# Hermite-Hadamard type inequalities for fourth-times differentiable arithmetic-harmonically functions 

Kerim Bekar<br>Department of Mathematics, Faculty of Sciences and Arts, Giresun University-Giresun-TÜRKİYE

Received: 27 March 2019, Accepted: 19 July 2019
Published online: 25 June 2020.


#### Abstract

In this study, by using an integral identity together with both the Hölder integral inequality and the power-mean integral inequality we establish several new inequalities for fourth-times differentiable arithmetic-harmonically-convex function. Also, some applications are given for arithmetic-harmonically convex functions.


Keywords: Convex function, arithmetic-harmonically-convex function, Hermite-Hadamard's inequality, Hölder inequality, power-mean inequality.

## 1 Introduction

Definition 1.A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex if the inequality

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

valid for all $x, y \in I$ and $t \in[0,1]$. If this inequality reverses, then $f$ is said to be concave on interval $I \neq \varnothing$. This definition is well known in the literature.

Convexity theory has appeared as a powerful technique to study a wide class of unrelated problems in pure and applied sciences. For some inequalities, generalizations and applications concerning convexity see [2,3,17,19,20]. Many papers have been written by a number of mathematicians concerning inequalities for different classes of convex functions see for instance the recent papers $[5,6,7,8,10]$ and the references within these papers.

Theorem 1.Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function defined on the interval $I$ of real numbers and $a, b \in I$ with $a<b$. The following inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

holds.
This double inequality is known in the literature as Hermite-Hadamard integral inequality for convex functions. See [5, $9,11,12,13,14,18]$, for the results of the generalization, improvement and extention of the famous integral inequality (1). It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [15]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result. E. F. Beckenbach, a leading expert on the

[^0]© 2020 BISKA Bilisim Technology
history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974, D. S. Mitrinovic found Hermite's note in Mathesis [15]. Since (1) was known as Hadamard's inequality, the inequality is now commonly referred as the Hermite-Hadamard inequality.

Definition 2([4]). A function $f: I \subset \mathbb{R} \rightarrow(0, \infty)$ is said to be arithmetic-harmonically (AH) convex function if for all $x, y \in I$ and $t \in[0,1]$ the equality

$$
\begin{equation*}
f(t x+(1-t) y) \leq \frac{f(x) f(y)}{t f(y)+(1-t) f(x)} \tag{2}
\end{equation*}
$$

holds. If the inequality (2) is reversed then the function $f(x)$ is said to be arithmetic-harmonically $(A H)$ concave function.
Theorem 2(Hölder Inequality for Integrals [16]). Let $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$. If $f$ and $g$ are real functions defined on $[a, b]$ and if $|f|^{p},|g|^{q}$ are integrable functions on $[a, b]$ then

$$
\int_{a}^{b}|f(x) g(x)| d x \leq\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} d x\right)^{\frac{1}{q}}
$$

with equality holding if and only if $A|f(x)|^{p}=B|g(x)|^{q}$ almost everywhere, where $A$ and $B$ are constants.
Theorem 3(Power-mean Integral Inequality ). Let $q \geq 1$. If $f$ and $g$ are real functions defined on $[a, b]$ and if $|f|,|f||g|^{q}$ are integrable functions on $[a, b]$ then

$$
\int_{a}^{b}|f(x) g(x)| d x \leq\left(\int_{a}^{b}|f(x)| d x\right)^{1-\frac{1}{q}}\left(\int_{a}^{b}|f(x)||g(x)|^{q} d x\right)^{\frac{1}{q}}
$$

In this study, in order to establish some new inequalities of Hermite-Hadamard type inequalities for arithmetic harmonically convex functions, we will use the following lemma obtained in the specials case of identity given in [14].

Lemma 1.Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a fourth-times differentiable mapping on $I^{\circ}$ and $f^{(4)} \in L[a, b]$, where $a, b \in I^{\circ}$ with $a<b$, we have the identity

$$
\begin{align*}
& \frac{b f(b)-a f(a)}{1!}-\frac{b^{2} f^{\prime}(b)-a^{2} f^{\prime}(a)}{2!}+\frac{b^{3} f^{\prime \prime}(b)-a^{3} f^{\prime \prime}(a)}{3!}  \tag{3}\\
& -\frac{b^{4} f^{\prime \prime \prime}(b)-a^{4} f^{\prime \prime \prime}(a)}{4!}-\int_{a}^{b} f(x) d x=-\frac{1}{4!} \int_{a}^{b} x^{4} f^{(4)}(x) d x
\end{align*}
$$

where an empty sum is understood to be nil.

By using above Lemma together with Hölder and power-mean integral inequalities, we derive a general integral identity for differentiable functions in order to provide inequality for functions whose fourth derivatives in absolute value at certain power are arithmetic-harmonically-convex functions.

Let $0<a<b$, throught this paper, we will use

$$
\begin{aligned}
A(a, b) & =\frac{a+b}{2} \\
G(a, b) & =\sqrt{a b} \\
L_{p}(a, b) & =\left\{\begin{array}{cc}
\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}}, & p \neq-1,0 \\
\frac{b-a}{\ln b-\ln a}, & p=-1 \\
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}, & p=0 .
\end{array}\right.
\end{aligned}
$$

for the arithmetic, the geometric and generalized logarithmic mean for $a, b>0$ respectively. In addition, we will use the following notation for shortness:

$$
\begin{gathered}
I_{f}(a, b)=\frac{b f(b)-a f(a)}{1!}-\frac{b^{2} f^{\prime}(b)-a^{2} f^{\prime}(a)}{2!}+\frac{b^{3} f^{\prime \prime}(b)-a^{3} f^{\prime \prime}(a)}{3!} \\
-\frac{b^{4} f^{\prime \prime \prime}(b)-a^{4} f^{\prime \prime \prime}(a)}{4!}-\int_{a}^{b} f(x) d x=-\frac{1}{4!} \int_{a}^{b} x^{4} f^{(4)}(x) d x
\end{gathered}
$$

## 2 Main results

In this section, we will obtain our main results by using the Lemma 1.
Theorem 4.Let $f: I \subset(0, \infty) \rightarrow(0, \infty)$ be a fourth-times differentiable mapping on $I^{\circ}$, and $a, b \in I^{\circ}$ with $a<b$. If $\left|f^{(4)}\right|^{q}$ is an arithmetic-harmonically convex function on the interval $[a, b]$, then the following inequality holds:
i) If $\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q} \neq 0$, then

$$
\begin{equation*}
\left|I_{f}(a, b)\right| \leq \frac{b-a}{4!} \frac{L_{4 p}^{4}(a, b) G^{2}\left(\left|f^{(4)}(a)\right|,\left|f^{(4)}(b)\right|\right)}{L^{\frac{1}{q}}\left(\left|f^{(4)}(a)\right|^{q},\left|f^{(4)}(b)\right|^{q}\right)} \tag{4}
\end{equation*}
$$

ii) If $\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q}=0$, then

$$
\left|I_{f}(a, b)\right| \leq \frac{b-a}{n!}\left|f^{(4)}(b)\right| L_{4 p}^{4}(a, b)
$$

where
$B_{q, f}=B_{q, f}(a, b)=\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q}$,
$C_{q, f}=C_{q, f}(a, b)=\frac{b\left|f^{(4)}(b)\right|^{q}-a\left|f^{(4)}(a)\right|^{q}}{B_{q, f}}$,
and $\frac{1}{p}+\frac{1}{q}=1$.
Proof.i) Let $\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q} \neq 0$. If $\left|f^{(4)}\right|^{q}$ for $q>1$ is an arithmetic-harmonically convex function on the interval $[a, b]$, then using Lemma 1 , well known Hölder integral inequality and the following identity

$$
\left|f^{(4)}(x)\right|^{q}=\left|f^{(4)}\left(\frac{b-x}{b-a} a+\frac{x-a}{b-a} b\right)\right|^{q} \leq \frac{(b-a)\left|f^{(4)}(a)\right|^{q}\left|f^{(4)}(b)\right|^{q}}{(b-x)\left|f^{(4)}(b)\right|^{q}+(x-a)\left|f^{(4)}(a)\right|^{q}}
$$

we obtain

$$
\begin{align*}
\left|I_{f}(a, b)\right| & \leq \frac{1}{4!}\left(\int_{a}^{b} x^{4 p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|f^{(4)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
& \leq \frac{1}{4!}\left(\int_{a}^{b} x^{4 p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} \frac{(b-a)\left|f^{(4)}(a)\right|^{q}\left|f^{(4)}(b)\right|^{q}}{(b-x)\left|f^{(4)}(b)\right|^{q}+(x-a)\left|f^{(4)}(a)\right|^{q}} d x\right)^{\frac{1}{q}} \tag{5}
\end{align*}
$$

Since

$$
0<(b-x)\left|f^{(4)}(b)\right|^{q}+(x-a)\left|f^{(4)}(a)\right|^{q}=B_{q, f}\left(x+C_{q, f}\right),
$$

we can write the following inequality:

$$
I_{f}(a, b) \leq \frac{(b-a) L_{4 p}^{4}(a, b)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{4!}\left(\frac{1}{B_{q, f}} \int_{a}^{b} \frac{1}{x+C_{q, f}} d x\right)^{\frac{1}{q}}
$$

It is easily seen that

$$
\begin{equation*}
\frac{1}{B_{q, f}} \int_{a}^{b} \frac{1}{x+C_{q, f}} d x=\frac{1}{B_{q, f}} \ln \frac{\left|f^{(4)}(a)\right|^{q}}{\left|f^{(4)}(b)\right|^{q}}=\frac{1}{L\left(\left|f^{(4)}(a)\right|^{q},\left|f^{(4)}(b)\right|^{q}\right)} \tag{6}
\end{equation*}
$$

Therefeore, we have

$$
\left|I_{f}(a, b)\right| \leq \frac{b-a}{4!} \frac{L_{4 p}^{4}(a, b) G^{2}\left(\left|f^{(4)}(a)\right|,\left|f^{(4)}(b)\right|\right)}{L^{\frac{1}{q}}\left(\left|f^{(4)}(a)\right|^{q},\left|f^{(4)}(b)\right|^{q}\right)}
$$

where

$$
\int_{a}^{b} x^{4 p} d x=(b-a) L_{4 p}^{4 p}(a, b) .
$$

ii) Let $\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q}=0$. In this case, by substituting $\left|f^{(4)}(a)\right|^{q}=\left|f^{(4)}(b)\right|^{q}$ in (5) we obtain the following inequality:

$$
\begin{equation*}
\left|I_{f}(a, b)\right| \leq \frac{b-a}{4!}\left|f^{(4)}(b)\right| L_{4 p}^{4}(a, b) . \tag{7}
\end{equation*}
$$

This completes the proof of the Theorem.

Theorem 5.Let $f: I \subset(0, \infty) \rightarrow(0, \infty)$ be a fourth-times differentiable mapping on $I^{\circ}$, and $a, b \in I^{\circ}$ with $a<b$. If $\left|f^{(4)}\right|^{q}, q \geq 1$ is an arithmetic-harmonically convex function on the interval $[a, b]$, then the following inequality holds:
i) If $\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q} \neq 0$, then

$$
\begin{align*}
& \left|I_{f}(a, b)\right| \leq \frac{(b-a) L_{4}^{4\left(1-\frac{1}{q}\right)}(a, b)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{4!}  \tag{8}\\
& \times\left[\frac{1}{B_{q, f}} \sum_{k=0}^{3}(-1)^{k} C_{q, f}^{k}\left(\frac{b^{4-k}-a^{4-k}}{4-k}\right)+\frac{C_{q, f}^{4}}{L\left(\left|f^{(4)}(a)\right|^{q},\left|f^{(4)}(b)\right|^{q}\right)}\right]^{\frac{1}{q}} .
\end{align*}
$$

ii) If $\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q}=0$, then

$$
\left|I_{f}(a, b)\right| \leq \frac{(b-a) L_{4}^{4}(a, b)\left|f^{(4)}(b)\right|}{4!}
$$

where
$B_{q, f}=B_{q, f}(a, b)=\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q}$,
$C_{q, f}=C_{q, f}(a, b)=\frac{b\left|f^{(4)}(b)\right|^{q}-a\left|f^{(4)}(a)\right|^{q}}{B_{q, f}}$.

Proof.i) Let $\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q} \neq 0$. If $\left|f^{(4)}\right|^{q}$ for $q \geq 1$ is an arithmetic-harmonically convex function on the interval $[a, b]$, then using Lemma 1 , well known power-mean integral inequality and

$$
\left|f^{(4)}(x)\right|^{q} \leq\left|f^{(4)}\left(\frac{b-x}{b-a} a+\frac{x-a}{b-a} b\right)\right|^{q}=\frac{(b-a)\left|f^{(4)}(a)\right|^{q}\left|f^{(4)}(b)\right|^{q}}{(b-x)\left|f^{(4)}(b)\right|^{q}+(x-a)\left|f^{(4)}(a)\right|^{q}}
$$

we write the following ineqaulity:

$$
\begin{align*}
& \left|I_{f}(a, b)\right|  \tag{9}\\
\leq & \frac{1}{4!}\left(\int_{a}^{b} x^{4} d x\right)^{1-\frac{1}{q}}\left(\int_{a}^{b} x^{4}\left|f^{(4)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
\leq & \frac{1}{4!}\left(\int_{a}^{b} x^{4} d x\right)^{1-\frac{1}{q}}\left(\int_{a}^{b} \frac{x^{4}(b-a)\left|f^{(4)}(a)\right|^{q}\left|f^{(4)}(b)\right|^{q}}{(b-x)\left|f^{(4)}(b)\right|^{q}+(x-a)\left|f^{(4)}(a)\right|^{q}} d x\right)^{\frac{1}{q}} \\
= & \frac{b-a}{4!} L_{4}^{4\left(1-\frac{1}{q}\right)}(a, b)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|\left(\int_{a}^{b} \frac{x^{4}}{(b-x)\left|f^{(4)}(b)\right|^{q}+(x-a)\left|f^{(4)}(a)\right|^{q}} d x\right)^{\frac{1}{q}} \\
= & \frac{(b-a) L_{4}^{4\left(1-\frac{1}{q}\right)}(a, b)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{4!}\left(\frac{1}{B_{q, f}} \int_{a}^{b} \frac{x^{4}}{x+C_{q, f}} d x\right)^{\frac{1}{q}} .
\end{align*}
$$

Since

$$
\begin{aligned}
\int_{a}^{b} \frac{x^{4}}{x+C_{q, f}} d x & =\int_{a}^{b} \sum_{k=0}^{3}(-1)^{k} C_{q, f}^{k} x^{3-k} d x+\int_{a}^{b} \frac{C_{q, f}^{4}}{x+C_{q, f}} d x \\
& =\sum_{k=0}^{3}(-1)^{k} C_{q, f}^{k} \int_{a}^{b} x^{3-k} d x+C_{q, f}^{4} \int_{a}^{b} \frac{1}{x+C_{q, f}} d x \\
& =\sum_{k=0}^{3}(-1)^{k} C_{q, f}^{k}\left(\frac{b^{4-k}-a^{4-k}}{4-k}\right)+C_{q, f}^{4} \int_{a}^{b} \frac{1}{x+C_{q, f}} d x
\end{aligned}
$$

we have the following inequality:

$$
\begin{aligned}
\left|I_{f}(a, b)\right| \leq & \frac{(b-a) L_{4}^{4\left(1-\frac{1}{q}\right)}(a, b)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{4!} \\
& \times\left[\frac{1}{B_{q, f}} \sum_{k=0}^{3}(-1)^{k} C_{q, f}^{k}\left(\frac{b^{4-k}-a^{4-k}}{4-k}\right)+\frac{C_{q, f}^{4}}{L\left(\left|f^{(4)}(a)\right|^{q},\left|f^{(4)}(b)\right|^{q}\right)}\right]^{\frac{1}{q}}
\end{aligned}
$$

ii) Let $\left|f^{(4)}(a)\right|^{q}-\left|f^{(4)}(b)\right|^{q}=0$. By using the inequality (9), we obtain

$$
\begin{equation*}
\left|I_{f}(a, b)\right| \leq \frac{(b-a) L_{4}^{4}(a, b)\left|f^{(4)}(b)\right|}{4!} \tag{10}
\end{equation*}
$$

This completes the proof of the Theorem.

Corollary 1.If we take $q=1$ in (8), we get the following inequality:

$$
\begin{aligned}
\left|I_{f}(a, b)\right| \leq & \frac{(b-a) G^{2}\left(\left|f^{(4)}(a)\right|,\left|f^{(4)}(b)\right|\right)}{4!} \\
& \times\left[\frac{1}{B_{f}} \sum_{k=0}^{3}(-1)^{k} C_{f}^{k}\left(\frac{b^{4-k}-a^{4-k}}{4-k}\right)+\frac{C_{f}^{4}}{L\left(\left|f^{(4)}(a)\right|,\left|f^{(4)}(b)\right|\right)}\right] .
\end{aligned}
$$

Theorem 6.Let $f: I \subset \mathbb{R} \rightarrow(0, \infty)$ be a fourth-times differentiable mapping on $I^{\circ}$, and $a, b \in I^{\circ}$ with $a<b$. If $\left|f^{(4)}\right|$ is an arithmetic-harmonically convex function on the interval $[a, b]$, then the following inequality holds:
i) If $\left|f^{(4)}(a)\right|-\left|f^{(4)}(b)\right| \neq 0$, then
$\left|I_{f}(a, b)\right| \leq \frac{(b-a)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{4!}\left[\frac{1}{B_{f}} \sum_{k=0}^{3}(-1)^{k} C_{f}^{k}\left(\frac{b^{4-k}-a^{4-k}}{n-k}\right)+\frac{C_{f}^{4}}{L\left(\left|f^{(4)}(a)\right|^{q},\left|f^{(4)}(b)\right|^{q}\right)}\right]$,
ii) If $\left|f^{(4)}(a)\right|-\left|f^{(4)}(b)\right|=0$, then

$$
\left|I_{f}(a, b)\right| \leq \frac{(b-a)\left|f^{(4)}(b)\right|}{4!} L_{4}^{4}(a, b),
$$

where
$B_{f}=B_{f}(a, b)=\left|f^{(4)}(a)\right|-\left|f^{(4)}(b)\right|$,
$C_{f}=C_{f}(a, b)=\frac{b\left|f^{(4)}(b)\right|-a\left|f^{(4)}(a)\right|}{B_{f}}$.
Proof.i) Let $\left|f^{(4)}(a)\right|-\left|f^{(4)}(b)\right| \neq 0$. If $\left|f^{(4)}\right|$ is an arithmetic-harmonically convex function on the interval $[a, b]$, using Lemma 1 and

$$
\left|f^{(4)}(x)\right|=\left|f^{(4)}\left(\frac{b-x}{b-a} a+\frac{x-a}{b-a} b\right)\right| \leq \frac{(b-a)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{(b-x)\left|f^{(4)}(b)\right|+(x-a)\left|f^{(4)}(a)\right|}
$$

we get

$$
\begin{align*}
& \left|I_{f}(a, b)\right| \\
\leq & \frac{1}{4!} \int_{a}^{b} x^{4}\left|f^{(4)}(x)\right| d x \\
\leq & \frac{1}{4!} \int_{a}^{b} \frac{x^{4}(b-a)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{(b-x)\left|f^{(4)}(b)\right|+(x-a)\left|f^{(4)}(a)\right|} d x \\
= & \frac{(b-a)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{4!} \int_{a}^{b} \frac{x^{4}}{(b-x)\left|f^{(4)}(b)\right|+(x-a)\left|f^{(4)}(a)\right|} d x . \tag{12}
\end{align*}
$$

Since

$$
0<(b-x)\left|f^{(4)}(b)\right|+(x-a)\left|f^{(4)}(a)\right|=B_{f}\left(x+C_{f}\right)
$$

we can write the following inequality:

$$
\begin{equation*}
I_{f}(a, b) \leq \frac{(b-a)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{4!B_{f}} \int_{a}^{b} \frac{x^{4}}{x+C_{f}} d x \tag{13}
\end{equation*}
$$

Sample calculation give us that

$$
\begin{align*}
\int_{a}^{b} \frac{x^{4}}{x+C_{f}} d x & =\int_{a}^{b} \sum_{k=0}^{3}(-1)^{k} C_{f}^{k} x^{3-k} d x+\int_{a}^{b} \frac{C_{f}^{4}}{x+C_{f}} d x  \tag{14}\\
& =\sum_{k=0}^{3}(-1)^{k} C_{f}^{k} \int_{a}^{b} x^{3-k} d x+C_{f}^{4} \int_{a}^{b} \frac{1}{x+C_{f}} d x \\
& =\sum_{k=0}^{3}(-1)^{k} C_{f}^{k}\left(\frac{b^{4-k}-a^{4-k}}{4-k}\right)+C_{f}^{4} \int_{a}^{b} \frac{1}{x+C_{f}} d x .
\end{align*}
$$

From the inequalities (12), (13) and (14), we get the desired inequality.
ii) Let $\left|f^{(4)}(a)\right|-\left|f^{(4)}(b)\right|=0$. Then, by substituting $\left|f^{(4)}(a)\right|=\left|f^{(4)}(b)\right|$ in (12), we obtain

$$
\begin{align*}
\left|I_{f}(a, b ; n)\right| & \leq \frac{(b-a)\left|f^{(4)}(a)\right|\left|f^{(4)}(b)\right|}{4!} \int_{a}^{b} \frac{x^{4}}{(b-x)\left|f^{(n)}(b)\right|+(x-a)\left|f^{(n)}(a)\right|} d x \\
& =\frac{(b-a)\left|f^{(4)}(b)\right|}{4!} L_{4}^{4}(a, b) . \tag{15}
\end{align*}
$$

This completes the proof of theorem.

## 3 Applications for special means

We know that if $p \in(-1,0)$ then the function $f(x)=x^{p}, x>0$ is an arithmetic harmonically-convex function [4]. By using this function we obtain following propositions related to means:

Proposition 1.Let $a, b \in(0, \infty)$ with $a<b, q>1$ and $m \in(-1,0)$. Then, we have the following inequality:

$$
L_{\frac{m}{q}+4}^{\frac{m}{q}+4}(a, b) \leq \frac{L_{4 p}^{4}(a, b) G^{\frac{2 m}{q}}(a, b)}{\left[L(a, b) L_{m-1}^{m-1}(a, b)\right]^{\frac{1}{q}}}
$$

Proof.The assertion follows from the inequality (4) in the Theorem 4. Let

$$
f(x)=\frac{1}{\left(\frac{m}{q}+1\right)\left(\frac{m}{q}+2\right)\left(\frac{m}{q}+3\right)\left(\frac{m}{q}+4\right)} x^{\frac{m}{q}+4}, x \in(0, \infty) .
$$

Then $\left|f^{(4)}(x)\right|^{q}=x^{m}$ is an arithmetic harmonically-convex on $(0, \infty)$ and the result follows directly from Theorem 4.

Proposition 2.Let $a, b \in(0, \infty)$ with $a<b, q>1$ and $m \in(-1,0)$. Then, we have the following inequality:

$$
\begin{align*}
& L_{\frac{m}{q}+4}^{\frac{m}{9}+4}(a, b) \leq L_{4}^{4\left(1-\frac{1}{q}\right)}(a, b) G^{\frac{2 m}{q}}(a, b)  \tag{16}\\
& \times\left\{-\frac{1}{m L_{m-1}^{m-1}(a, b)}\left[A(a, b) A\left(a^{2}, b^{2}\right)+\frac{m+1}{m} \frac{L_{m}^{m}(a, b)}{L_{m-1}^{m-1}(a, b)}\left(\frac{2 A\left(a^{2}, b^{2}\right)+G^{2}(a, b)}{3}\right)\right.\right. \\
& \left.+A(a, b)\left(\frac{m+1}{m}\right)^{2}\left(\frac{L_{m}^{m}(a, b)}{L_{m-1}^{m-1}(a, b)}\right)^{2}+\left(\frac{m+1}{m}\right)^{3}\left(\frac{L_{m}^{m}(a, b)}{L_{m-1}^{m-1}(a, b)}\right)^{3}\right] \\
& \left.+\left(\frac{m+1}{m}\right)^{4}\left(\frac{L_{m}^{m}(a, b)}{L_{m-1}^{m-1}(a, b)}\right)^{4} \frac{1}{L(a, b) L_{m-1}^{m-1}(a, b)}\right\}^{\frac{1}{q}}
\end{align*}
$$

Proof.The assertion follows from the inequality (8) in the Theorem 5. Let

$$
f(x)=\frac{1}{\left(\frac{m}{q}+1\right)\left(\frac{m}{q}+2\right)\left(\frac{m}{q}+3\right)\left(\frac{m}{q}+4\right)} x^{\frac{m}{q}+4}, x \in(0, \infty) .
$$

Then $\left|f^{(4)}(x)\right|^{q}=x^{m}$ is an arithmetic harmonically-convex on $(0, \infty)$ and the result follows directly from Theorem 5 .
Proposition 3.Let $0<a<b$ and $p \in(-1,0)$. Then we have the following inequalities:

$$
\begin{aligned}
& L_{p+4}^{p+4}(a, b) \leq \frac{G^{2 p}(a, b)}{a^{p}-b^{p}}\left\{-\frac{1}{m L_{m-1}^{m-1}(a, b)}\left[A(a, b) A\left(a^{2}, b^{2}\right)+\frac{m+1}{m} \frac{L_{m}^{m}(a, b)}{L_{m-1}^{m-1}(a, b)}\left(\frac{2 A\left(a^{2}, b^{2}\right)+G^{2}(a, b)}{3}\right)\right.\right. \\
& \left.+A(a, b)\left(\frac{m+1}{m}\right)^{2}\left(\frac{L_{m}^{m}(a, b)}{L_{m-1}^{m-1}(a, b)}\right)^{2}+\left(\frac{m+1}{m}\right)^{3}\left(\frac{L_{m}^{m}(a, b)}{L_{m-1}^{m-1}(a, b)}\right)^{3}\right] \\
& \left.+\left(\frac{m+1}{m}\right)^{4}\left(\frac{L_{m}^{m}(a, b)}{L_{m-1}^{m-1}(a, b)}\right)^{4} \frac{1}{L(a, b) L_{m-1}^{m-1}(a, b)}\right\}^{\frac{1}{q}} .
\end{aligned}
$$

Proof.Let be $p \in(-1,0)$. Then we consider the function

$$
f(x)=\frac{x^{p+4}}{(p+1)(p+2)(p+3)(p+4)}, \quad x>0 .
$$

Under the assumption of the Proposition

$$
\left|f^{(4)}(x)\right|=x^{p}
$$

is an $A H$-convex on $(0, \infty)$. Therefore, the assertion follows from the inequality (11) in the Theorem 6 , for $f:(0, \infty) \rightarrow$ $\mathbb{R}, f(x)=\frac{x^{p+4}}{(p+1)(p+2)(p+3)(p+4)}$.

## 4 Conclusion

In this work, we established several new inequalities for fourth-times differentiable arithmetic-harmonically-convex function and obtained some new Hermite-Hadamard type inequalities connected with means. Similar method can be applied to the different type of convex functions.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

## References

[1] Beckenbach, E.F., Convex functions, Bull. Amer. Math. Soc., 54(1948), 439-460.
[2] Cerone, P., Dragomir, S.S., Roumeliotis, J. and Šunde, J., A new generalization of the trapezoid formula for n-time differentiable mappings and applications, Demonstratio Math., 33 (2000), 719-736
[3] Cerone, P., Dragomir, S.S. and Roumeliotis, J., Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32 (1999), 697-712.
[4] Dragomir, S.S., Inequalities of Hermite-Hadamard type for AH-convex functions, Stud. Univ. Babeş-Bolyai Math. 61(4) (2016), 489-502.
[5] Dragomir, S.S. and Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[6] İşcan, İ., Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942.
[7] İşcan, İ. and M. Kunt, Hermite-Hadamard-Fejer type inequalities for harmonically quasi-convex functions via fractional integrals, Kyungpook Math. J., 56 (2016), 845-859.
[8] İşcan, İ., Turhan, S. and Maden, S., Some Hermite-Hadamard-Fejer type inequalities for Harmonically convex functions via Fractional Integral, New Trends Math. Sci., 4 (2016), 1-10.
[9] Kadakal, H., Hermite-Hadamard type inequalities for two times differentiable arithmetic-harmonically convex functions, Cumhuriyet Science Journal, 40(3) (2019) 670-678 .
[10] Kirmaci, U.S., Bakula, M.K. Özdemir, M.E. and Pečarić, J., Hadamard-type inequalities for $s$-convex functions, Appl. Math. Comp., 193 (2007), 26-35.
[11] Kadakal M., İşcan, İ.., Kadakal H. and Bekar K., On improvements of some integral inequalities, Researchgate, DOI: 10.13140/RG.2.2.15052.46724, Preprint, 2019.
[12] Kadakal, H., Kadakal, M. and İşcan, İ., Some New Integral Inequalities for $n$-Times Differentiable $s$-Convex and $s$-Concave Functions in the Second Sense, Mathematics and Statistics 5(2), 2017, 94-98.
[13] Kadakal, M., Agarwal P. and İşcan, İ., Some new inequalities for differentiable arithmetic-harmonically convex functions, Hacettep Journal of Mathematics and Statistics, (Submitted to journal), 2019.
[14] Maden, S., Kadakal, H., Kadakal, M. and İşcan, İ., Some new integral inequalities for $n$-times differentiable convex and concave functions. J. Nonlinear Sci. Appl., 10 (2017), 6141-6148.
[15] Mitrinović, D.S., Lacković, I.B., Hermite and convexity, Aequationes Math., 28(1985), 229-232.
[16] Mitrinović, D.S., Pečarić, J.E. and Fink. A.M., Classical and new inequalities in analysis, Kluwer Akademic Publishers, Dordrecht, Boston, London, 1993.
[17] Pečarić, J.E., Porschan, F. and Tong, Y.L., Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Boston, (1992).
[18] Sarikaya, M.Z. and Aktan, N., On the generalization of some integral inequalities and their applications, Mathematical and Computer Modelling, 54, (2011), 2175-2182.Kadakal, H., New Inequalities for Strongly $r$-Convex Functions, Journal of Function Spaces, Volume 2019, Article ID 1219237, 10 pages.
[19] Xi, B.-Y. and Qi, F., Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl., 2012 (2012), 14 pages.
[20] Wang, S.-H., Xi, B.-Y. and Qi, F., Some new inequalities of Hermite-Hadamard type for n-time differentiable functions which are m-convex, Analysis (Munich), 32 (2012), 247-262.


[^0]:    * Corresponding author e-mail: kebekar@ gmail.com

