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1 Introduction

The fractional calculus is a name for the theory of integrals and derivatives of arbitrary order, which unify and generalize
the notions of integer-order differentiation and n-fold integration. The history of the Fractional Calculus goes back to
seventeenth century, when in 1695 the derivative of order α = 1/2 was described by Leibnitz in his letter to L’Hospital
[28]. That date is regarded as the exact birthday of the fractional calculus. Since then this branch has been treated by
eminent mathematicians, such as Euler, Laplace, Fourier, Liouville, Riemann, Laurent, Weyl and Abel. And therefore
many definitions, concerning the fractional operators have been proposed:

Grunwald and Letnikov faced the problem of non-integer differentiation [20], generalizing the derivative definition of an
integer order, based on the quotient concept incremental, using the following formula

(Dα f )(x) = lim
h→0

(∇α
h f )(x)
hα

,

where

(∇α
h f )(x) =

n

∑
j=0

(−1) j
(

α

j

)
f (x− jh)

with n = [α].

In 1917 Weyl [21] defined a fractional integral adequate to periodic functions

Iα
+ f (x) =

1
Γ (α)

∞∫
x

(t− x)α−1 f (t)dt Re(α)> 0.

In 1938 M. Riesz published a number of papers [22] which are centered around the integral

RDα
t u(t) =

1
Γ (n−α)

(
d
dt

)n b∫
a

|t− τ|n−(α+1)u(τ)dτ.
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In [23], Laurent used a contour given as an open circuit (known as Laurent loop) instead of a closed circuit used by Sonin
and Letnikov and thus produced today’s definition of the Riemann-Liouville fractional integral

D−α
ax f (x) =

1
Γ (α)

x∫
a

(x− t)α−1 f (t)dt, Re(α)> 0.

The Riemann-Liouville derivative appears to the paper by N. Ya. Sonin in [24-25] where he used Cauchy’s integral
formula as a starting point to reach differentiation with arbitrary index

RLDα
atu(t) =

1
Γ (n−α)

( d
dt

)n
t∫

a

(t− s)n−(α+1)u(s)ds.

Consequently, M. Caputo proposed the following new definition of fractional derivative

CDα
0tu(t) =

1
Γ (n−α)

t∫
0

(t− s)n−(α+1)u(n)(s)ds.

Recently Caputo and Fabrizio launched a new fractional derivative and it was followed by some related theoretical and
applied results [26]. The interest for this new approach is due to the necessity to describe material heterogeneities and
structures with different scales, which cannot be well described by classical local theories [26].

In the last few decades many authors pointed out that derivatives and integrals of non-integer order are very suitable for
the description of properties of various real materials. It has been shown that new fractional-order models are more
adequate that integer-order models [27]. Fractional derivatives provide an excellent instrument for the description of
memory and hereditary properties of various materials and processes. This is the main advantage of fractional derivatives
in comparison with classical integer-order models, in which such effects are in fact neglected. The advantages of
fractional derivatives become apparent in modelling mechanical and electrical properties of real materials, as well as in
the description of rheological properties of rocks, and in market behaviour [27, 30].

The other large field which requires the use of derivatives of non-integer order is the theory of fractals. The development
of the theory of fractals has opened further perspectives for the theory of fractional derivatives, especially in modelling
dynamical processes in self-similar and porous structures [27].

In recent years, many researcher have shown that Fractional Calculus is a useful tool in image processing field such as
image enhancement, image denoising, image edge detection, image segmentation, image registration, image recognition,
image fusion, image encryption, image compression and image restoration [29, 37, 38]. Particularly, in [34-36], authors
have shown the advantage of fractional order derivatives to achieve a good trade-off between image denoising and edge
preservation. Also in [31-33] fractional differential mask has being proposed for contrast image enhancement. And in
[37, 39, 40] it has been demonstrated how using an edge detector based on fractional differentiation can improve the
criterion of detection of thin artefacts in the image.

However any application of fractional calculation requires expressions for fractional derivatives and integrals. For
example in [27], based on the definition of Riemann-Liouville and Caputo, expressions for fractional derivatives and
integrals of some elementary functions are obtained.

Our purpose in this paper is to give some theoretical properties concerning the Caputo-Fabrizio fractional operators and
apply these operators to some interesting elementary functions. The paper has been organized as follows, in Section 2,
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we present basic definitions and formulas. In Section 3, we give theoretical properties of Caputo-Fabrizio fractional
derivative. In section 4, we study the composition of Caputo-Fabrizio fractional operators. In section 5, we give examples
on using Caputo-Fabrizio fractional integral. In Section 6, we give some examples on using Caputo-Fabrizio fractional
derivative. A conclusion is considered in section 7.

2 Preliminaries and notations

Here, we introduce some definitions concerning the Caputo-Fabrizio fractional derivative and we give some formulas,
which would be needed in our proofs later.

We denote by C0([a,b]) the space of all continuous functions on [a,b] with compact support.

Other interesting notation is

Ck
0([a,b]) =Ck([a,b])∩C0([a,b]) (1)

where k ∈ Z+∪{∞}.

Let a,b, p ∈ R with 1≤ p≤ ∞. The Sobolev space W 1,p([a,b]) is defined by

W 1,p([a,b]) =
{

u ∈ Lp([a,b]) ; ∃g ∈ Lp([a,b]) such that
∫ b

a u ·ϕ ′ =−
∫ b

a gϕ, ∀ϕ ∈C∞
0 ([a,b])

}
.

Definition 1. Let a,b,α ∈ R such that 0 < α < 1. The Caputo-Fabrizio fractional integral of order α of a function
u ∈ H1([a,b]) is a linear operator defined by

Iα
atu(t) = (1−α)u(t)+α

∫ t

a
u(s)ds. (2)

Definition 2. Let a,b,α ∈ R such that 0 < α < 1. The Caputo-Fabrizio fractional derivative of order α of a function
u ∈ H1([a,b]) is a linear operator defined by

Dα
atu(t) =

1
1−α

∫ t

a
e−

α
1−α

(t−s)u′(s)ds. (3)

Definition 3. Let α > 0. The Riemann-Liouville fractional integral of order α of a function u is defined by

Rα
atu(t) =

1
Γ (α)

∫ t

a
(t− s)α−1u(s)ds. (4)

For more details, see [1-18].

Lemma 1. Let n ∈ N and α,a,b ∈ R. Then, for each n, the integral

An(t) = n
∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ(τ−a)n−1dτ (5)

can be written in the form

A1(t) =
1−α

α +(1−α)b

(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

(6)
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or

An(t) = ebt
n−1

∑
i=1

(−1)i−1 n!
(n− i)!

( 1−α

α +(1−α)b

)i
(t−a)n−i

+(−1)n−1n!
( 1−α

α +(1−α)b

)n(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a), n > 1 (7)

Proof. We will use the principle of mathematical induction. Let P(n) be

P(n)≡ An(t) (8)

For our base case, we need to show P(1) is true, meaning that

A1(t) =
1−α

α +(1−α)b

(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

(9)

This is trivial, since

A1(t) =
∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ dτ

For the inductive step, assume that for some n, P(n) holds, so

An(t) = n
∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ(τ−a)n−1dτ. (10)

We need to show that P(n+1) holds, meaning that

An+1(t) = (n+1)
∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ(τ−a)ndτ (11)

To see this, note that

An+1(t) =(n+1)
∫ t

a
e
−α

1−α
t+ α+(1−α)b

1−α
τ(τ−a)ndτ

=
(1−α)(n+1)
α +(1−α)b

(t−a)nebt − (1−α)(n+1)
α +(1−α)b

n
∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ(τ−a)n−1dτ

=
(1−α)(n+1)
α +(1−α)b

(t−a)nebt + ebt
n−1

∑
i=1

(−1)i (n+1)n!
(n− i)!

( 1−α

α +(1−α)b

)i+1
(t−a)n−i

+(−1)n(n+1)!
( 1−α

α +(1−α)b

)n+1(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

=
(1−α)(n+1)
α +(1−α)b

(t−a)nebt + ebt
n

∑
i=2

(−1)i−1 (n+1)n!
(n+1− i)!

{ 1−α

α +(1−α)b

}i
(t−a)n+1−i

+(−1)n(n+1)!
{ 1−α

α +(1−α)b

}n+1(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

=ebt
n

∑
i=1

(−1)i−1 (n+1)!
(n+1− i)!

( 1−α

α +(1−α)b

)i
(t−a)n+1−i

+(−1)n(n+1)!
( 1−α

α +(1−α)b

)n+1(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

Thus P(n+1) holds when P(n) is true, so P(n) is true for all natural numbers n.
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Lemma 2. Let n ∈ N and a,b,α ∈ R such that α ∈ (0,1). Then, for each n, the integral

Bn(t) =
∫ t

a
e
−α

1−α
t+ α+(1−α)b

1−α
τ(τ−a)ndτ (12)

can be written in the form

B1(t) = (t−a)
1−α

α +(1−α)b
ebt −

( 1−α

α +(1−α)b

)2(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

(13)

or

Bn(t) = ebt
n

∑
i=1

(−1)i−1 n!
(n+1− i)!

( 1−α

α +(1−α)b

)i
(t−a)n−i

+(−1)nn!
( 1−α

α +(1−α)b

)n+1(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)
, n > 1 (14)

Proof. Let P(n) be
P(n)≡ Bn(t) (15)

We will show that P(n) holds for all n ∈ R by induction. We note that

B1(t) =
∫ t

a
e
−α

1−α
t+ α+(1−α)b

1−α
τ(τ−a)dτ

= (t−a)
1−α

α +(1−α)b
ebt −

( 1−α

α +(1−α)b

)2(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

Thus, P(n) is true for n = 1. Asume that P(n) is true for some natural number n > 1, i.e.,

Bn(t) =
∫ t

a
e
−α

1−α
t+ α+(1−α)b

1−α
τ(τ−a)ndτ

We need to proof that P(n) is true for n+1 whenever P(n) is true for n. We have

Proof.

Bn+1(t) =
∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ(τ−a)n+1dτ

=
1−α

α +(1−α)b
(t−a)n+1ebt − (n+1)

1−α

α +(1−α)b

∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ(τ−a)ndτ

=
(1−α)(t−a)n+1ebt

α +(1−α)b
− (n+1)(1−α)

α +(1−α)b
ebt

n

∑
i=1

(−1)i−1n!
(n+1− i)!

( 1−α

α +(1−α)b

)i
(t−a)n+1−i

− (n+1)
1−α

α +(1−α)b
(−1)n(n!)

( 1−α

α +(1−α)b

)n+1(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

=
(1−α)(t−a)n+1ebt

α +(1−α)b
+ ebt

n

∑
i=1

(−1)i (n+1)n!
(n+1− i)!

( 1−α

α +(1−α)b

)i+1
(t−a)n+1−i

+
1−α

α +(1−α)b
(−1)n+1(n+1)(n!)

( 1−α

α +(1−α)b

)n+1(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

(16)
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=
(1−α)(t−a)n+1ebt

α +(1−α)b
+ ebt

n+1

∑
i=2

(−1)i−1 (n+1)!
(n+1+1− i)!

( 1−α

α +(1−α)b

)i
(t−a)n+1+1−i

+(−1)n+1(n+1)!
( 1−α

α +(1−α)b

)n+1+1(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

=ebt
n+1

∑
i=1

(−1)i−1 (n+1)!
(n+2− i)!

( 1−α

α +(1−α)b

)i
(t−a)n+2−i

+(−1)n+1(n+1)!
( 1−α

α +(1−α)b

)n+2(
ebt − e

−α
1−α

t+ α+(1−α)b
1−α

a
)

Thus, P(n) is true for n+1 whenever P(n) is true for n. Hence, by the principle of mathematical induction, P(n) is true for
all natural numbers n.

Proposition 1. For 1 < n ∈ N, one has easily the following:

∫ 2x+ 2n
2n−1

n
√

x2 + 2n
2n−1 x+ 2n

2n−1

dx =
n

n−1
n

√(
x2 +

2n
2n−1

x+
2n

2n−1

)n−1
(17)

∫ (
2x+

2n
2n+1

)
n

√
x2 +

2n
2n+1

x+
2n

2n+1
dx =

n
n+1

(
x2 +

2n
2n+1

x+
2n

2n+1

) n+1
n

(18)

3 Some properties cencerning the Caputo-Fabrizio fractional derivative

Here, we give some theoretical properties concerning the Caputo-Fabrizio fractional derivative.

Theorem 1. Let be u(t) ∈Cn+1([a,b]), then the equality

Dα
atu(t) =(−1)n+2

(1−α

α

)n
Dα

atu
(n)(t)

+
n

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]

(19)

holds true.

Proof. Let P(n) be

P(n)≡ Dα
atu(t) = (−1)n+2

(1−α

α

)n
Dα

atu
(n)(t)+

n

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]

(20)

We will show, by induction, that P(n) holds for all n ∈ N. Integrating by parts, we note that

Dα
atu(t) =

1
1−α

∫ t

a
e−

α
1−α

(t−s)u′(s)ds

=
1

1−α

[1−α

α
·u′(t)− 1−α

α
e
−α
1−α

(t−a)u′(a)− 1−α

α

∫ t

a
e−

α
1−α

(t−s)(u′(s))′ds
]

=
1
α
·u′(t)− 1

α
· e
−α
1−α

(t−a)u′(a)− 1−α

α
· 1

1−α
·
∫ t

a
e−

α
1−α

(t−s)(u′(s))′ds

=−1−α

α
·Dα

atu
′(t)+

1
α
·u′(t)− 1

α
· e
−α

1−α
(t−a)u′(a). (21)
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Thus, P(n) is true for n = 1. Asume that P(n) is true for some natural number n, i.e.,

Dα
atu(t) = (−1)n+2

(1−α

α

)n
Dα

atu
(n)(t)+

n

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]
. (22)

We need to proof that P(n) is true for n+1 whenever P(n) is true for n. We have

Dα
atu(t) =(−1)n+2

(1−α

α

)n
Dα

atu
(n)(t)+

n

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]

=(−1)n+2
(1−α

α

)n
· 1

1−α

∫ t

a
e−

α
1−α

(t−s)u(n+1)(s)ds+
n

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]

=(−1)n+2
(1−α

α

)n
· 1

1−α

[
1−α

α

(
u(n+1)(t)− e

−α
1−α

(t−a)u(n+1)(a)
)
− 1−α

α

∫ t

a
e−

α
1−α

(t−s)(u(n+1))′(s)ds

]

+
n

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]

=(−1)n+1+2
(1−α

α

)n
· 1

1−α

∫ t

a
e−

α
1−α

(t−s)(u(n+1))′(s)ds+(−1)n+2 (1−α)n

αn+1 ·
(

u(n+1)(t)− e
−α

1−α
(t−a)u(n+1)(a)

)
+

n

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]

=(−1)n+1+2
(1−α

α

)n+1
·Dα

atu
(n+1)(t)+

n+1

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]
. (23)

Theorem 2. Let be u ∈Cn+1[a,b]. Then the equality

(1−α)Dα
atu

(n)(t)+αDα
atu

(n−1)(t) = u(n)(t)− e
−α
1−α

(t−a)u(n)(a) (24)

holds true for all t ∈ [a,b]

Proof. We insert n and n−1 into the equality (19). This yields

Dα
atu(t) = (−1)n+2

(1−α

α

)n
Dα

atu
(n)(t)+

n

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]

(25)

and

Dα
atu(t) = (−1)n+1

(1−α

α

)n−1
Dα

atu
(n−1)(t)+

n−1

∑
k=1

(−1)k+1 (1−α)k−1

αk

[
u(k)(t)− e

−α
1−α

(t−a)u(k)(a)
]

(26)

respctively. Combining (25) with (26) we obtain (24). Theorem 2 is thus proved.

Theorem 3. Let be n ∈ N−{0}, a,b ∈ R(a < b) and u ∈Cn([a,b]). Then the equality

dn

dtn (D
α
atu(t)) =

n

∑
i=1

(−1)n−i αn−i

(1−α)n+1−i u(i)(t)+(−1)n
(

α

1−α

)n
Dα

atu(t) (27)

holds true.
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Proof. We will use the principle of mathematical induction. Let P(n) be

P(n)≡ dn

dtn (D
α
atu(t)) =

n

∑
i=1

(−α)n−i

(1−α)n+1−i u(i)(t)+
( −α

1−α

)n
Dα

atu(t)

For our base case, we need to show P(1) is true, meaning that

d
dt

(
Dα

atu(t)
)
=

1
1−α

1

∑
i=1

(−1)1−i
(

α

1−α

)1−i
u(i)+(−1)1

(
α

1−α

)1
Dα

atu(t) (28)

This is trivial, since

d
dt

(
Dα

atu(t)
)
=

d
dt

[
1

1−α
u(t)− 1

1−α
e
−

α

1−α
(t−a)

u(a)− α

(1−α)2

t∫
a

e
−

α

1−α
(t−τ)

u(τ)dτ

]

=
1

1−α
u′(t)+

α

(1−α)2 e
−

α

1−α
(t−a)

u(a)− α

(1−α)2 u(t)+
α2

(1−α)3

t∫
a

e
−

α

1−α
(t−τ)

u(τ)dτ

=
1

1−α
u′(t)+

α

(1−α)2 e
−

α

1−α
(t−a)

u(a)− α

(1−α)2 u(t)

− α

1−α

[
1

1−α
u(t)− 1

1−α
e
−

α

1−α
(t−a)

u(a)− α

(1−α)2 ·

·
t∫

a

e
−

α

1−α
(t−τ)

u(τ)dτ− 1
1−α

u(t)+
1

1−α
e
−

α

1−α
(t−a)

u(a)

]

=
1

1−α
u′(t)+

α

(1−α)2 e
−

α

1−α
(t−a)

u(a)− α

(1−α)2 u(t)

− α

1−α

[
Dα

atu(t)−
1

1−α
u(t)+

1
1−α

e
−

α

1−α
(t−a)

u(a)

]

=
1

1−α

1

∑
i=1

(−1)1−i
(

α

1−α

)1−i
u(i)+(−1)1

(
α

1−α

)1
Dα

atu(t) (29)

For the inductive step, assume that for some n, P(n) holds, so

dn

dtn (D
α
atu(t)) =

1
1−α

n

∑
i=1

(−1)n−i
(

α

1−α

)n−i
u(i)+(−1)n

(
α

1−α

)n
Dα

atu(t) (30)

We need to show that P(n+1) holds, meaning that

dn+1

dtn+1 (D
α
atu(t)) =

n+1

∑
i=1

(−α)n+1−i

(1−α)n+2−i u(i)(t)+
( −α

1−α

)n+1
Dα

atu(t) (31)

© 2020 BISKA Bilisim Technology



NTMSCI 8, No. 1, 1-25 (2020) / www.ntmsci.com 9

To see this, note that

dn+1

dtn+1 (D
α
atu(t)) =

dn

dtn

{ d
dt

Dα
atu(t)

}
=

dn

dtn

{ −α

1−α
Dα

atu(t)+
1

1−α
u′(t)

}
=
−α

1−α

dn

dtn

(
Dα

atu(t)
)
+

1
1−α

u(n+1)(t)

=
−α

1−α

[
1

1−α

n

∑
i=1

(−1)k−i
(

α

1−α

)n−i
u(i)+(−1)n

(
α

1−α

)n
Dα

atu(t)

]
+

1
1−α

u(n+1)(t)

=

[
1

1−α

n

∑
i=1

(−1)n+1−i
(

α

1−α

)n+1−i
u(i)+(−1)n+1

(
α

1−α

)n+1
Dα

atu(t)

]
+

1
1−α

u(n+1)(t)

=
1

1−α

n+1

∑
i=1

(−1)n+1−i
(

α

1−α

)n+1−i
u(i)+(−1)n+1

(
α

1−α

)n+1
Dα

atu(t), (32)

thus P(n+1) holds when P(n) is true, so P(n) is true for all natural numbers n.

Corollary 1. Let be a,b ∈ R(a < b) and u ∈C1([a,b]). Then the equality

∫ b

a
(Dα

atu(t))dt =
1
α
· (u(b)−u(a))− 1−α

α
Dα

abu(b) (33)

holds true

Proof. Applying (27) for n = 1, we obtain

d
dt
(Dα

atu(t)) =
1

1−α
u′(t)− α

1−α
Dα

atu(t) (34)

Then integrating (34) with respect to t over (a,b) and considering that Dα
aau(a) = 0, we obtain (33).

Theorem 4. Let be u ∈C1[a,b]∩H1[a,b]. Then Dα
atu(t) ∈ H1[a,b].

Proof. We need to proof that Dα
atu(t),

d
dt
(Dα

atu(t)) ∈ L2[a,b]. On the one hand, we note that

Dα
atu(t) =

1
1−α

∫ t

a
e−

α
1−α

(t−s)u′(s)ds =
1

1−α

(
u(t)−u(a)e−

α
1−α

(t−a)− α

1−α

∫ t

a
e−

α
1−α

(t−s)u(s)ds
)
.

Then we can write ∣∣Dα
atu(t)

∣∣2 ≤( 1
1−α

)2[
|u(t)|2 +

(
|u(a)|+ α

1−α
· (b−a)1/2 · ‖u(t)‖L2[a,b]

)2

+2
(
|u(a)|+ α

1−α
· (b−a)1/2 · ‖u(t)‖L2[a,b]

)
· |u(t)|

]
.

And consequently,

‖Dα
atu(t)‖2

L2[a,b] ≤
( 1

1−α

)2[
‖u(t)‖2

L2[a,b]+
(
|u(a)|+ α

1−α
· (b−a)1/2 · ‖u(t)‖L2[a,b]

)2
(b−a)

+2
(
|u(a)|+ α

1−α
· (b−a)1/2 · ‖u(t)‖L2[a,b]

)
· (b−a)1/2 · ‖u‖L2[a,b]

]
< ∞.
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On the other hand, applying Theorem 3, we obtain

d
dt
(Dα

atu(t)) =
1

1−α
u′(t)− α

1−α
Dα

atu(t).

As u′,Dα
atu(t) ∈ L2[a,b], we conclude that

d
dt
(Dα

atu(t)) ∈ L2[a,b].

4 Composition of Fractional Operators

In this section, we give some theoretical properties concerning the composition of Caputo-Fabrizio fractional operators.

Theorem 5. Let be a,α,β ∈ R such that 0 < α,β < 1(α 6= β ). Then the inequality

Dα
at

(
Dβ

atu(t)
)
=

1
β −α

(
β ·Dβ

atu(t)−α ·Dα
atu(t)

)
, (35)

holds true.

Proof. On the one side, from the definition of Caputo-Fabrizio derivative, we deduce that

Dα
at

(
Dβ

atu(t)
)
=

1
1−α

∫ t

a
e−

α
1−α

(t−τ)
(

Dβ

aτ u(τ)
)′

dτ,

=
1

1−α

1
1−β

∫ t

a
e−

α
1−α

(t−τ)
[
u′(τ)−

τ∫
a

β

1−β
e−

β

1−β
(τ−s)u′(s)ds

]
dτ (36)

=
1

1−α

−β

1−β

∫ t

a
e−

α
1−α

(t−τ)Dβ

aτ u(τ)dτ +
1

1−β
Dα

atu(t), (37)

which is equivalent to

∫ t

a
e−

α
1−α

(t−τ)Dβ

aτ u(τ)dτ =− (1−α)(1−β )

β
Dα

at

(
Dβ

atu(t)
)
+

1−α

β
Dα

atu(t). (38)

On the other side, integrating by parts and considering that

Dβ
aau(a) = 0,

we obtain

Dα
at

(
Dβ

atu(t)
)
=

1
1−α

∫ t

a
e−

α
1−α

(t−τ)
(

Dβ

aτ u(τ)
)′

dτ,=
1

1−α
Dβ

atu(t)−
α

(1−α)2

∫ t

a
e−

α
1−α

(t−τ)Dβ

aτ u(τ)dτ,

which is equivalent to

∫ t

a
e−

α
1−α

(t−τ)Dβ

aτ u(τ)dτ =
1−α

α
Dβ

atu(t)−
(1−α)2

α
Dα

at

(
Dβ

atu(t)
)
. (39)

Combining (38) with (39), we obtain (35).

Theorem 6. Let be a,α ∈ R such that 0 < α < 1. Then the equality

Dα
at

(
Iα
atu(t)

)
= u(t)− e−

α
1−α

(t−a) ·u(a), (40)

holds true.
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Proof. Applying definition of Caputo-Fabrizio derivative, we obtain

Dα
at

(
Iα
atu(t)

)
=

1
1−α

·
∫ t

a
e−

α
1−α

(t−τ)
[
Iα
aτ u(τ)

]′
dτ

=
1

1−α
·
∫ t

a
e−

α
1−α

(t−τ)
[
(1−α)u(τ)+α

τ∫
a

u(s)ds
]′

dτ

=
∫ t

a
e−

α
1−α

(t−τ)u′(τ)dτ +
α

1−α

∫ t

a
e−

α
1−α

(t−τ)u(τ)dτ

=
∫ t

a
e−

α
1−α

(t−τ)u′(τ)dτ +u(t)− e−
α

1−α
(t−a)u(a)−

∫ t

a
e−

α
1−α

(t−τ)u′(τ)dτ

= u(t)− e−
α

1−α
(t−a)u(a),

as required.

Theorem 7. Let a,α ∈ R such that 0 < α < 1. Then the equality

Iα
at

(
Iα
atu(t)

)
= u(t)−u(a), (41)

holds true.

Proof. On the one side, using definition of Caputo-Fabrizio integral, we obtain

Iα
at

(
Dα

atu(t)
)
= (1−α)Dα

atu(t)+α

∫ t

a
Dα

asu(s)ds. (42)

On the other side, applying Theorem 3, we obtain

d
ds

[
Dα

asu(s)
]
=− α

1−α
Dα

asu(s)+
1

1−α
u′(s), (43)

Integrating (43) respect to s over (a, t) to t and considering that Dα
aa f (a) = 0, we obtain

∫ t

a
Dα

asu(s)ds =
1
α
[u(t)−u(a)]− 1−α

α
·Dα

atu(t). (44)

Inserting the right hand side of (44) into (42), we obtain (41) and thus the proof is completed.

Theorem 8. Let 0 < α < 1,a ∈ R. Then the equality

Iα
at

(
Rα

atu(t)
)
= (1−α)Rα

atu(t)+
Γ (α +1)

Γ (α)
Rα+1

at u(t), (45)

holds true.
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Proof. Using the definition of the Caputo-Fabrizio integral and the Riemann-Liouville integral, we obtain

Iα
at

(
Rα

atu(t)
)
= (1−α)Rα

atu(t)+α

∫ t

a
Rα

aτ u(τ)dτ,

= (1−α)Rα
atu(t)+α

∫ t

a

[
1

Γ (α)

∫
τ

a
(τ−ξ )α−1u(ξ )dξ

]
dτ

= (1−α)Rα
atu(t)+

α

Γ (α)

∫ t

a
u(ξ )dξ

∫ t

ξ

(τ−ξ )α−1dτ

= (1−α)Rα
atu(t)+

α

Γ (α)

∫ t

a

1
α
(t−ξ )α u(ξ )dξ

= (1−α)Rα
atu(t)+

1
Γ (α)

∫ t

a
(t−ξ )(α+1)−1u(ξ )dξ

= (1−α)Rα
atu(t)+

Γ (α +1)
Γ (α)Γ (α +1)

∫ t

a
(t−ξ )(α+1)−1u(ξ )dξ

= (1−α)Rα
atu(t)+

Γ (α +1)
Γ (α)

Rα+1
at u(t),

where we have used ∫ t

ξ

(τ−ξ )α−1dτ =
(τ−ξ )α

α
.

5 Fractional Integral of Caputo-Fabrizio for some elementary functions

In this section we give explicit formulas for fractional integral of Caputo-Fabrizio of the following elementary functions

x
n√x2 +ax+b

, (46)

x n
√

x2 +ax+b, (47)
n
√

x2 +ax+b, (48)
1

n√x2 +ax+b
, (49)

x2 n
√

x2 +ax+b, (50)

x2

n√x2 +ax+b
(51)

where a,b ∈ R, such that both are not zero simultaneously, 1 < n ∈ N and C will represent a generic constant. These
formulas will be formulated as propositions. Further it is important to highlight that to obtain these formulas, an intensive
auxiliary calculation work was necessary, which will be presented in the form of lemmas.

Proposition 2.Let be u(x) = x · n√x2 +ax+b. Then the Caputo-Fabrizio fractional integral of u(x) is given by

Iα
axu(x) = (1−α) ·u(x)+α · p4(x)+C, (52)

where p4(x) is given as (71).

To proof Proposition 2, we need the following lemmas

Lemma 3.The equality

∫
x2 n

√
x2 +

2n
2n+1

x+
2n

2n+1
dx =

n
(3n+2)

(
x2 +

2n
2n+1

x+
2n

2n+1

) n+1
n
(

x− n
n+1

)
+C (53)
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holds true

Proof. It is easy to see, after integrating by parts, that

∫ (
x2 +

2n
2n+1

x+
2n

2n+1

)
n

√
x2 +

2n
2n+1

x+
2n

2n+1
dx =x

(
x2 +

2n
2n+1

x+
2n

2n+1

) n+1
n

− n+1
n

∫ (
2x2 +

2n
2n+1

x
)

n

√
x2 +

2n
2n+1

x+
2n

2n+1
dx,

which is equivalent to

∫
x2 n

√
x2 +

2n
2n+1

x+
2n

2n+1
dx =

n
3n+2

[
x
(

x2 +
2n

2n+1
x+

2n
2n+1

) n+1
n −

∫ (
2x+

2n
2n+1

)
n

√
x2 +

2n
2n+1

x+
2n

2n+1
dx
]

(54)

Following equalities (18) and (54), we conclude the proof.

Lemma 4. Let a,b ∈ R such that both are not equal to zero . If

α =
β 2 +aβ +b

2β +a
(55)

and

β =
−a
2

+
1
2

√
a2−2

(2n+1)a2−2nb
3n+2

(56)

then we have
1
α
(2β +a) =

1
α2 (β

2 +aβ +b) =
2n

2n+1
(57)

Proof. We shall prove the first equality of (57), i.e

1
α
(2β +a) =

1
α2 (β

2 +aβ +b) (58)

Replacing (55) into both sides of (58), we obtain the same result, which is

(2β +a)2

β 2 +aβ +b
(59)

To verify the second equality of (57), we take (56) into (59), and we have

(2β +a)2 =
n(4b−a2)

3n+2
(60)

β
2 +aβ +b =

(4b−a2)(1+2n)
2(3n+2)

(61)

Then, combining (60)-(61) with (59), we deduce that

(2β +a)2

β 2 +aβ +b
=

n(4b−a2)

3n+2
2(3n+2)

(4b−a2)(1+2n)
=

2n
2n+1

as required.
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Lemma 5. The equality ∫
(x−β )2 n

√
x2 +ax+bdx = p3(x)+C (62)

holds true, where

p3(x) =
nα

3n+2
n

3n+2

[(x−β

α

)2
+

2n
2n+1

(x−β

α

)
+

2n
2n+1

]n+1
n
(x−β

α
− n

n+1
)

(63)

α and β are given by (55) and (56), respectively.

Proof. Combining the change of variable
x = αt +β (64)

with Lemma 4, we deduce that∫
(x−β )2 n

√
x2 +ax+bdx = α

∫
(αt)2 n

√
(αt +β )2 +a(αt +β )+bdt

= α
3 n√

α2
∫

t2 n

√
t2 +

1
α
(2β +a)t +

1
α2 (β

2 +aβ +b)dt

= α
3 n√

α2
∫

t2 n

√
t2 +

2n
2n+1

t +
2n

2n+1
dt (65)

Consequently, we have the assertion (62) with the aid of Lemma 3.

Lemma 6. The equality

∫ (
x+

nb−β 2(3n+2)
2β (3n+2)+a(2n+1)

)
n
√

x2 +ax+bdx =
n

2β (3n+2)+a(2n+1)

[
x(x2 +ax+b)

n+1
n −α

3n+2
n

((x−β

α

)2

+
2n

2n+1

(x−β

α

)
+

2n
2n+1

)n+1
n
(x−β

α
− n

n+1

)]
+C (66)

holds true, where α and β are given by (55) and (56), respectively.

Proof. It is easy to see, after integrating by parts, that∫
n
√
(x2 +ax+b)n+1dx = x(x2 +ax+b)

n+1
n − n+1

n

∫
(2x2 +ax) n

√
x2 +ax+bdx.

which is equivalent to

∫ (
x+

nb− (3n+2)β 2

2β (3n+2)+a(2n+1)

)
n
√

x2 +ax+bdx

=
nx(x2 +ax+b)

n+1
n

2β (3n+2)+a(2n+1)
− 3n+2

2β (3n+2)+a(2n+1)

∫
(x−β )2 n

√
x2 +ax+b (67)

By (62) and (67), we obtain (66).

Lemma 7. The following statements are equivalents

(a) θ = n·(θ 2+aθ+b)−β 2(3n+2)
2β (3n+2)+(2θ+a)(2n+1) ,

(b) θ = −[(n+1)a+(6n+4)β ]±
√

∆1
2(3n+2) ,

where β is given by (56) and ∆1, by

∆1 = (n+1)2a2 +2(n+1)(6n+4)aβ +4nb(3n+2) (68)

© 2020 BISKA Bilisim Technology



NTMSCI 8, No. 1, 1-25 (2020) / www.ntmsci.com 15

Proof.

θ =
n · (θ 2 +aθ +b)−β 2(3n+2)
2β (3n+2)+(2θ +a)(2n+1)

⇔ (6n+4)βθ +(4n+2)θ 2 +a(2n+1)θ = n(θ 2 +aθ +b)−β
2(3n+2)

⇔ (3n+2)θ 2 +[(n+1)a+(6n+4)β ]θ +[β 2(3n+2)−nb] = 0

⇔ θ =
−[(n+1)a+(6n+4)β ]±

√
∆1

2(3n+2)
(69)

as required.

Lemma 8. The equality ∫
x n
√

x2 +ax+bdx = p4(x)+C (70)

holds true, where

p4(x) =
n

2β (3n+2)+(2θ +a)(2n+1)
(x−θ)

[
(x−θ)2 +(2θ +a)(x−θ)

+(θ 2 +aθ +b)
] n+1

n − nα
3n+2

n

[2β (3n+2)+(2θ +a)(2n+1)]

[(x−θ −β

α

)2

+
2n

2n+1

(x−θ −β

α

)
+

2n
2n+1

]n+1
n
(x−θ −β

α
− n

n+1

)
(71)

α , β and θ are given by (55), (56) and (69), respectively.

Proof. From Lemma 7, we deduce that

θ =
n · (θ 2 +aθ +b)−β 2(3n+2)
2β (3n+2)+(2θ +a)(2n+1)

which is equivalent to

t +θ = t +
n · (θ 2 +aθ +b)−β 2(3n+2)
2β (3n+2)+(2θ +a)(2n+1)

(72)

In terms of the change of variable
x = t +θ (73)

and (72), we get∫
x n
√

x2 +ax+bdx =
∫
(t +θ) n

√
t2 +(2θ +a)t +(θ 2 +aθ +b)dt∫ (

t +
n · (θ 2 +aθ +b)−β 2(3n+2)
2β (3n+2)+(2θ +a)(2n+1)

)
n
√

t2 +(2θ +a)t +(θ 2 +aθ +b)dt

which, in conjunction with Lemma 6, we conclude the proof.

We now give the proof of Proposition 2

Proof. Combining definition 1 with the lemma 8, we obtain 52.

Proposition 3.Let be u(x) = x
n
√

x2+ax+b
. Then the Caputo-Fabrizio fractional integral of u(x) is given by

Iα
axu(x) = (1−α) ·u(x)+α · p2(x)+C, (74)
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where p2(x) is given as (99).

To proof Proposition 3, we need the following lemmas

Lemma 9. The equality

∫ x2

n
√

x2 + 2n
2n−1 x+ 2n

2n−1

dx =
n

3n−2

(
x− n

n−1

)(
x2 +

2n
2n−1

x+
2n

2n−1

) n−1
n
+C (75)

holds true

Proof. It is easy to see, after integrating by parts, that

∫
n

√(
x2 +

2n
2n−1

x+
2n

2n−1

)n−1
dx = x

(
x2 +

2n
2n−1

x+
2n

2n−1

) n−1
n − n−1

n

∫ 2x2 + 2n
2n−1 x

n
√

x2 + 2n
2n−1 x+ 2n

2n−1

dx (76)

which is equivalent to

∫ x2

n
√

x2 + 2n
2n−1 x+ 2n

2n−1

dx =
n

3n−2
x
(

x2 +
2n

2n−1
x+

2n
2n−1

) n−1
n − n

3n−2

∫ 2x+ 2n
2n−1

n
√

x2 + 2n
2n−1 x+ 2n

2n−1

dx (77)

Combining (17) with (77), equality (75) follows.

Lemma 10. Let a,b ∈ R such that both are not equal to zero. If

α =
β 2 +aβ +b

2β +a
(78)

and

β =
−a
2

+
1
2

√
a2−2

(2n−1)a2−2nb
3n−2

(79)

then equalities
1
α
(2β +a) =

1
α2 (β

2 +aβ +b) =
2n

2n−1
(80)

hold

Proof. We shall prove the first equality of (80), i.e

1
α
(2β +a) =

1
α2 (β

2 +aβ +b) (81)

Replacing (78) into both sides of (81), we obtain the same result, which is

(2β +a)2

β 2 +aβ +b
(82)

To verify the second equality of (80), we take (79) into (82), and we have

(2β +a)2 =
n(4b−a2)

3n−2
(83)

β
2 +aβ +b =

(4b−a2)(2n−1)
2(3n−2)

(84)
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Then, in terms of (83)-(84) and (82), we obtain

(2β +a)2

β 2 +aβ +b
=

n(4b−a2)

3n−2
2(3n−2)

(4b−a2)(2n−1)
=

2n
2n−1

, (85)

as required.

Lemma 11. The equality ∫
(x−β )2

n√x2 +ax+b
dx = p1(x)+C (86)

holds true, where

p1(x) =
nα

3n−2
n

3n−2

[(x−β

α

)2
+

2n
2n−1

(x−β

α

)
+

2n
2n−1

]n−1
n
(x−β

α
− n

n−1

)
, (87)

α and β are given by (78) and (79), respectively.

Proof. By using the change of variable
x = αt +β (88)

and Lemma 10, we obtain

∫
(x−β )2

n√x2 +ax+b
dx = α

∫
(αt)2

n
√
(αt +β )2 +a(αt +β )+b

dt

=
α3

n√
α2

∫ t2

n
√

t2 + 1
α
(2β +a)t + 1

α2 (β
2 +aβ +b)

dt

= α
3n−2

n

∫ t2

n
√

t2 + 2n
2n−1 t + 2n

2n−1

dt (89)

By (75) and (88) as well as (89), we conclude the proof.

Lemma 12. The equality

∫ x+
nb−β 2(3n−2)

2β (3n−2)+a(2n−1)
n√x2 +ax+b

dx =
n

2β (3n−2)+a(2n−1)
x(x2 +ax+b)

n−1
n

− nα
3n−2

n

[2β (3n−2)+a(2n−1)]

[(x−β

α

)2

+
2n

2n−1

(x−β

α

)
+

2n
2n−1

]n−1
n
(x−β

α
− n

n−1

)
+C (90)

holds true, where α and β are given by (78) and (79), respectively.

Proof. It is easy to see, after integrating by parts, that

∫
n
√
(x2 +ax+b)n−1dx = x(x2 +ax+b)

n−1
n − n−1

n

∫
(2x2 +ax)

n√x2 +ax+b
dx, (91)

which is equivalent to ∫ x2 +
2n−1
3n−2

ax+b · n
3n−2

n√x2 +ax+b
dx =

n
3n−2

x(x2 +ax+b)
n−1

n (92)
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From (92), we obtain

∫ (x−β )2 +
(

2β +a
2n−1
3n−2

)
x+
( n

3n−2
b−β 2

)
n√x2 +ax+b

dx =
nx(x2 +ax+b)

n−1
n

(3n−2)
(93)

where β is given as (79). In terms of (93), it then follows that

∫ x+
nb− (3n−2)β 2

2β (3n−2)+a(2n−1)
n√x2 +ax+b

dx =
nx(x2 +ax+b)

n−1
n

2β (3n−2)+a(2n−1)
− 3n−2

2β (3n−2)+a(2n−1)

∫
(x−β )2

n√x2 +ax+b
dx, (94)

Combining (86) with (94), we get the desired equality (90).

Lemma 13. The following statements are equivalents

(a) θ = n·(θ 2+aθ+b)−β 2(3n−2)
2β (3n−2)+(2θ+a)(2n−1) ,

(b) θ = −[(n−1)a+(6n−4)β ]±
√

∆

2(3n−2) ,

where β is given by (79) and ∆ , by

∆ = (n−1)2a2 +2(n−1)(6n−4)aβ +4nb(3n−2) (95)

Proof.

θ =
n · (θ 2 +aθ +b)−β 2(3n−2)
2β (3n−2)+(2θ +a)(2n−1)

⇔ (6n−4)βθ +(4n−2)θ 2 +a(2n−1)θ = n(θ 2 +aθ +b)−β
2(3n−2)

⇔ (3n−2)θ 2 +[(n−1)a+(6n−4)β ]θ +[β 2(3n−2)−nb] = 0 (96)

⇔ θ =
−[(n−1)a+(6n−4)β ]±

√
∆

2(3n−2)
(97)

as required.

Lemma 14. The equality ∫ x
n√x2 +ax+b

dx = p2(x)+C (98)

is valid, where

p2(x) =
n

2β (3n−2)+(2θ +a)(2n−1)
(x−θ)

[
(x−θ)2 +(2θ +a)(x−θ)

+(θ 2 +aθ +b)
] n−1

n − nα
3n−2

n

[2β (3n−2)+(2θ +a)(2n−1)]

[(x−θ −β

α

)2

+
2n

2n−1

(x−θ −β

α

)
+

2n
2n−1

]n−1
n
(x−θ −β

α
− n

n−1

)
, (99)

α , β and θ are given by (78), (79) and (97), respectively.

Proof. From Lemma 13, we deduce that

θ =
n · (θ 2 +aθ +b)−β 2(3n−2)
2β (3n−2)+(2θ +a)(2n−1)

(100)
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which is equivalent to

t +θ = t +
n · (θ 2 +aθ +b)−β 2(3n−2)
2β (3n−2)+(2θ +a)(2n−1)

(101)

Combining the change of variable
x = t +θ , (102)

with (101), we deduce that ∫ x
n√x2 +ax+b

dx =
∫ t +θ

n
√

t2 +(2θ +a)t +(θ 2 +aθ +b)
dt

=
∫ t + n·(θ 2+aθ+b)−β 2(3n−2)

2β (3n−2)+(2θ+a)(2n−1)
n
√

t2 +(2θ +a)t +(θ 2 +aθ +b)
dt (103)

By using (90) and (103) as well as (102), we have (98).

We now give the proof of Proposition 3

Proof. Combining definition 1 with the lemma 14, we obtain 74.

Proposition 4. Let be u(x) = n√x2 +ax+b. Then the Caputo-Fabrizio fractional integral of u(x) is given by

Iα
axu(x) = (1−α) ·u(x)+α · [p5(x)− p4(x)]+C, (104)

where p4(x) y p5(x) are given by (71) and (106), respectively.

To proof Proposition 4, we need the following lemmas

Lemma 15. The equality ∫
(x+1) n

√
x2 +ax+bdx = p5(x)+C, (105)

holds true, where

p5(x) =
n

2β (3n+2)+(2θ +a−2)(2n+1)
(x+1−θ)

[
(x+1−θ)2

+(2θ +a−2)(x+1−θ)+(θ 2 +(a−2)θ +(b−a+1))
] n+1

n

− nα
3n+2

n

[2β (3n+2)+(2θ +a−2)(2n+1)]

[(x+1−θ −β

α

)2

+
2n

2n+1

(x+1−θ −β

α

)
+

2n
2n+1

]n+1
n
(x+1−θ −β

α
− n

n+1

)
(106)

α , β and θ are given by (55), (56) and (69), respectively.

Proof. By using the change of variable
x+1 = t (107)

we obtain ∫
(x+1) n

√
x2 +ax+bdx =

∫
t n
√

t2 +(a−2)t +(b−a+1)dt (108)

From (70) and (108) as well as (107), we obtain (105). We complete the proof.
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Lemma 16. The equality ∫
n
√

x2 +ax+bdx = p5(x)− p4(x)+C (109)

holds true, where p4(x) and p5(x) are given by (71) and (106), respectively.

Proof. It is easy to see that∫
n
√

x2 +ax+bdx =
∫
(x+1) n

√
x2 +ax+bdx−

∫
x n
√

x2 +ax+bdx (110)

By (70) and (105) as well as (110), it is easy to see (109).

We now give the proof of Proposition 4

Proof. Combining definition 1 with the lemma 16, we obtain (104).

Proposition 5.Let be u(x) = 1
n
√

x2+ax+b
. Then the Caputo-Fabrizio fractional integral of u(x) is given by

Iα
axu(x) = (1−α) ·u(x)+α · [p6(x)− p2(x)]+C, (111)

where p2(x) y p6(x) are given by (99) and (113), respectively.

To proof Proposition 5, we need the following lemmas

Lemma 17. The equality ∫ x+1
n√x2 +ax+b

dx = p6(x)+C (112)

is valid, where

p6(x) =
n

2β (3n−2)+(2θ +a−2)(2n−1)
(x+1−θ)

[
(x+1−θ)2

+(2θ +a−2)(x+1−θ)+(θ 2 +(a−2)θ +b−a+1)
] n−1

n

− nα
3n−2

n

[2β (3n−2)+(2θ +a−2)(2n−1)]

[(x+1−θ −β

α

)2

+
2n

2n−1

(x+1−θ −β

α

)
+

2n
2n−1

]n−1
n
(x+1−θ −β

α
− n

n−1

)
, (113)

α , β and θ are given by (78), (79) and (97), respectively.

Proof. By using the change of variable
x+1 = t (114)

we obtain ∫ x+1
n√x2 +ax+b

dx =
∫ t

n
√

t2 +(a−2)t +(b−a+1)
dt (115)

By using (98) and (115) as well as (114), we deduce (112).

Lemma 18. The equality ∫ 1
n√x2 +ax+b

dx = p6(x)− p2(x)+C (116)

holds true, where p2(x) and p6(x) are given by (99) and (113), respectively.
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Proof. It is easy to see that ∫ 1
n√x2 +ax+b

dx =
∫ x+1

n√x2 +ax+b
dx−

∫ x
n√x2 +ax+b

dx (117)

By using (112) and (98) as well as (117), we deduce (116).

We now give the proof of Proposition 5

Proof. Combining definition 1 with the lemma 18, we obtain (111).

Proposition 6. Let be u(x) = x2

n
√

x2+ax+b
. Then the Caputo-Fabrizio fractional integral of u(x) is given by

Iα
axu(x) = (1−α) ·u(x)+α · [p1(x)+(2β +β

2)p2(x)−β
2 p6(x)]+C, (118)

where p1(x), p2(x) y p6(x) are given by (87), (99) and (113), respectively.

To proof Proposition 6, we need the following lemma

Lemma 19.The equality ∫ x2dx
n√x2 +ax+b

= p1(x)+(2β +β
2)p2(x)−β

2 p6(x)+C. (119)

holds true, where p1(x), p2(x) and p6(x) are given by (87), (99) and (113), respectively.

Proof. It is easy to see that

∫ x2dx
n√x2 +ax+b

=
∫

(x−β )2dx
n√x2 +ax+b

+2β

∫ xdx
n√x2 +ax+b

−β
2
∫ dx

n√x2 +ax+b
.

In terms of (86) and (98) as well as (116), we deduce equality (119).

We now give the proof of Proposition 6.

Proof. Combining definition 1 with the lemma 19, we obtain (118).

Proposition 7.Let be u(x) = x2 · n√x2 +ax+b. Then the Caputo-Fabrizio fractional integral of u(x) is given by

Iα
axu(x) = (1−α) ·u(x)+α · [p3(x)+(2β +β

2)p4(x)−β
2 · p5(x)]+C, (120)

where p3(x), p4(x) y p5(x) are given by (63), (71) y (106), respectively.

To proof Proposition 7, we need the following lemma

Lemma 20. The equality ∫
x2 n
√

x2 +ax+bdx = p3(x)+(2β +β
2)p4(x)−β

2 · p5(x)+C (121)

holds true, where p3(x), p4(x) and p5(x) are given by (63), (71) and (106), respectively.

Proof. It is easy to see that∫
x2 n
√

x2 +ax+bdx =
∫
(x−β )2 · n

√
x2 +ax+bdx+2β ·

∫
x · n
√

x2 +ax+bdx−β
2 ·
∫

n
√

x2 +ax+bdx

From (62) and (70) as well as (109), equality (121) follows.

We now give the proof of Proposition 7.

Proof. Combining definition 1 with the lemma 20, we obtain (120).
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6 Fractional derivative of Caputo-Fabrizio for some elementary functions

Here, we consider some examples on Caputo-Fabrizio Fractional Derivative

Theorem 9. Let a,b,α ∈ R such that 0 < α < 1. Then

Dα
ate

bt =
b

α +(1−α)b

(
ebt − e−

α
1−α

te
α+(1−α)b

1−α
a
)
.

Proof. From definition 2, we have

Dα
ate

bt =
1

1−α

∫ t

a
e−

α
1−α

(t−s)bebsds

=
b

α +(1−α)b

(
ebt − e−

α
1−α

te
α+(1−α)b

1−α
a
)
.

This completes the proof.

Theorem 10. Let a,α ∈ R such that 0 < α < 1. Then the equality

Dα
at(t−a)n =

n

∑
i=1

(−1)i−1 (1−α)i−1

α i
n!

(n− i)!
(t +a)n−i +(−1)n n!

αn (1−α)n−1e−
α

1−α
(t−a)

holds.

Proof. We will use the principle of mathematical induction. Let P(n) be

P(n)≡ Dα
at(t−a)n =

n

∑
i=1

(−1)i−1 (1−α)i−1

α i
n!

(n− i)!
(t +a)n−i +(−1)n n!

αn (1−α)n−1e−
α

1−α
(t−a).

For our base case, we need to show P(1) is true, meaning that

Dα
at(t−a) =

1

∑
i=1

(−1)i−1 (1−α)i−1

α i
1!

(1− i)!
(t−a)1−i +(−1)1 1!

α1 (1−α)1−1e−
α

1−α
(t−a).

This is trivial, since

Dα
at(t−a) =

1
1−α

∫ t

a
e−

α
1−α

(t−s)(s−a)′ds

=
1
α
− 1

α
e−

α
1−α

(t−a)

=
1

∑
i=1

(−1)i−1 (1−α)i−1

α i
1!

(1− i)!
(t−a)1−i +(−1)1 1!

α1 (1−α)1−1e−
α

1−α
(t−a).

For the inductive step, assume that for some n, P(n) holds, so

Dα
at(t−a)k =

k

∑
i=1

(−1)i−1 (1−α)i−1

α i
k!

(k− i)!
(t−a)k−i +(−1)k k!

αk (1−α)k−1e−
α

1−α
(t−a).
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We need to show that P(n+1) holds, meaning that

Dα
at(t−a)k+1 =

1
1−α

∫ t

a
e−

α
1−α

(t−s)
(
(s−a)k+1

)′
ds

=
k+1
1−α

∫ t

a
e−

α
1−α

(t−s)(s−a)kds

=
k+1

α
(t−a)k− (k+1)(1−α)

α
Dα

at(t−a)k.

To see this, note that

Dα
at(t−a)k+1 =

k+1
α

(t−a)k− (k+1)(1−α)

α

k

∑
i=1

(−1)i−1 (1−α)i−1

α i
k!

(k− i)!
(t

−a)k−i− (k+1)(1−α)

α
(−1)k k!

αk (1−α)k−1e−
α

1−α
(t−a)

=
k+1

α
(t−a)k +

k

∑
i=1

(−1)i (1−α)i

α i+1
(k+1)k!
(k− i)!

(t

−a)k−i +(−1)k+1 (k+1)!
αk+1 (1−α)ke−

α
1−α

(t−a)

=
k+1

α
(t−a)k +

k+1

∑
i=2

(−1)i−1 (1−α)i−1

α i
(k+1)!

(k+1− i)!
(t

−a)k+1−i +(−1)k+1 (k+1)k!
αk+1 (1−α)ke−

α
1−α

(t−a)

=
k+1

∑
i=1

(−1)i−1 (1−α)i−1

α i
(k+1)!

(k+1− i)!
(t−a)k+1−i

+(−1)k+1 (k+1)!
αk+1 (1−α)k+1−1e−

α
1−α

(t−a).

Thus P(n+1) holds when P(n) is true, so P(n) is true for all natural numbers n.

Theorem 11. Let n ∈ N, α,a,b ∈ R such that 0 < α < 1. Then

Dα
at(t−a)nebt =

{
1

1−α
A1(t)+ b

1−α
B1(t), n = 1

1
1−α

An(t)+ b
1−α

Bn(t), n > 1
(122)

where A1(t), An(t), B1(t) and Bn(t) are given by (6), (7), (13) and (14), respectively.

Proof. From definition 2, we have

Dα
at(t−a)nebt =

1
1−α

∫ t

a
e
−α
1−α

(t−τ)[(τ−a)nebτ ]′dτ

=
n

1−α

∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ(τ−a)n−1dτ +
b

1−α

∫ t

a
e
−α
1−α

t+ α+(1−α)b
1−α

τ(τ−a)ndτ.

In terms of (5) and (12), we obtain (122).

7 Conclusion

In this paper author has studied some theoretical properties concerning the Caputo-Fabrizio fractional derivative. Also
composition of fractional operators has been obtained. In the same line it is given explicit formulas for Caputo-Fabrizio
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fractional operators of some elementary functions. To obtain such formulas, an auxiliary calculation in form of lemmas has
been presented. As a future work, author is planning to use the properties presented in this work to analyse the qualitative
properties of some Caputo-Fabrizio ordinary fractional differential equations.
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[7] Zhanbing Bai and Haishen Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math.
Anal. Appl.(2005), vol. 311, pp. 495-496.

[8] Michele Caputo and Mauro Fabrizio, Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels.
Progr. Fract. Differ. Appl.(2016), vol. 2, No. 1, pp. 1-11.

[9] S. Etemad and Sh. Rezapour, On a Two-Variables Fractional Partial Differential Inclusion Via Riemann-Liouville Derivative. Novi
Sad J. Math.(2016), Vol. 46, pp. 45-46.

[10] Abdon Atangana and Ilknur Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model. J.
Nonlinear Sci. Appl.(2016), vol. 9, pp. 2467-2469 .

[11] Xiao-Jun Yang, Hari M. Srivastava and J. A. Tenreiro Machado, A New Fractional Derivative Without Singular Kernel. Application
to the Modelling of the Steady Heat Flow, THERMAL SCIENCE (2016), Vol. 20, No. 2, pp. 753-754.

[12] Nasser Al-Salti, Erkinjon Karimov and Sebti Kerbal, Boundary-value problems for fractional heat equation involving Caputo-
Fabrizio derivative. NTMSCI (2016), vol. 4, No. 4, pp. 79-80.

[13] Rubayyi T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined
aquifer. J. Nonlinear Sci. Appl.(2016), vol. 9 , pp. 3647-3649.

© 2020 BISKA Bilisim Technology



NTMSCI 8, No. 1, 1-25 (2020) / www.ntmsci.com 25

[14] Jagdev Singh, A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law. Chaos
(2019), Vol.29, pp. 1-3.

[15] Jagdev Singh, Devendra Kumar and Dumitru Baleanu, On the analysis of fractional diabetes model with exponential law. Advances
in Difference Equations (2018), https://doi.org/10.1186/s13662-018-1680-1, pp. 1-4.

[16] Jagdev Singh et al., New aspects of fractional Biswas-Milovic model with Mittag-Leffler. Math. Model. Nat. Phenom.(2019), Vol.
14, pp. 1-4.

[17] Sunil Dutt Purohit et al., A Hybrid analytical algorithm for nonlinear fractional wave-like equations. Math. Model. Nat.
Phenom.(2019), Vol. 14, pp.1-4.

[18] Devendra Kumar et al., A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and
spraying. Advances in Difference Equations (2019), https://doi.org/10.1186/s13662-019-2199-9, pp. 1-3.

[19] Leah Edelstein-Keshet et al., Integral Calculus with Applications to the Life Sciences. February 26, 2014.
[20] Gorosko O.A., Hedrih (Stevanovic) K., The construction of the Lagrange Mechanics of the discrete hereditary systems, Facta

Universitatis, Series: Mechanics, Automatic Control and Robotics (2007), Vol. 6, No 1, pp. 175 -176.
[21] Hedrih A., Mechanical models of the double DNA. International Journal of Medical Engineering and Informatics (2011), Vol. 3,

No.4, pp. 394-410.
[22] Hedrih (Stevanovic) K., Dynamics of coupled systems, Nonlinear Analysis: Hybrid Systems (2008), Volume 2, pp.310-334.
[23] Gorosko O. A. i Hedrih (Stevanovic) K., Analiticka dinamika (mehanika) diskretnih naslednih sistema, (Analytical Dynamics

(Mechanics) of Discrete Hereditary Systems), Monograph, p. 426, YU ISBN 86-7181-054-2,2001.
[24] Mihailo Lazarevi et.al., Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and

Modeling, Published by WSEAS Press (2014)
[25] Goyal S. and Perkins N.C., Looping mechanics of rods and DNA with non-homogeneous and discontinuous stiffness, Int J Non-

Linear Mech.(2008), Vol. 43, No. 10, pp.1121-1128.
[26] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel Progr. Fract. Differ. Appl. (2015),

Vol. 1, No. 2, pp.
[27] I. Podlubny, Fractional differential equations. Mathematics in Science and Engineering (1999), Vol. 198, pp.18-20.
[28] Anselmi C., Desantis P. and Scipioni A. Nanoscale echanical and dynamical properties of DNA single molecules, Biophys

Chem.(2005), Vol. 113, pp.209-221
[29] Dr. Emad A. Al-Sabawi, Abdulaziz H. Marie, Image Deblurring Based FractionalOrder Differentiation and Genetic Algorithm

(2017), Vol.7, pp.19-26.
[30] Panumart Sawangtong et al., An Analysis on the Fractional Asset Flow Differential Equations. Mathematics 2017, 5, 33;

doi:10.3390/math5020033, pp. 1-3.
[31] Yi Zhang, Yifei Pu, Jiliu Zhou, Construction of Fractional differential Masks Based on Riemann-Liouville Definition. Journal of

Computational Information Systems (2010), vol. 6, No.10, pp. 3191-3199.
[32] Rabha W. Ibrahim et al., Texture Enhancement for Medical Images Based on Fractional Differential Masks. Discrete Dynamics in

Nature and Society (2013), Volume 2013, Article ID 618536, pp. 1-9.
[33] Chen Qing-li et al., A Fractional Differential Approach to Low Contrast Image Enhancement. International Journal of Knowledge

and Language Processing (2012), Vol. 3, No. 2, pp. 20-27.
[34] Zhang Jun et al., A class of fractional-order multi-scale variational models and alternating projection algorithm for image

denoising. Applied Mathematical Modelling (2011), Vol. 35 pp. 2516-2528.
[35] Lihong Huang et al., Adaptive fourth-order partial differential equation filter for image denoising. Applied Mathematics Letters

(2011), Vol. 24, pp. 1282-1288.
[36] Marko Janev et al., Fully fractional anisotropic diffusion for image denoising. Mathematical and Computer Modelling (2011), Vol.

5, pp. 729-741.
[37] Vignesh Kothapalli, Shaveta Arora, Madasu Hanmandlu, Edge detection using fractional derivatives and information sets. Journal

of Electronic Imaging (2018), vol. 27, p.1-10.
[38] P. Melchior et al., Fractional differentiation for edge detection. Signal Processing (2003), vol. 83, pp. 2421-2432.
[39] Chaobang Gao et al., Edge Detection Based on the Newton Interpolation’s Fractional Differentiation. The International Arab

Journal of Information Technology (2014), Vol. 11, No. 3, pp. 223-227.
[40] Reju John, Nissan Kunju, Detection of Alzhemier’s Disease Using Fractional Edge Detection. IOSR Journal of VLSI and Signal

Processing (2019), Vol. 9, pp. 1-5.

© 2020 BISKA Bilisim Technology

www.ntmsci.com

	Introduction
	Preliminaries and notations
	Some properties cencerning the Caputo-Fabrizio fractional derivative
	Composition of Fractional Operators
	Fractional Integral of Caputo-Fabrizio for some elementary functions
	Fractional derivative of Caputo-Fabrizio for some elementary functions
	Conclusion

