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Abstract: In this work an accurate and efficient method is suggested to solve the Fredholm fuzzy integral equations of the second
kind. The orthogonal triangular function (TF) based method is first applied to transform the fuzzy Fredholm integral equations to a
coupled system of matrix algebraic equations. An iterative algorithm of finite nature is then applied to solve the coupled system to
obtain the coefficients used to obtain the form of approximate solution of the unknown functions of the integral problems. Finally, an
algorithm is presented to solve the fuzzy integral equation by using the trapezoidal rule. This algorithm is implemented on some
numerical examples by using software MATLAB. The obtained numerical results are compared with other numerical method and the
exact solutions.

The main purpose of this paper is to approximate the solution of linear dimensional fuzzy Fredholm integral equations of the second
kind (1D-FFIE-2). We use fuzzy triangular functions (1D-TFs) to replace the Fredholm fuzzy integral with a coupled system of matrix
algebraic equations. An iterative algorithm of finite nature is then applied to solve the coupled system to obtain the coefficients used to
obtain the form of approximate solution of the unknown functions of the integral problems. Moreover, we prove the convergence of
the method. Finally we illustrate this method with some numerical examples to demonstrate the validity and applicability of the
technique.

In this work an accurate and efficient hybrid technique is suggested to solve the Fredholm fuzzy integral equations of the second kind.
First, a two m- sets of orthogonal triangular basis functions (TFs) method is first used to replace the Fredholm fuzzy integral with a
coupled system of matrix algebraic equations. An iterative algorithm of finite nature is then applied to solve the coupled system to
obtain the coefficients used to obtain the form of approximate solution of the unknown functions of the integral problems. To illustrate
the accuracy and the efficiency of the proposed method, set of numerical examples are solved where obtained numerical results are
compared with other numerical method and the exact solutions.

Keywords: Fuzzy number, Fredholm fuzzy integral equations, generalized Sylvester matrix equation, Finite iterative algorithm,
orthogonal triangular functions.

1 Introduction

The importance of fuzzy integral equations appears in studying and solving a large proportion of the problems for
different topics in applied mathematics, in particular in relation to biology, physics, medical and geographic. Usually in
many applications some of the parameters in our problems are represented by fuzzy number rather than crisp, and hence
it is important to develop mathematical models and numerical procedures that would appropriately treat general fuzzy
integral equations and solve them. Numerous techniques have been recently implemented for solving integral equations.
Many different methods have been used to approximate the solution of integral equation systems [18-20]. Many basic
and fundamentals functions are recently used to approximate the solution of integral equations like wavelet basis
orthogonal bases, see Maleknejad et al. [13], Rationalized Haar functions are developed by Maleknejad and Mirzaee[4]
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to approximate the solutions of the linear Fredholm integral equations system. A general method by Jahantigh et al. [9]
for solving fuzzy Fredholm integral equation of the second kind is introduced. Triangular functions direct method for
solving Fredholm integral equations of second kind are proposed in [6], A Direct Method for Numerically Solving
Integral Equations System Using Orthogonal Triangular Functions is introduced in [21]. [22], Introduce Application of
Triangular Functions to Numerical Solution of Stochastic Volterra Integral Equations. Fredholm integral equations of
second kind are solved by using triangular functions method hybrid with iterative algorithm [1]. Also, Fredholm fuzzy
integral equations of the second kind is solved via direct method using triangular functions [2] and numerical solution of
linear Fredholm fuzzy equation of the second kind by block-pulse functions is considered in [5]. A numerical method for
solving the fuzzy Fredholm integral equation of second kind is presented Barkhordary et al. [8] where the trapezoidal
rule is used to compute the integrals. Maleknejad et al. [3] proposed a numerical solution of integral equation system of
the second kind by block pulse functions, and Babolian et al. [6] proposed a method for solving Fredholm integral
equations. Numerical solution of two-dimensional fuzzy Fredholm integral equations of the second kind is presented via
direct method using triangular functions [14].H. Nouriani et al. [15] is proposed a quadrature iterative method for
numerical solution of two-dimensional fuzzy Fredholm integral equations. R.Ezzati et al. [16] is given numerical
solution of two-dimensional fuzzy Fredholm integral equations using bivariate bernstein polynomials. In [17], Modified
homotopy perturbation method is solving two-dimensional fuzzy Fredholm integral equation. In this paper we are going
to use a kind of these bases that is orthogonal triangular functions. In many applications some of the parameters in our
problems are usually represented by fuzzy number rather than crisp state, and thus developing mathematical models and
numerical procedures that would appropriately treat general fuzzy integral equations and solve them is important. The
paper is organized as follows. In Section 2, some definitions and properties of the orthogonal triangular functions (TFs)
are presented. Also, expanding two variable functions by TFs and fuzzy numbers is given. In section 3, to solve coupled
system of matrix equations a finite iterative algorithm is presented. In section 4, the suggested method is introduced. In
section 5, we solve some numerical examples to illustrate the applicability and the accuracy of the proposed technique.

2 Brief review of triangular functions (TFs)

2.1 Triangular Functions (TFs)

Definition 1. Two m-sets of triangular functions (TFs) are defined over the interval [0, T) as:

T 1i (t) =

{
1− t−ih

h , ih≤ t < (1+ i)h ,

0 , o.w
(1)

T 2i (t) =

{
t−ih

h , ih≤ t < (1+ i)h ,

0 , o.w
(2)

where i = 0, 1, . . . ,m− 1 and m has a positive integer value. Also, consider h = T
m and T1i as the ith left-handed

triangular function and T2i as the ith right-handed triangular function. In this paper, it is assumed that T = 1, so TFs are
defined over [0 , 1 ) and h = T

m . From the definition of TFs, it is clear that triangular functions are disjoint, orthogonal
and complete [4]. We can write

∫ 1
0 T 1i (t)T 1 j (t)dt =

∫ 1
0 T 2i (t)T 2 j (t)dt =

{
h
3 , i = j
0 , i 6= j

,

∫ 1
0 T 1i (t)T 2 j (t)dt =

∫ 1
0 T 2i (t)T 1 j (t)dt =

{
h
6 , i = j
0 , i 6= j

,

(3)
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Now, write the first m terms of the left-hand triangular functions and the first m terms of the right-hand triangular functions
as m-vectors:

T 1(t) = [T 10 (t) ,T 11 (t) , . . . , T 1m−1 (t)]T , (4)

T 2(t) = [T 20 (t) ,T 21 (t) , . . . , T 2m−1 (t)]T , (5)

We call T 1(t) and T 2(t) as left-handed triangular functions (LHTF) vector and right-handed triangular functions (RHTF)
vector, respectively. The product of two TFs vectors are presented by:

T 1(t)T 1T (t)∼=


T 10 (t) 0

0 T 11 (t)
· · · 0
. . . 0

...
...

0 0

. . .
...

0 T 1m−1 (t)

 , (6)

T 2(t)T 2T (t)∼=


T 20 (t) 0

0 T 21 (t)
· · · 0
. . . 0

...
...

0 0

. . .
...

0 T 2m−1 (t)

 , (7)

and
T 1(t)T 2T (t)∼= 0 (8)

T 2(t)T 1T (t)∼= 0 (9)

where 0 is the zero m×m matrix. Also,∫ 1

0
T 1(t)T 1T (t)dt =

∫ 1

0
T 2(t)T 2T (t)dt ∼=

h
3

I (10)

∫ 1

0
T 1(t)T 2T (t)dt =

∫ 1

0
T 2(t)T 1T (t)dt ∼=

h
6

I. (11)

In which Iis an m×m identity matrix.

The expansion of function f (t) over [0, 1) with respect to TFs, may be compactly written as

f (t)∼=
m−1

∑
i=0

ciT 1i (t)+
m−1

∑
i=0

diT 2i (t) = cT T 1(t)+dT T 2(t) , (12)

where we may put ci = f (ih) and di = f ((i+1)h) for i=0, 1. . . . . . m-1.

2.2 Expanding two variables function by TFs [2]

Each function f (t, s)∈ L2([0,1)× [0 ,1)) can be expanded by two TFs vectors with m1 and m2 components, respectively.
For convenience, take m1 = m2 = m . To get desired results, first fix the independent variables. Then, expand f (t, s) by
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TFs with respect to independent variable t as follows:

f (t,s)∼= T 1T (t)


f (0,s)
f (h,s)

...
f ((m−1)h,s)

+T 2T (t)


f (h,s)
f (2h,s)

...
f (mh,s)

 (13)

Now, each of the functions f (ih, s),s for i = 0,1, . . . . . . ,m−1 is expanded by TFs with respect to independent variable s.
Thus, the expansion of f (t,s) takes the form:

T 1T (t)


F11T

1 T 1(s)+F12T
1 T 2(s)

F11T
2 T 1(s)+F12T

2 T 2(s)
...

F11T
mT 1(s)+F12T

mT 2(s)

+T 2T (t)


F21T

1 T 1(s)+F22T
1 T 2(s)

F21T
2 T 1(s)+F22T

2 T 2(s)
...

F21T
mT 1(s)+F22T

mT 2(s)



= T 1T (t)




F11T
1

F11T
2

...
F11T

m

T 1(s)+


F12T

1
F12T

2
...

F12T
m

T 2(s)

+T 1T (t)




F21T
1

F21T
2

...
F21T

m

T 1(s)+


F22T

1
F22T

2
...

F22T
m

T 2(s)



= T 1T (t)F11T 1(s)+T 1T (t)F12T 2(s)+T 2T (t)F21T 1(s)+T 2T (t)F22T 2(s)

In which,

F11 =


f (0,0) f (0,h)
f (h,0) f (h.h)

· · · f (0,(m−1)h)
· · · f (h,(m−1)h)

...
...

f ((m−1)h,0) f ((m−1)h,h)

. . .
...

· · · f ((m−1)h,(m−1)h)

 , (14)

F12 =


f (0,h) f (0,2h)
f (h,h) f (h.2h)

· · · f (0,mh)
· · · f (h,mh)

...
...

f ((m−1)h,h) f ((m−1)h,2h)

. . .
...

· · · f ((m−1)h,mh)

 , (15)

F21 =


f (h,0) f (h,h)

f (2h,0) f (2h.h)
· · · f (h,(m−1)h)
· · · f (2h,(m−1)h)

...
...

f (mh,0) f (mh,h)

. . .
...

· · · f (mh,(m−1)h)

 , (16)

F22 =


f (h,h) f (h,2h)

f (2h,h) f (2h.2h)
· · · f (h,mh)
· · · f (2h,mh)

...
...

f (mh,h) f (mh,2h)

. . .
...

· · · f (mh,mh)

 , (17)

Let T (t) be a 2m-vector defined as:

T (t) =

(
T 1(t)
T 2(t)

)
;0 = t < 1 .
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The two vector functions T 1(t) and T 2(t) defined in Eqs. (4) and (5). Now, suppose that f (t,s) is a function of two
variables. Thus, we can expand it with respect to TFs as follows:

f (s, t)∼= T T (s)FT (t) (18)

where T (s) and T(t) are 2m1 and 2m2 dimensional TFs and F a 2m1×2m2 is TFs coefficient matrix. For convenience, we
put m1 = m2 = m , so matrix F can be written as

F =

(
(F11)m×m (F12)m×m
(F21)m×m (F22)m×m

)
,

where F11,F12,F21 and F22 in above-stated Equation, are previously defined in Eqs. (14): (17).

2.3 Fuzzy functions

In this subsection, two definitions that are needed in this work are stated.

Definition 2. A fuzzy number is a fuzzy set u: R1→ [0, 1] where the following conditions are to be hold:

(a) u is upper semi continuous.
(b) u(x) = 0 outside some interval [c, d].
(c) there are real numbers a and b, c ≤ a ≤ b ≤ d, for which

(1) u(x) is a monotonicly increasing on [c, a],
(2) u(x) is monotonicly decreasing on [b, d],
(3) u(x) = 1 for a ≤ x ≤ b.

Definition 3. A fuzzy number u is a pair(u(r),u(r)) of functions u(r) and u(r) , 0 ≤ r ≤ 1, satisfying the following
requirement:

(a) u(r)is bounded and monotonic increasing as well as left continuous function,
(b) u(r) is bounded ,monotonic decreasing and left continuous function,
(c) u(r)≤ u(r) , 0 ≤ r ≤ 1.

For arbitrary u = (u(r),u(r)) , v = (v(r),v(r)) for k > 0, addition (u+ v) and multiplication by k are defined as:

(u+ v)(r) = u(r)+ v(r)
(u+ v)(r) = u(r)+ v(r)

, (19)

(ku)(r) = ku(r)(
ku
)
(r) = ku(r) .

(20)

3 Solving coupled system of matrix equations using finite iterative algorithm [1]

There are many variant forms of finite iterative algorithms for solving matrix equations, see for example [1, 10-12]. We
are concerned with iterative solutions to coupled system of similar forms of the Sylvester matrix equations [1].

AV +BW =C (21)

and second algorithm for solving coupled system of Sylvester matrix equations

A1V +B1W =C1

© 2020 BISKA Bilisim Technology

www.ntmsci.com


34 M. Ramadan , T. S. El-Danaf, A. R. Hadhoud and H. S. Osheba: An Accurate and Efficient Technique for · · ·

A2V +B2W =C2 (22)

Algorithm 1. To solve the matrix equation (21) a finite iterative algorithm is constructed and used as follows,
1- input A,B,C
2- choose arbitrary matrices V 1 ∈Rn×pand W1 ∈Rr×p

3- set
R1 =C−AV1−BW1

P1 = AT R1

Q1 = BT R1

K = 1

4- if RK = 0 then stop and VK , WK is the solution else let K = K +1 go to step 5,
5- compute

VK+1 =VK +
‖ RK ‖2

‖ PK ‖2 +‖ QK ‖2 PK , W K+1 =WK +
‖ RK ‖2

‖ PK ‖2 +‖ QK ‖2 QK

RK+1 =C−AVK+1−BWK+1 = RK−
‖ RK ‖2

‖ PK ‖2 +‖ QK ‖2 |APK +BQK |

PK+1 = AT RK+1 +
‖ RK+1 ‖2

‖ RK ‖2 PK ,QK+1 = BT RK+1 +
‖ RK+1 ‖2

‖ RK ‖2 QK

Algorithm 2.
A finite iterative algorithm is constructed to coupled system of Sylvester matrix equations (22)

1- Input A1,B1,A2,B2,C1,C2

2- Choose arbitrary matrices Y11 ∈Cn×pand Y21 ∈Cr×p

3- Set

R1 = diag(C1− f (Y11 , Y21) ,C2−g(Y11 ,Y21))

S1 = A1
T (C1− f (Y11 , Y21))+A2

T (C2−g(Y11 , Y21))

T1 = B1
T (C1− f (Y11 , Y21))+B2

T (C2−g(Y11 , Y21))

4- if RK = 0 then stop and Y1K , Y2K is the solution else let K = K +1 go to step 5.
5 – Compute

Y1K+1 = Y1K +
‖ RK ‖2

‖ SK ‖2 +‖ TK ‖2 SK

Y2K+1 = Y2K +
‖ RK ‖2

‖ SK ‖2 +‖ TK ‖2 TK

RK+1 = diag(C1− f
(

Y1K+1 , Y2K+1

)
,C2−g

(
Y1K+1 ,Y2K+1

)
)

= RK−
‖ RK ‖2

‖ SK ‖2 +‖ TK ‖2 diag( f (SK ,TK) ,g(SK ,TK))
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SK+1 = A1
T (C1− f

(
Y1K+1 , Y2K+1

))
+A2

T (C2−g
(
Y1K+1 ,Y2K+1

)
)+
‖ RK+1 ‖2

‖ RK ‖2 SK

TK+1 = B1
T (C1− f

(
Y1K+1 , Y2K+1

))
+B2

T (C2−g
(
Y1K+1 ,Y2K+1

)
)+
‖ RK+1 ‖2

‖ RK ‖2 TK

4 Proposed hybrid iterative technique for solving linear fuzzy Fredholm integral equation

4.1 Converting Fredholm integral equations of second kind to two crisp coupled systems

In this subsection, a TFs method is presented to transform the fuzzy Fredholm integral equation of second kind linear
(FFIE-2) to two crisp coupled systems. First consider the following equation:

u(x) = f (x)+λ

∫ 1

0
k (x, t)u(t)dt, (23)

where k(x, t) is an arbitrary kernel function over the square 0 ≤ x, t ≤ 1 and u(x) is a fuzzy real valued function.

The main task is to determine TFs coefficients of u(x) in the interval [0, 1) from the know functions f (x) and
kernel k(x, t).

So, we present the parametric form of FFIE-2 with respect to definition 3. Let ( f (x, r), f (x, r)) and (u(x, r),u(x, r)) , 0
≤ r ≤ 1 and x ∈ [0,1) be parametric forms of f (x) and u(x), respectively.

Therefore, we rewrite system (23) in the following form

u(x,r) = f (x, r)+λ

∫ 1

0
k (x, t)u(x,r)dt, (24)

u(x, r) = f (x, r)+λ

∫ 1

0
k (x, t)u(x, r)dt, (25)

Let us expand u(x,r) , f (x, r) and k(s, t) by TFs (LHTF and RHTF) as follows:

u(x,r)' T 1T (x)U11T 1(r)+T 1T (x)U12T 2(r)+T 2T (x)U21T 1(r)+T 2T (x)U22T 2(r) = T T (x)UT (r)

f (x,r)' T 1T (x)F11T 1(r)+T 1T (x)F12T 2(r)+T 2T (x)F21T 1(r)+T 2T (x)F22T 2(r) = T T (x)FT (r)

k (x, t)' T 1T (x)K11T 1(t)+T 1T (x)K12T 2(t)+T 2T (x)K21T 1(t)+T 2T (x)K22T 2(t) = T T (x)KT (t)

with U =

(
U11 U12
U21 U22

)
, F =

(
F11 F12
F21 F22

)
and K =

(
K11 K12
K21 K22

)
Substituting in Eq. (24)

T T (x)UT (r)' T T (x)FT (r)+λ

∫ 1

0
T T (x)KT (t)T T (t)UT (r)dt

T T (x)UT (r)' T T (x)FT (r)+λT T (x)K(
∫ 1

0
T (t)T T (t)dt)UT (r)

with the equation ∫ 1

0
T (t)T T (t)dt =

∫ 1

0

(
T 1(t) T 2(t)

)(
T 1T (t) T 2T (t)

)
dt
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=
∫ 1

0

(
T 1(t)T 1T (t) T 1(t)T 2T (t)
T 2(t)T 1T (t) T 2(t)T 2T (t)

)
dt

'

(
h
3 lm×m

h
6 lm×m

h
6 lm×m

h
3 lm×m

)
= D2m×2m

We have
T T (x)UT (r)' T T (x)FT (r)+λT T (x)KDUT (r) ,

then
U = F +λKDU ⇒U = (l− λKD)−1F

(l− λKD)U = F[(
lm 0
0 lm

)
−

(
K11 K12
K21 K22

)(
h
3 lm×m

h
6 lm×m

h
6 lm×m

h
3 lm×m

)][
U11 U12
U21 U22

]
=

(
F11 F12
F21 F22

)
[(

lm 0
0 lm

)
−

(
h
3 K11+ h

6 K12 h
6 K11+ h

3 K12
h
3 K21+ h

6 K22 h
6 K21+ h

3 K22

)][
U11 U12
U21 U22

]
=

(
F11 F12
F21 F22

)
[

lm− ( h
3 K11+ h

6 K12) −( h
6 K11+ h

3 K12)
−( h

3 K21+ h
6 K22) lm− ( h

6 K21+ h
3 K22)

][
U11 U12
U21 U22

]
=

(
F11 F12
F21 F22

)
[
(lm− ( h

3 K11+ h
6 K12))U11 (−( h

6 K11+ h
3 K12)

−( h
3 K21+ h

6 K22) lm− ( h
6 K21+ h

3 K22)

][
U11 U12
U21 U22

]
=

(
F11 F12
F21 F22

)

(lm− (
h
3

K11+
h
6

K12))U11− (
h
6

K11+
h
3

K12)U21 = F11

−
(

h
3

K21+
h
6

K22
)

U11+
(

lm−
(

h
6

K21+
h
3

K22
))

U21 = F21

(lm− (
h
3

K11+
h
6

K12))U12− (
h
6

K11+
h
3

K12)U22 = F12

−
(

h
3

K21+
h
6

K22
)

U12+
(

lm−
(

h
6

K21+
h
3

K22
))

U22 = F22.

Set,

A1 = (lm− (
h
3

K11+
h
6

K12)),B1 =−(
h
6

K11+
h
3

K12),

A2 =−
(

h
3

K21+
h
6

K22
)
,B2 = lm−

(
h
6

K21+
h
3

K22
)
,

which lead to the following two coupled crisp linear systems

A1U11+B1U21 = F11,

A2U11+B2U21 = F21,
(26)

and

A1U1 2+B1U22 = F12 ,

A2U12+B2U22 = F22.
(27)
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Similarly, we expand u(x, r) and f (x, r) by TFs (LHTF and RHTF) and substituting in Eq. (25) two coupled crisp linear
systems, similar to (26) and (27) are obtained. It is clear that all matrices in the two coupled crisp linear systems (26) and
(27) are square matrices of dimensionsm×m. Thus, to obtain the coefficient matrices U11 , U21, U12 and U22 in order
to get the approximate numerical solution of the form:

u(x,r)approx. = T T (x)U T (r) .

The following efficient finite iterative algorithm is proposed which is a generalization of algorithm 2.

4.2 Proposed iterative algorithm for solving the two coupled systems

A proposed iterative algorithm is presented in this subsection to solve the two coupled systems (26) and (27) as a
modification to algorithm 2.

Algorithm 3.
In this algorithm we modified and generalized algorithm 2 to work out for systems (26) and (27) as follows. First for the
coupled system (26)

1- Input A1 , A1 , B1 , B2, F11 , F21 .

2- Choose arbitrary matricesU11 , U21.
3- For k = 1, set

Rk = diag(F11− f (U11, U21) ,F21−g(U11,U21))

Sk = A1
T (F11− f (U11,U21))+A2

T (F21−g(U11, , U21))

Tk = B1
T (F11− f (U11,U21))+B2

T (F21−g(U11, U21))

4- if RK = 0 then stop and U11, U21 is the solution else let K = K +1 go to step 5.
5 – Compute

U11 =U11+
‖ RK ‖2

‖ SK ‖2 +‖ TK ‖2 SK ,

U21 =U21+
‖ RK ‖2

‖ SK ‖2 +‖ TK ‖2 TK ,

Rk+1 = diag(F11− f (U11, U21) ,F21−g(U11,U21)),

= RK−
‖ RK ‖2

‖ SK ‖2 +‖ TK ‖2 diag( f (SK ,TK) ,g(SK ,TK)),

SK+1 = A1
T (F11− f (U11,U21))+A2

T (F21−g(U11, , U21))+
‖ RK+1 ‖2

‖ RK ‖2 SK ,

TK+1 = B1
T (F11− f (U11,U21))+B2

T (F21−g(U11, U21))+
‖ RK+1 ‖2

‖ RK ‖2 TK .

For the coupled system (26), the algorithm is repeated with replacing U11, U21 by U12, U22 and
F11 , F21 by F12, F22 where the 2m× 2m block Umatrix is computed. The approximate crisp numerical solution for
equation (24) of the form u(x,r)approx. = T T (x) U T (r) is then obtained. In a similar manner, the crisp numerical
solution for equation (25) of the form

ū(x,r)approx. = T T (x)U T (r)
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can be obtained by carrying out the above proposed algorithm for the other two coupled crisp systems similar to (26) and
(27). Finally, the solution for (23) is then given as u(x) = (uapprox.(x, r),uapprox.(x, r)) , 0 ≤ r ≤ 1 and x ∈ [0,1) .

5 Numerical results and discussions

To demonstrate the accuracy and effectiveness of our proposed hybrid method, T Fsand an iterative algorithm, some
examples are considered. The solution of each example is obtained for different values of r , x and m and is compared
with the exact solution and the direct method presented by Mirzaee et al. [ 2 ] and with Ghanbari et al. [5].

Example 51 Consider the following FFIE-2 with

f (x,r) =
1
6

rx2, f (x,r) = (2− r)x2,

and k (x, t) = x2 (1+2t) , 0 < x, t < 1 and λ = 1. The exact solution in this case is given by

u(x,r) = rx2, u(x,r) = (2− r)x2.

From the obtained numerical results of the first test example, we can see that our proposed hybrid iterative method gives

Table 1: The numerical results for Example 1 with TFs method when the tolerance criteria is residual > e−4.

r Exact
solution
u(x,r)

Direct method
for x = 0.25
m = 4

Absolute error Presented
method for
x = 0.25
m = 4

Absolute error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00000
0.00625
0.01250
0.01875
0.02500
0.03125
0.03750
0.04375
0.05000
0.05625

0.00000
0.00716
0.01432
0.02148
0.02864
0.03580
0.04296
0.05012
0.05728
0.06444

0.00000e+000
9.09951e-004
1.81990e-003
2.72985e-003
3.63981e-003
4.54976e-003
5.45971e-003
6.36966e-003
7.27961e-003
8.18956e-003

0.00003
0.00719
0.01434
0.02150
0.02866
0.03582
0.04298
0.05013
0.05729
0.06445

2.78283e-005
9.35707e-004
1.84359e-003
2.75147e-003
3.65935e-003
4.56722e-003
5.47510e-003
6.38298e-003
7.29086e-003
8.19874e-003

the same accuracy compared with the direct method. Also, It is worth noting that the number of iterations to execute the
algorithm taking tolerance criteria is residual > e−4 was k = 5 which means that the technique is quite efficient. The
accuracy can be further improved by increasing the stopping tolerance.

Example 52 Consider the following FFIE-2 with

f (x,r) =−1
3

x
2
+ rx2 +

1
3

x+
1
4

r− 1
12

, f (x,r) =
1
3

x− x2r− 1
4

r+
5
3

x2 +
5

12
,

and k (x, t) = (2t−1)2 (1−2x) , 0 < x, t < 1 and λ = 1 . The exact solution in this case is given by

u(x,r) = rx,u(x,r) = (2− r)x.

The problem in example 2 is solved by proposed method and the results are given in Table 5 and the numerical results are
which compared with the obtained results using the direct method [2]. The last column in this table shows the absolute
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Table 2: The numerical results for Example 1 with TFs method when the tolerance criteria is residual > e−4.

r Exact
solution
u(x,r)

Direct
method for
x = 0.25
m = 4

Absolute error Presented
method for
x = 0.25
m = 4

Absolute error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.12500
0.11875
0.11250
0.10625
0.10000
0.09375
0.08750
0.08125
0.07500
0.06875

0.14320
0.13604
0.12888
0.12172
0.11456
0.10740
0.10024
0.09308
0.08592
0.07876

1.81990e-002
1.72891e-002
1.63791e-002
1.54692e-002
1.45592e-002
1.36493e-002
1.27393e-002
1.18294e-002
1.09194e-002
1.00095e-002

0.14320
0.13605
0.12889
0.12173
0.11457
0.10742
0.10026
0.09310
0.08594
0.07879

1.82034e-002
1.72960e-002
1.63886e-002
1.54812e-002
1.45739e-002
1.36665e-002
1.27591e-002
1.18518e-002
1.09444e-002
1.00370e-002

Table 3: The numerical results for Example 1 with TFs method when the tolerance criteria is residual > e−4.

r Exact
solution
u(x,r)

Direct method
for x = 0.25
m = 8

Absolute error presented
method for
x = 0.25
m = 8

Absolute error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00000
0.00625
0.01250
0.01875
0.02500
0.03125
0.03750
0.04375
0.05000
0.05625

0.00000
0.00646
0.01293
0.01939
0.02585
0.03231
0.03878
0.04524
0.05170
0.05816

0.00000e+000
2.12714e-004
4.25428e-004
6.38142e-004
8.50857e-004
1.06357e-003
1.27628e-003
1.48900e-003
1.70171e-003
1.91443e-003

0.00001
0.00647
0.01293
0.01939
0.02585
0.03232
0.03878
0.04524
0.05170
0.05816

5.54746e-006
2.17706e-004
4.29865e-004
6.42024e-004
8.54183e-004
1.06634e-003
1.27850e-003
1.49066e-003
1.70282e-003
1.91498e-003

Table 4: The numerical results for Example 1 with TFs method when the tolerance criteria is residual > e−4.

r Exact solution
u(x,r)

Direct method
for x = 0.25
m = 8

Absolute error Presented
method for
x = 0.25
m = 8

Absolute error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.12500
0.11875
0.11250
0.10625
0.10000
0.09375
0.08750
0.08125
0.07500
0.06875

0.12925
0.12279
0.11250
0.10625
0.10340
0.09694
0.09048
0.08402
0.07755
0.07109

4.25428e-003
4.04157e-003
3.82885e-003
3.61614e-003
3.40343e-003
3.19071e-003
2.97800e-003
2.76528e-003
2.55257e-003
2.33986e-003

0.12924
0.12278
0.11632
0.10985
0.10339
0.09693
0.09047
0.08400
0.07754
0.07108

4.24263e-003
4.02983e-003
3.81704e-003
3.60425e-003
3.39146e-003
3.17867e-003
2.96588e-003
2.75308e-003
2.54029e-003
2.32750e-003
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Table 5: The numerical results for Example 2 with TFs method when the tolerance criteria is residual > e−4.

r Exact solution (u(x,r),
u(x,r)) .

Direct method of [2]
x = 0.5 , m = 2

Presented method for
x = 0.5 , m = 2

Absolute error between Exact and
presented method

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(0.000000, 1.000000)
( 0.050000, 0.950000)
( 0.100000, 0.900000)
(0.150000, 0.850000)
( 0.200000, 0.800000)
(0.250000, 0.750000)
(0.300000, 0.700000)
(0.350000, 0.650000)
(0.400000, 0.600000)
(0.450000, 0.550000)

(0.000000, 1.000000)
( 0.050000, 0.950000)
( 0.100000, 0.900000)
(0.150000, 0.850000)
( 0.200000, 0.800000)
(0.250000, 0.750000)
(0.300000, 0.700000)
(0.350000, 0.650000)
(0.400000, 0.600000)
(0.450000, 0.550000)

(0.000005, 1.000002)
(0.050005, 0.950001)
(0.100004, 0.900000)
(0.150004, 0.849999)
( 0.200003, 0.799999)
(0.250003, 0.749998)
( 0.300002, 0.699997)
( 0.350001, 0.649996)
(0.400001, 0.599995) (
0.450000, 0.549994)

(5.277283e-006, 2.084783e-006)
(4.727861e-006, 1.219422e-006)
( 4.178440e-006, 3.540609e-007)
(3.629019e-006, 5.113003e-007)
(3.079598e-006, 1.376662e-006)
(2.530177e-006, 2.242023e-006)
(1.980756e-006, 3.107384e-006)
(1.431335e-006, 3.972745e-006)
(8.819137e-007, 4.838107e-006)
(3.324926e-007, 5.703468e-006)

Table 6: The numerical results for Example 2 with TFs method when the tolerance criteria is residual > e−4.

r Exact
solution
u(x,r)

presented
method for
x = 0.5
m = 32

Absolute error Method [5]
for x = 0.5
m = 32

Absolute error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00000000
0.05000000
0.10000000
0.15000000
0.20000000
0.25000000
0.30000000
0.35000000
0.40000000
0.45000000

-0.00000001
0.04999999
0.09999999
0.14999999
0.19999999
0.24999999
0.30000000
0.35000000
0.40000000
0.45000000

1.45012526e-008
1.27389860e-008
1.09767186e-008
9.21445154e-009
7.45218404e-009
5.68991698e-009
3.92765037e-009
2.16538287e-009
4.03115374e-010
1.35915212e-009

0.007956
0.056347
0.104737
0.153128
0.201519
0.266040
0.314430
0.362820
0.411210
0.359603

7.956000e-03
6.347000e-03
4.737000e-03
3.128000e-03
1.519000e-03
1.604000e-02
1.443000e-02
1.282000e-02
1.121000e-02
9.039700e-02

Table 7: The numerical results for example 2 with TFs method when the tolerance criteria is residual > e−4.

r Exact
solution
u (x ,r)

presented
method for
x = 0.5
m = 32

Absolute error Method [5]
for x = 0.5
m = 32

Absolute error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.00000000
0.95000000
0.90000000
0.85000000
0.80000000
0.75000000
0.70000000
0.65000000
0.60000000
0.55000000

1.00000000
0.95000000
0.90000000
0.85000000
0.80000000
0.74999999
0.69999999
0.64999999
0.59999999
0.54999999

3.13259463e-009
1.26375377e-009
6.05086314e-010
2.47392629e-009
4.34276726e-009
6.21160723e-009
8.08044720e-009
9.94928728e-009
1.18181291e-008
1.36869673e-008

1.024160
0.975770
0.927379
0.878988
0.830598
0.766077
0.717986
0.669290
0.630905
0.572514

2.416000e-02
2.577000e-02
2.737900e-02
2.898800e-02
3.059800e-02
1.607700e-02
1.798600e-02
1.929000e-02
3.090500e-02
2.251400e-02

error between the proposed method and exact solution. We can see that the method is of good accuracy and can be further
improved by increasing the stooping criteria (the tolerance of the residual).

‖R1k‖= ‖diag(F11− f 1 00; 00 F21−g1)‖= 1.0000e−002,
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and
‖R2k‖= ‖diag(F12− f 1 00; 00 F22−g1)‖= 1.0000e−002,

where
f 1 = A1 U11 + B1 U21 ,

g1 = A2 U21 + B2 U21 ,

f 1 = A1 U12 + B1 U22 ,

g1 = A2 U12 + B2 U22 ,

for the system (4.4) and system (4.5) respectively in our suggested iterative algorithm to obtain the coefficient matrices
in (4.4) and (4.5). The number of iterations is k = 5. Moreover, the presented method is compared with the block-pulse
function method proposed by Ghanbari et al. [5]. As we can see from the numerical results in Tables 6 and 7, the proposed
method is of high accuracy as it is also highly efficient.

Example 53 Consider the following FFIE-2 with

f (x,r) = rx− x2[
2
3

rx3− 4
3

x3− 1
2

rx2 + x2 +
1
12

r− 1
12

],

f (x,r) = (2− r)x+ x2[
2
3

rx3− 1
2

rx2 +
1

12
r− 1

12
],

and
k (x, t) = x2 (1−2t) ,0≤ x, t ≤ 1 and λ = 1.

The exact solution in this case is given by

u(x,r) = rx, u(x,r) = (2− r)x.

The results are shown in Tables 8 and 9. TheThe problem in example 3 is also solved by the proposed method and the

Table 8: The numerical results for Example 3 with TFs method when the tolerance criteria is residual > e−4.

r Exact
solution
u(x,r)

Direct method
[2] for x = 0.1,
m = 10

Absolute error presented
method for
x = 0.1,
m = 10

Absolute
error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0000
0.0100
0.0200
0.0300
0.0400
0.0500
0.0600
0.0700
0.0800
0.0900

0.0003
0.0102
0.0200
0.0298
0.0396
0.0494
0.0592
0.0690
0.0788
0.0886

3.9582e-04
1.9745e-04
9.0743e-07
1.9927e-04
3.9763e-04
5.9599e-04
7.9436e-04
9.9272e-04
1.2000e-03
1.4000e-03

0.0029
0.0128
0.0227
0.0326
0.0425
0.0524
0.0624
0.0723
0.0822
0.0921

2.9089e-003
2.8161e-003
2.7232e-003
2.6304e-003
2.5376e-003
2.4447e-003
2.3519e-003
2.2590e-003
2.1662e-003
2.0734e-003

results are given in tables 8, 9 which are compared with the one obtained using the direct method [2]. From the forth and
last column, we can see that both have almost the same accuracy.
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Table 9: The numerical results for Example 3 with TFs method when the tolerance criteria is residual > e−4.

r Exact
solution
u(x,r)

Direct method
[2] for
x = 0.1
m = 10

Absolute error Presented
method for
x = 0.1
m = 10

Absolute
error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2000
0.1900
0.1800
0.1700
0.1600
0.1500
0.1400
0.1300
0.1200
0.1100

0.1964
0.1866
0.1768
0.1670
0.1572
0.1474
0.1376
0.1278
0.1180
0.1082

3.6000e-03
3.4000-03
3.2000-03
3.0000-03
2.8000e-03
2.6000e-03
2.4000e-03
2.0000e-03
5.1384e-03
1.8000e-03

0.1929
0.1831
0.1734
0.1636
0.1539
0.1441
0.1344
0.1246
0.1149
0.1051

7.1479e-003
6.8967e-003
6.6455e-003
6.3943e-003
6.1431e-003
5.8919e-003
5.6407e-003
5.3896e-003
5.1384e-003
4.8872e-003

6 Conclusion

In this paper, an approximate numerical solution for linear FFIE-2 is considered. The original Fredholm integral equations
of second kind are first transformed to two crisp coupled systems. Then, we use the two m- sets of TFs to approximate of
the unique solution of FFIE-2. Here, a hybrid method of a triangular functions and an iterative algorithm are considered. By
examining this hybrid method, the numerical results obtained for three examples show that: the proposed method produces
results almost similar to that obtained using the direct method and other numerical method based on block-pulse function
method with acceptable percentage error and the absolute error is reduced with the reduction of the solution tolerance.
The advances of this method are the number of calculations is very low as well as a good accuracy is mentioned.
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