 − (0.526472155115698116e−5)x6

+(0.204359255008057517e−3)x7 +(0.458737358854932608e−4)x8

+(0.379297555852531332e−5)x9.
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Table1. Comparison of the exact solutions and the approximate solutions of the problem (22) for N = 2 ve M = 3,5,9.
Exact

Solution

Taylor Polynomial

Solution
Corrected Taylor Polynomial Solutions

xi y1(xi) y1,2(xi) y1,2,3(xi) y1,2,5(xi) y1,2,9(xi)

0 1 1 1 1 1
0.2 1.221402758 1.226824544 1.220797934 1.221400911 1.221402758
0.5 1.648721271 1.667653402 1.647866059 1.648719504 1.648721271
0.8 2.225540928 2.229192709 2.224307280 2.225540191 2.225540928
1.0 2.718281828 2.670613607 2.710657385 2.718246577 2.718281828
xi y2(xi) y2,2(xi) y2,2,3(xi) y2,2,5(xi) y2,2,9(xi)

0 0 0 0 0 0
0.2 0.198669331 0.195978996 0.198448250 0.198669599 0.198669331
0.5 0.479425539 0.474868725 0.478870255 0.479425419 0.479425539
0.8 0.717356091 0.735663935 0.716643704 0.717355092 0.717356091
1.0 0.841470985 0.899474899 0.839271300 0.841480129 0.841470980
xi y3(xi) y3,2(xi) y3,2,3(xi) y3,2,5(xi) y3,2,9(xi)

0 2 2 2 2 2
0.2 2.201469336 2.207711387 2.200586788 2.201468393 2.201469336
0.5 2.526303833 2.548196169 2.525452053 2.526302577 2.526303832
0.8 2.922247638 2.923382193 2.920925900 2.922246514 2.922247638
1.0 3.258584134 3.192784677 3.247039058 3.258568371 3.258584134

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

y 1
(x

),
 y

1
,N

(x
) 

a
n

d
 y

1
,N

,M
(x

)

Figure 1(a). Comparison of the exact solution y
1
(x) and the approximate solutions
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Figure 1(b). Comparison of the exact solution y
2
(x) and the approximate solutions
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It is seen from Table 1 and Figures 1(a), 1(b), 1(c) that when the value of M is increased the accuracy of the solution
increase. Now, we can compare the corrected absolute error functions in Table 2.
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Table 2. Comparison of the corrected absolute errors of the problem (22) for N = 2 ve M = 3,5,9.
Corrected absolue errors |Ei,N,M(x)|= |yi(x)− yi,N,M(x)|

xi |E1,2,3(xi)|
∣∣E1,2,5(xi)

∣∣ |E1,2,9(xi)|
0 0 0 0

0.2 0.604824e-3 0.184731e-5 0.245769e-11

0.5 0.855212e-3 0.176646e-5 0.381529e-10

0.8 0.123365e-2 0.737484e-6 0.927858e-10

1.0 0.762444e-2 0.352519e-4 0.698288e-9
xi |E2,2,3(xi)|

∣∣E2,2,5(xi)
∣∣ |E2,2,9(xi)|

0 0 0 0

0.2 0.221081e-3 0.268509e-6 0.248487e-9

0.5 0.555284e-3 0.119821e-6 0.292619e-9

0.8 0.712387e-3 0.998966e-6 0.259591e-9

1.0 0.219868e-2 0.914414e-5 0.434892e-8
xi

∣∣E3,2,5(xi)
∣∣ |E3,2,9(xi)|

0 0 0 0

0.2 0.882548e-3 0.942921e-6 0.528007e-10

0.5 0.851780e-3 0.125541e-5 0.990846e-10

0.8 0.132174e-2 0.112380e-5 0.135252e-9

1.0 0.115451e-1 0.157635e-4 0.561586e-10

Table 2 shows that the corrected absolute errors is close to zero as the value of M increases. Namely, the accuracy of the
solution is increased.

Example 2. Consider the linear differential equations system given by{
y(1)1 (x) = cos(x)y1(x)+ y2(x)+ esin(x)

y(1)2 (x) = y1(x)+ cos(x)y2(x)+ xesin(x)
, 0 ≤ x ≤ 1 (24)

with the initial conditions

y1(0) = 2 and y2(0) =−2

which has the exact solution y1(x) = esin(x) (2cosh(x)− x) and y2(x) = esin(x) (2sinh(x)−2). The set of the collocation
points for a = 0, b = 1 and N = 2 is calculated as{

x0 = 0, x1 =
1
2
, x2 = 1

}
.

From Eq.(13), the fundamental matrix equation of the problem (24) is written as

{
XB−PX

}
A = G.

By using the present method in Section 3, the approximate solutions by means of the Taylor polynomials for N = 2 are
obtaied as

y1,2(x) = 2+ x+1.8646865593930787634x2,

y2,2(x) =−2+2.5859190249855302151x2.
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In order to calculate the corrected Taylor polynomial solutions, let us consider the error problem{
e(1)1,2(x)− cos(x)e1,2(x)− e2,2(x) =−R1,2

e(1)2,2(x)− e1,2(x)− cos(x)e2,2(x) =−R2,2
(25)

such that e1,2(0) = 0, e2,2(0) = 0 and the residual functions are{
R1,2(x) = y(1)1,2(x)− cos(x)y1,2(x)− y2,2(x)− esin(x)

R2,2(x) = y(1)2,2(x)− y1,2(x)− cos(x)y2,2(x)− xesin(x)

By solving the error problem (25) for M = 3 by using the technique in Section 3, the estimated Taylor error function
approximations e1,2,3(x) and e2,2,3(x) are obtained as

e1,2,3(x) =−1.0553168029550909369x2 +0.99497083450946547051x3,

e2,2,3(x) =−1.8301377254066642699x2 +2.0381675757084778421x3.

Hence, we can calculate the corrected Taylor polynomial solutions y1,2,3(x) and y2,2,3(x) as

y1,2,3(x) = 2+ x+0.809369756x2 +0.99497083450946547051x3

y2,2,3(x) =−2+0.755781300x2 +2.0381675757084778421x3.

Similarly we can calculate the corrected Taylor polynomial solutions for N = 2 and M = 5 as

y1,2,5(x) = 2+ x+1.019087035x2 +0.38418404084877058288x3 +0.6009588114966867209x4

−0.16172189638449954742x5,

y2,2,5(x) =−2+1.031092567x2 +1.1335297565208665254x3 +1.072894635943808348x4

−0.4205451163175187106x5,

and for N = 2 and M = 9 as

y1,2,9(x) = 2+ x+0.9999897539x2 +0.500173101302650469x3 +0.332010653018222968x4

+(0.807771671168744376e−1)x5 − (0.378493987310264402e−1)x6 − (0.107759922510410888e−1)x7

−(0.415635790661426086e−1)x8 +(0.166670256823326924e−1)x9,

y2,2,9(x) =−2+1.000008919x2 +(0.561045229456268930e−15)x+1.33319973007876058x3

+0.584178089466959705x4 +(0.639409598703650772e−1)x5 −0.104116324378878744x6

−(0.642539417701755156e−1)x7 − (0.177960431765313842e−1)x8 +(0.176957626717921812e−1)x9.
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Table 3. Comparison of the exact solutions and the approximate solutions of the problem (22) for N = 2 ve M = 3,5,9.

Exact
Solution

Taylor
Polynomial
Solution

Corrected Taylor Polynomial Solutions

xi y1(xi) y1,2(xi) y1,2,3(xi) y1,2,5(xi) y1,2,9(xi)

0 2 2 2 2 2

0.1 2.110534057 2.118646866 2.109088668 2.110633533 2.110534040

0.3 2.406356994 2.467821790 2.399707491 2.406565584 2.406356979

0.6 3.114745826 3.271287161 3.106286812 3.115163853 3.114745811

0.8 3.841624628 3.993399398 3.827421711 3.842077629 3.841624613

1.0 4.839428566 4.864686559 4.804340591 4.842507991 4.839428731
xi y2(xi) y2,2(xi) y2,2,3(xi) y2,2,5(xi) y2,2,9(xi)

0 -2 -2 -2 -2 -2

0.1 -1.988607781 -1.974140810 -1990404019 -1.988452461 -1.988607765

0.3 -1.869206372 -1.767267288 -1.876949158 -1.868927844 -1.869206358

0.6 -1.278121055 -1.069069151 -1.287674536 -1.277618692 -1.278121041

0.8 -0.458543621 -0.345011824 -0.472758169 -0.458080103 -0.458543604

1.0 0.812855337 0.585919025 0.793948876 0.816971843 0.812857152
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Figure 2(a). Comparison of the exact solution y
1
(x) and the approximate solutions
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Figure 2(b). Comparison of the exact solution y
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(x) and the approximate solutions
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It is seen from Table 3 and Figures 2(a), 2(b) that when the value of M is increased the accuracy of the solution increase.
Now, we can compare corrected absolute error functions.
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Table 4. Comparison of the corrected absolute errors of the problem (24) for N = 2 ve M = 3,5,9.
Corrected absolue errors |Ei,N,M(x)|= |yi(x)− yi,N,M(x)|

xi |E1,2,3(xi)|
∣∣E1,2,5(xi)

∣∣ |E1,2,9(xi)|
0 0 0 0

0.1 0.144539e-2 0.994758e-4 0.170758e-7

0.3 0.664950e-2 0.208590e-3 0.154019e-7

0.6 0.845901e-2 0.418026e-3 0.154698e-7

0.8 0.142029e-1 0.453002e-3 0.151985e-7

1.0 0.350880e-1 0.307943e-2 0.165063e-6
xi |E2,2,3(xi)|

∣∣E2,2,5(xi)
∣∣ |E2,2,9(xi)|

0 0 0 0

0.1 0.179624e-2 0.155321e-3 0.168819e-7

0.3 0.774277e-2 0.278529e-3 0.143867e-7

0.6 0.955348e-2 0.502363e-3 0.134442e-7

0.8 0.142145e-1 0.463518e-3 0.164055e-7

1.0 0.189065e-1 0.411651e-2 0.181441e-5

Table 4 shows that corrected absolute erros is close to zero as the value of M increases. Namely, the accuracy of the
solution is increased.

6 Conclusions

In this study, we presented a method based on the Taylor polynomials with the aid of the residual error function for
solving linear differential equations system in the normal form numerically. When the obtained results are investigated in
examples, it can be seen that the presented method is very effective. Also, it can be seen from tables and fgures that the
accuracy of the solution increase when the value of M is increased. In this paper, we have used the computer programmes
Maple and Matlab for computations and graphics, respectively. On the other hand, the present method can be applied to
the systems of ordinary and partial integro-differential equations.
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[29] A. Akyüz-Daşcıoğlu, M. Sezer, Bernoulli collocation method for high-order generalized pantograph equations, New Trends in

Mathematical Sciences, NTMSCI 3, No. 2, 96-109 (2015).
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[31] N. Bildik, A. Konuralp, S. Yalçınbaş, Comparison of Legendre poynomial approximation and variational iteration method for the

solutions of general linear Fredholm integro- differential equations, Computers and Mathematics with Applications, 59(6) (2010),

1909-1917.

c⃝ 2015 BISKA Bilisim Technology


