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Abstract: In this paper, we give some fixed point theorems for satisfying different contractive conditions on complete partial Hausdorff
metric spaces. Also, we prove some fixed point theorems for two operators that do not necessarily commute with each other to have a
common fixed point as in metric spaces. We also state an example in support of our conclusions.
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1 Introduction

The notion of a partial metric space has been firstly introduced by Matthews, [9]. In [9], he extended Banach contraction
principle in the setting of complete partial metric space. Then, further fixed point theorems of partial metric space given
by many authors ([2],[6],[7] and [4]). In [3], they proved the some generalized versions of the fixed point theorem of
Matthews and established a homotopy results. Based on the partial metric on a set X , in [1], they presented a notion of
partial Hausdorff metric on the ΩC (X). Besides, in [1], they studied of fixed point theorem for multi-valued mappings on
a partial metric space using the partial Hausdorff metric and generalized Nadler’s fixed point theorem.

Let Ω
p
C (X) be the family of all nonempty closed and bounded subsets of a partial metric space (X , p) . The purpose of

this paper is to investigate two mappings T : X → Ω
p
C (X) ( for a partial metric space X ) which satisfy the following

contractive definitions:

Hp (T x,Ty)≤ ap(x,y)+b [p(x,T x)+ p(y,Ty)]+ c [p(x,Ty)+ p(y,T x)]

and

Hp (T x,Ty)≤amax
{

p(x,y) , p(x,T x) , p(y,Ty) ,
p(x,Ty)+ p(y,T x)

2

}
+bmax{p(x,T x) , p(y,Ty)}+ c [p(x,Ty)+ p(y,T x)]

where for all x,y ∈ X , where a,b,c are nonnegative real numbers such that a + 2b + 2c < 1 and a + b + 2c < 1,
respectively. Also, another purpose of this study is to prove common fixed point theorems for two set-valued mappings
defined in a partial Hausdorff metric space.

Firstly, we recall some definitions and some related results from partial metric space.
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Definition 1.[9] Let X be a nonempty set. A mapping p : X ×X → R+ is a partial metric on X, if for all x,y,z ∈ X. We
have

(p1) p(x,x) = p(y,y) = p(x,y) if and only if x = y,
(p2) p(x,x)≤ p(x,y) ,
(p3) p(x,y) = p(y,x) ,
(p4) p(x,z)≤ p(x,y)+ p(y,z)− p(y,y) .

The pair (X , p) is then callad a partial metric space.

If p(x,y) = 0, then p1) and p2) imply that x = y. But the reverse does not satisfy always.

Example 1.[9] Let X = {[a,b] : a,b ∈ R,a≤ b} , that is, X = ΩC (R) and define a function p : X ×X → R+ is defined as
p(x,y) = p([a,b] , [c,d]) = max{b,d}−min{a,c}, then (X , p) is a partial metric space. [9] Every metric space is a partial
metric space. Each partial metric p on X generates a T0 topology τp on X with as a base the family of the open p-balls{

Bp (x,ε) : x ∈ X ,ε > 0
}

, where Bp (x,ε) = {y ∈ X : p(x,y)< p(x,x)+ ε}.

Definition 2.[9] Let (X , p) be a partial metric space. Then:

(a) A sequence (xn) in (X , p) converges to a point x ∈ X with respect to τp if and only if p(x,x) = limn→∞ p(x,xn).
(b) A sequence (xn) in (X , p) is called Cauchy sequence if there exists and is finite limn,m→∞ p(xn,xm).
(c) A partial metric space (X , p) is called a complete partial metric space if every Cauchy sequence {xn} in X converges

with respect to τp to a point x ∈ X.

Remark.[9]Let (X , p) be a partial metric space. Then the function dp : X×X → [0,∞) defined by

dp (x,y) = 2p(x,y)− p(x,x)− p(y,y)

is a metric on X .

Let (X , p) be a partial metric space, a sequence {xn} in (X ,dp) is said to be convergent to a point x ∈ X if and only if

p(x,x) = lim
n→∞

p(x,xn) = lim
n,m→∞

p(xn,xm) . (1)

Lemma 1.[1] Let (X , p) be a partial metric space. Then:

(a) A sequence (xn) in X is a Cauchy with respect to p if and only if it is Cauchy with respect to dp.

(b) A partial metric space (X , p) is complete if and only if the metric space (X ,dp) is complete.

Now, let us give the definition of partial Hausdorff metric space and reletad results. First, we remember and state the
definition of Hausdorff metric for metric spaces.

Let (X ,d) be a metric space and ΩC (X) denotes the collection of all nonempty closed and bounded subsets of X . For
A,B ∈ΩC (X), define

H (A,B) = max
{

sup
a∈A

d (a,B) ,sup
b∈B

d (b,A)
}
,

where d (x,A) = inf{d (x,a) : a ∈ A} is the distance of a point x to the set A. We know that H is a metric on ΩC (X),
called the Hausdorff metric induced by the metric d.

[1] In a partial metric space closedness is taken from (X ,τp) and boundedness is given as follows: A is a bounded subset
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in (X , p) if there exist x0 ∈ X and M ≥ 0 such that for all a ∈ A, we have a ∈ Bp (x0,M), that is, p(x0,a) < p(a,a)+M.
Again in [1] following nations are defined. For A,B ∈Ω

p
C (X) and x ∈ X ,

p(x,A) = inf{p(x,a) ,a ∈ A} and δp (A,B) = sup{p(a,B) : a ∈ A} .

From here for the functions δp : Ω
p
C (X)×Ω

p
C (X)→ R+ and Hp : Ω

p
C (X)×Ω

p
C (X)→ R+, we have the following

Hp (A,B) = max
{

δp (A,B) ,δp (B,A)
}
.

Remark.[3] Let (X , p) be a partial metric space and A be any nonempty subset of X , then

a ∈ A if and only if p(a,A) = p(a,a) . (2)

Proposition 1.[1] Let δp : Ω
p
C (X)×Ω

p
C (X)→ R+. For all A,B,C ∈Ω

p
C (X), we have the following:

(i) δp (A,A) = sup{p(a,a) : a ∈ A} ,
(ii) δp (A,A)≤ δp (A,B) ,

(iii) δp (A,B) = 0 implies that A⊆ B,
(iv) δp (A,B)≤ δp (A,C)+δp (C,B)− infc∈C p(c,c).

Proposition 2.[1] Let (X , p) be a partial metric space. For any A,B,C ∈Ω
p
C (X), we have

(1) Hp (A,A)≤ Hp (A,B) ,
(2) Hp (A,B) = Hp (A,B) ,
(3) Hp (A,B)≤ Hp (A,C)+Hp (C,B)− infc∈C p(c,c) .

We know that a multi-valued mapping T : X →ΩC (X) is said to be contraction if

H (T x,Ty)≤ kd (x,y)

for all x,y ∈ X and for some k ∈ [0,1). After above definition Nadler (in [8]) was proved the following theorem.

Theorem 1.[8] Let (X ,d) be a complete metric space and T : X → ΩC (X) be a contraction mapping. Then, there exists
x ∈ X such that x ∈ T x.

Lemma 2.[1] Let (X , p) be a partial metric space, A,B ∈Ω
p
C (X) and h > 1. For any a ∈ A, there exists b = b(a) ∈ B such

that
p(a,b)≤ hHp (A,B) .

Theorem 2.[1] Let (X , p) be a complete partial metric space. If T : X →ΩC (X) is a multi-valued mapping such that for
all x,y ∈ X, we have

Hp (T x,Ty)≤ kp(x,y)

where k ∈ (0,1). Then T has a fixed point.

2 Main Results

In this section, we give some fixed point theorems for multi-valued mappings on a complete partial metric space.
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Theorem 3.Let (X , p) be a complete partial metric space and let T : X →Ω
p
C (X) be a map such that

Hp (T x,Ty) ≤ ap(x,y)+b [p(x,T x)+ p(y,Ty)]

+c [p(x,Ty)+ p(y,T x)] (3)

for all x,y ∈ X where a,b,c≥ 0 and a+2b+2c < 1. Then T has a fixed point.

Proof.Let x0 ∈ X and x1 ∈ T x0. Since k = a+2b+2c < 1, then 1√
k
> 1. Thus, by using Lemma 2, we have x2 ∈ T x1 such

that
p(x1,x2)≤

1√
k

Hp (T x0,T x1) . (4)

From (3) and (4), we get

p(x1,x2) ≤
1√
k

[
ap(x0,x1)+b [p(x0,x1)+ p(x1,x2)]

+c [p(x0,x2)+ p(x1,x1)]

]

≤ 1√
k
[(a+b+ c) p(x0,x1)+(b+ c) p(x1,x2)]

≤
√

k
1−
√

k
p(x0,x1)

≤
√

kp(x0,x1) . (5)

From (5), we have
p(x1,x2)≤

√
kp(x0,x1)< p(x0,x1) . (6)

If x1 = x2, then x1 is a fixed point. Suppose that x1 6= x2. Again, from (3), we get

Hp (T x1,T x2) ≤ ap(x1,x2)+b [p(x1,T x1)+ p(x2,T x2)]

+c [p(x1,T x2)+ p(x2,T x1)] . (7)

Again by using Lemma 2, we have x3 ∈ T x2 such that

p(x2,x3)≤
1√
k

Hp (T x1,T x2) . (8)

From (7) and (8), we get

p(x2,x3) ≤
1√
k

[
ap(x1,x2)+b [p(x1,x2)+ p(x2,x3)]

+c [p(x1,x3)+ p(x2,x2)]

]

≤ 1√
k
[(a+b+ c) p(x1,x2)+(b+ c) p(x2,x3)]

≤
√

k
1−
√

k
p(x1,x2)

≤
√

kp(x1,x2) . (9)

Now, from (9) and mathematical induction, we obtain

p(x2,x3)≤
√

kp(x1,x2)≤
√

k
√

kp(x0,x1) . (10)
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Continuing the same way, we get {xn} ⊂ X such that xn−1 ∈ T xn and xn−1 6= xn, with

p(xn,xn+1)≤
(√

k
)n

p(x0,x1) for all n ∈ N. (11)

Using (11) and the property (p4) of a partial metric, for any m ∈ N, we have

p(xn,xn+m) ≤ p(xn,xn+1)+ p(xn+1,xn+2)+ ...+ p(xn+m−1,xn+m)

≤
(√

k
)n

p(x0,x1)+
(√

k
)n+1

p(x0,x1)+ ...

+
(√

k
)n+m−1

p(x0,x1)

=

((√
k
)n

+
(√

k
)n+1

+ ...+
(√

k
)n+m−1

)
p(x0,x1)

≤

(√
k
)n

1−
√

k
p(x0,x1)→ 0 as n→+∞ (12)

since 0 < k < 1. This shows that {xn} is a Cauchy sequence in (X , ps) . Since (X , p) is a complete partial metric space, by
Lemma 1, (X , ps) is a complete metric space. Therefore, the sequence {xn} converges to some x ∈ X with respect to the
metric ps, that is, limn→∞ ps (xn,x) = 0. Again from (1), we have

p(x,x) = lim
n→∞

p(xn,x) = lim
n→∞

p(xn,xn) = 0. (13)

Now, we show that p(x,T x) = 0. On the contrary, suppose that p(x,T x) > 0. By using the (p4) inequality and (3), we
have

p(x,T x) ≤ p(x,xn+1)+ p(xn+1,T x)− p(xn+1,xn+1)

≤ p(x,xn+1)+ p(T xn,T x)

≤ p(x,xn+1)+ap(xn,x)+b [p(xn,T xn)+ p(x,T x)]

+c [p(xn,T x)+ p(x,T xn)]

letting n→ ∞, we get
p(x,T x)≤ (b+ c) p(x,T x) .

But this is impossible for a,b,c≥ 0 and a+2a+2b < 1. Thus, p(x,T x) = 0. Therefore, from (13), we get

p(x,T x) = 0 = p(x,x) ,

which from (2) implies that x ∈ T x.

Now, we give the illustrative example.

Let X = {0,1,2} be endowed with the partial metric p : X ×X → R+ defined by p(x,y) = 1
4 max{x,y} for all x,y ∈ X .

Clearly, p is a not metric on X because of p(1,1) = 1
4 6= 0 and p(2,2) = 1

2 6= 0. Further, (X , p) complete partial metric
space. Define the mapping T : X → Ω

p
C (X) by T (0) = T (1) = {0} and T (2) = {0,1}. T x is closed and bounded for all

x ∈ X under the given partial metric space (X , p) . Now, we shall show that, for all x,y ∈ X , the contractive condition
(2.1) is satisfied with a = 1

3 ,b = 1
6 and c = 1

8 . We consider the following three cases:

(i) x,y ∈ {0,1}. We obtain Hp (T (x) ,T (y)) = Hp ({0} ,{0}) = 0. Thus (2.1) is satisfied.
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(ii) x ∈ {0,1} , y = 2. We obtain

Hp (T (0) ,T (2)) = Hp (T (1) ,T (2))

= Hp ({0} ,{0,1})

=
1
4

≤ ap(0,2)+b [p(0,T (0))+ p(2,T (2))]

+c [p(0,T (2))+ p(2,T (0))]

=
a
2
+

b
2
+

3c
4

≤ ap(1,2)+b [p(1,T (1))+ p(2,T (2))]

+c [p(1,T (2))+ p(2,T (1))]

=
a
2
+

3b
2

+
3c
4
.

(iii) x = y = 2. We get

Hp (T (2) ,T (2)) = Hp ({0,1} ,{0,1})

=
1
4

≤ ap(2,2)+b [p(2,T (2))+ p(2,T (2))]

+c [p(2,T (2))+ p(2,T (2))]

=
a
2
+b+ c.

Thus, all conditions of Theorem 7 are satisfied. Here, x = 0 is a fixed point of T .

Now we state another fixed point theorem on a complete partial metric space.

Theorem 4.Let (X , p) be a complete partial metric space and let T : X →Ω
p
C (X) be a map such that

Hp (T x,Ty) ≤ amax
{

p(x,y) , p(x,T x) , p(y,Ty) ,
p(x,Ty)+ p(y,T x)

2

}
+bmax{p(x,T x) , p(y,Ty)}+ c [p(x,Ty)+ p(y,T x)] (14)

for all x,y ∈ X where a,b,c are nonnegative real numbers such that a+b+2c < 1. Then T has a fixed point.

Proof.Let x0 ∈ X and x1 ∈ T x0. From Lemma 2 with k = a+b+2c and h = 1√
k

there exists x2 ∈ T x1 such that

p(x1,x2)≤
1√
k

Hp (T x0,T x1) . (2.13)

From (14) and (2.13), we get

p(x1,x2) ≤
1√
k

amax
{

p(x0,x1) , p(x1,x2) ,
p(x0,x2)+p(x1,x1)

2

}
+bmax{p(x0,x1) , p(x1,x2)}
+c [p(x0,x2)+ p(x1,x1)]



≤ 1√
k

 amax{p(x0,x1) , p(x1,x2)}
+bmax{p(x0,x1) , p(x1,x2)}

c [p(x0,x1)+ p(x1,x2)]


≤ 1√

k
(a+b+2c)max{p(x0,x1) , p(x1,x2)}

≤
√

k max{p(x0,x1) , p(x1,x2)} . (15)
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If we assume that max{p(x0,x1) , p(x1,x2)} = p(x1,x2), then we get a contradiction to (15). Thus,
max{p(x0,x1) , p(x1,x2)}= p(x0,x1) . From (15), we have

p(x1,x2)≤
√

kp(x0,x1)< p(x0,x1) . (16)

If x1 = x2, then x1 is a fixed point. Suppose that x1 6= x2. Again, from (14), we get

Hp (T x1,T x2) ≤ amax

{
p(x1,x2) , p(x1,T x1) , p(x2,T x2) ,

p(x1,T x2)+p(x2,T x1)
2

}
+bmax{p(x1,T x1) , p(x2,T x2)}

+c [p(x1,T x2)+ p(x2,T x1)] (17)

Again by using Lemma 2, we have x3 ∈ T x2 such that

p(x2,x3)≤
1√
k

Hp (T x1,T x2) . (18)

From (17) and (18), we get

p(x2,x3) ≤
1√
k

amax
{

p(x1,x2) , p(x2,x3) ,
p(x1,x3)+p(x2,x2)

2

}
+bmax{p(x1,x2) , p(x2,x3)}
+c [p(x1,x3)+ p(x2,x2)]



≤ 1√
k

 amax{p(x1,x2) , p(x2,x3)}
+bmax{p(x1,x2) , p(x2,x3)}

c [p(x1,x2)+ p(x2,x3)]


≤ 1√

k
(a+b+2c)max{p(x1,x2) , p(x2,x3)}

≤
√

k max{p(x1,x2) , p(x2,x3)} . (19)

If we assume that max{p(x1,x2) , p(x2,x3)} = p(x2,x3), then we get a contradiction to (19). Thus,
max{p(x1,x2) , p(x2,x3)}= p(x1,x2) . From (19) and (16) , we have

p(x2,x3)≤
√

kp(x1,x2)<
√

k
√

kp(x0,x1) . (20)

Continue similar to the proof of the above theorem we get {xn} ⊂ X such that xn−1 ∈ T xn and xn−1 6= xn, with

p(xn,xn+1)≤
(√

k
)n

p(x0,x1) for all n ∈ N. (21)

Using (21) and the property (p4) of a partial metric, for any m ∈ N, we have

p(xn,xn+m) ≤ p(xn,xn+1)+ p(xn+1,xn+2)+ ...+ p(xn+m−1,xn+m)

≤
(√

k
)n

p(x0,x1)+
(√

k
)n+1

p(x0,x1)+ ...

+
(√

k
)n+m−1

p(x0,x1)

=

((√
k
)n

+
(√

k
)n+1

+ ...+
(√

k
)n+m−1

)
p(x0,x1)

≤

(√
k
)n

1−
√

k
p(x0,x1)→ 0 as n→+∞ (22)
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since 0 < k < 1. This shows that {xn} is a Cauchy sequence in (X , ps) . Since (X , p) is a complete partial metric space, by
Lemma 1, (X , ps) is a complete metric space. Therefore, the sequence {xn} converges to some x ∈ X with respect to the
metric ps, that is, limn→∞ ps (xn,x) = 0. Again from (1), we have

p(x,x) = lim
n→∞

p(xn,x) = lim
n→∞

p(xn,xn) = 0. (23)

Now, we show that p(x,T x) = 0. On the contrary, suppose that p(x,T x)> 0. By using the triangular inequality and (14),
we have

p(x,T x) ≤ p(x,xn+1)+ p(xn+1,T x)− p(xn+1,xn+1)

≤ p(x,xn+1)+ p(T xn,T x)

≤ p(x,xn+1)+amax

{
p(xn,x) , p(xn,T xn) , p(x,T x) ,

p(xn,T x)+p(x,T xn)
2

}
+bmax{p(xn,T xn) , p(x,T x)}+ c [p(xn,T x)+ p(x,T xn)]

letting n→ ∞, we get
p(x,T x)≤ (a+b+ c) p(x,T x) .

But this is impossible for a,b,c≥ 0 and a+2a+2b < 1. Thus, p(x,T x) = 0. Therefore, from (23), we get

p(x,T x) = 0 = p(x,x) ,

which from (2) implies that x ∈ T x.

Now, we remember that the definition of a common fixed point theorem of two set-valued mappings.

Definition 3.Let (X , p) be a partial metric space and S,T : X →Ω
p
C (X). A point x ∈ X is said to be a common fixed point

of S and T , that is x ∈ T x and x ∈ Sx.

Theorem 5.Suppose that (X , p) be a partial metric space and S,T : X → Ω
p
C (X). If there exists a+2b+2c = r ∈ [0,1)

such that
Hp (T x,Sy)≤ ap(x,y)+b [p(x,T x)+ p(y,Sy)]+ c [p(x,Sy)+ p(y,T x)] (24)

for any x,y ∈ X. Then there exist z ∈ X such that z ∈ T z and z ∈ Sz.

Proof.Let x0 be an arbitrary point in X . We can find x1 and x2 in X such that x2 ∈ T x1 and x1 ∈ Sx0. In general, x2n ∈ X is
chosen such that

x2n+2 ∈ T x2n+1 and x2n+1∈Sx2n for n = 0,1,2, . . .

If there exists a positive m such that x2m = x2m+1, then x2m = x2m+1 ∈ Sx2m. From (24), we get

Hp (T x2m+1,Sx2m) ≤ ap(x2m+1,x2m)+b [p(x2m+1,T x2m+1)+ p(x2m,Sx2m)]

+c [p(x2m+1,Sx2m)+ p(x2m,T x2m+1)] .
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Then there exists r < 1 such that 1√
r > 1. Thus by Lemma 1, we have x2m+2 ∈ T x2m+1 and x2m+1 ∈ Sx2m such that

p(x2m+2,x2m+1) ≤ Hp (T x2m+1,Sx2m)

≤ 1√
r

 ap(x2m+1,x2m)

+b [p(x2m+1,T x2m+1)+ p(x2m,Sx2m)]

+c [p(x2m+1,Sx2m)+ p(x2m,T x2m+1)]


=

1√
r

 ap(x2m+1,x2m+1)

+b [p(x2m+1,x2m+2)+ p(x2m+1,x2m+1)]

+c [p(x2m+1,x2m+1)+ p(x2m+1,x2m+2)]


≤ rp(x2m+1,x2m+2) .

So, we obtain (1− r) p(x2m+2,x2m+1)≤ 0. Since r < 1, then p(x2m+2,x2m+1) = 0, which satisfy that p(T x2m+1,x2m+1) =

0, and we get x2m+1 ∈ T x2m+1. As a result, x2m = x2m+1 is the common fixed point of S and T . A similar result obtain if
x2m+1 = x2m+2 for some m ∈ N+. Hence, we now consider that xm 6= xm+1 for all m ∈ N+. There are two cases.

If m is odd, from 24, we get

Hp (T xm+1,Sxm) ≤ ap(xm+1,xm)+b [p(xm+1,T xm+1)+ p(xm,Sxm)]

+c [p(xm+1,Sxm)+ p(xm,T xm+1)] .

Hence, by Lemma 1, we have xm+2 ∈ T xm+1 and xm+1 ∈ Sxm such that

p(xm+2,xm+1) ≤ Hp (T xm+1,Sxm)

≤ 1√
r

[
ap(xm+1,xm)+b [p(xm+1,T xm+1)+ p(xm,Sxm)]

+c [p(xm+1,Sxm)+ p(xm,T xm+1)]

]

=
1√
r

[
ap(xm+1,xm)+b [p(xm+1,xm+2)+ p(xm,xm+1)]

+c [p(xm+1,xm+1)+ p(xm+1,xm+2)]

]

≤ 1√
r
[(a+2b+2c) p(xm+1,xm)+(a+2b+2c) p(xm+1,xm+2)]

≤
√

r
1−
√

r
p(xm+1,xm) . (25)

If m is even, we can obtain the same inequality, similarly. From here, we obtain that {p(xk,xk+1)} is a positive and
nonincreasing sequence of real numbers. So, from (25), we have

p(xk,xk+1)≤ rk p(x0,x1) (26)

for each k ∈ N. Using (26) and the property (P4) of the partial metric, for any m ∈ N, we get

p(xn,xn+m) ≤ p(xn,xn+1)+ p(xn+1,xn+2)+ ...+ p(xn+m−1,xn+m)

≤
(√

r
)n p(x0,x1)+

(√
r
)n+1 p(x0,x1)+ ...

+
(√

r
)n+m−1 p(x0,x1)

≤ (
√

r)n

1−
√

r
p(x0,x1)→ 0 as n→+∞

since 0 < r < 1. This shows that {xn} is a Cauchy sequence in (X , ps) . Since (X , p) is a complete partial metric space, by
Lemma 1, (X , ps) is a complete metric space. Therefore, the sequence {xn} converges to some x ∈ X with respect to the
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metric ps, that is, limn→∞ ps (xn,x) = 0. Again from (1), we have

p(x,x) = lim
n→∞

p(xn,x) = lim
n→∞

p(xn,xn) = 0. (27)

Now, we show that x ∈ T x. Assume that x /∈ T x,namely p(x,T x)> 0. Due to (24), for a {xn+1} subsequence of {xn}, we
have

p(T x,x) ≤ p(T x,xn+1)+ p(xn+1,x)− p(xn+1,xn+1)

≤ Hp (T x,Sxn)+ p(xn+1,x)

≤ ap(x,xn)+b [p(x,T x)+ p(xn,Sxn)]

+c [p(x,Sxn)+ p(xn,T x)]+ p(xn+1,x)

letting n→ ∞ and taking into account (27), the above inequality satisfy that

p(x,T x)≤ (b+ c) p(x,T x) .

But this is impossible for a,b,c≥ 0 and a+2a+2b < 1. Thus, p(x,T x) = 0. Therefore, from (27), we have

p(x,T x) = 0 = p(x,x) ,

which from (2) implies that x ∈ T x. Similarly, if we choose for a {xn+2} subsequence of {xn}, we obtain p(x,Sx) = 0.
This completes the proof.

Further, following common fixed point theorem can be given for a contractive condition (28).

Theorem 6.Suppose that (X , p) be a partial metric space and S,T : X → Ω
p
C (X). If there exists a+ b+ 2c = r ∈ [0,1)

such that

Hp (T x,Sy) ≤ amax
{

p(x,y) , p(x,T x) , p(y,Sy)
p(x,Sy)+ p(y,T x)

2

}
+bmax{p(x,T x) , p(y,Sy)}

+c [p(x,Sy)+ p(y,T x)] (28)

for any x,y ∈ X. Then there exist z ∈ X such that z ∈ T z and z ∈ Sz.

A similar proof verifies that T and S have a common fixed point z.
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