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Abstract: Tumor detection in biomedical imaging is a time-consuming process for medical professionals and is not without errors. In
recent decades, researchers have developed techniques using a variety of mathematical methods, such as statistical modeling,
variational techniques, and machine learning. In this paper, we propose a semi-automatic method for liver segmentation of 2D CT
scans into three labels denoting healthy, vessel, or tumor tissue based on graph cuts. First, we create a feature vector for each pixel in a
novel way that consists of the 59 intensity values in the time series data and propose a simplified perimeter cost term in the energy
functional. We normalize the data and perimeter terms in the functional to execute the graph cut without having to optimize the scaling
parameter lambda. In place of a training process, predetermined tissue means are computed based on sample regions identified by
expert radiologists. The proposed method also has the advantage of being relatively simple to implement computationally. It was
evaluated against ground truth on a clinical CT dataset of 10 tumors, yielding segmentations with a mean Dice similarity coefficient
(DSC) of .77, mean volume overlap error (VOE) of 36.7%, and average processing time of 1.25 minutes per slice.
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1 Introduction

Hepatic cancer is a common and increasingly deadly form of cancer worldwide. In the United States alone, the number
of new cases increased 38% from 2003 to 2012, with the number of deaths jumping 56% [15]. Therefore, proper
detection and diagnosis is imperative, as segmentation of healthy tissues and existing tumors allows for accurate staging
and pre-surgical planning along with choosing the best treatment plan and providing postoperative care. The standard
imaging technique used is multi-phase, computed tomography (CT) for its speed, resolution, and affordability, yet there
is still a significant amount of variation present from the tumor type, pathological stage, contrast dose, and scan delay
[28]. Moreover, the problem is made especially challenging due to the low contrast between tumor tissues and
surrounding tissues and vessels, the high degree of variation among tumor shapes, and their ambiguous boundaries [35],
[46].

While clinicians have tended to rely on manual identification and segmentation by radiologists, this method is tedious,
time-consuming, and carries a degree of variability among raters and thus lacks reproducibility [22]. Therefore,
numerous interactive, semi-automatic, and automatic segmentation techniques have been developed in the past two
decades.
Methods such as clustering [45], [40], [49], thresholding [25], [7], and region growing [1], [14] are relatively simple to
implement computationally, but rely only on pixel intensity and are thus subject to “leakage” on tumor boundaries [46].
To overcome these limitations, researchers have proposed using techniques such as adaptive region growing, adaptive
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thresholding, or combining clustering with other methods. For example, in [27], a spatial fuzzy clustering approach is
used with a level set method. The study in [2] compares three semi-automatic region growing segmentation methods, and
[36] compares a region growing method with the Otsu method. In [18], a watershed algorithm was used with region
growing in order to better detect the initial seed points, and [32] uses fuzzy c-means and random walkers algorithms.

Machine learning approaches [47], [20], [29], [22], [39], include [9], which uses cascaded fully convolutional neural
networks, and [19], which represents voxels with a feature vector and trains the Extreme Learning Machine algorithm for
voxel classification. While many promising machine learning techniques have been proposed in recent years, the
drawbacks include the high computational requirements [22] and the large amount of high quality training data required
during the training process [46].

Other popular methods include those that rely on energy minimization to label different regions, such as active contour
methods, including level set [21] and fast marching [26] methods, and graph cuts. The active contour-based models,
however, can often be too sensitive to the contour initialization due to the influence of local minima on the energy
minimization and due to “leaking” on tumors with weak boundaries or when noise or poor contrast prevent the contour
from stopping properly [41]. Researchers in [28] have introduced a unified level set approach with fuzzy clustering to
integrate image gradient, region competition, and prior information. Other efforts include [27], mentioned above, and
[34], which uses a hybrid of Markov Random Field (MRF) level set, shape analysis, graph cut, and Support Vector
Machines (SVM) classifier techniques.

Graph cuts [37], [4], [41], [44], [12], [30], on the other hand, differ from active contour methods in that they are most
often not iterative and compute the global energy minimization. The also do not depend on initializations. Graph cuts are
rooted in combinatorial optimization theory and seek to minimize an energy functional by making the minimum-cost cut
that divides a connected, undirected graph into two disconnected pieces. The graph is typically represented with pixels as
vertices and edges derived from 4- or 8-neighborhood connectivity among pixels called n-links. A source and sink node
are added, and edges from each pixel to these two nodes are also made, called t-links [8]. The energy functional contains
both a data fidelity, or regional, term and a perimeter regularization, or boundary, term. The former penalizes based on
classifying pixels in a certain region, foreground or background, while the latter penalizes based on pixel differences
along boundaries or similar measures, with costs accruing only along those edges where cuts are made. The
minimization is obtained based on the max-flow min-cut theorem [10], which states that the weight of the edges in the cut
of minimum capacity in a flow network equals the maximal flow that can travel along the network, where the cut of
minimum capacity represents the smallest overall weight of those edges that would disconnect the source from the sink if
removed.

One of the most popular algorithms for computing the graph cut is the Boykov-Kolmogorov (BK) max-flow algorithm
[5], [23], [24], which we utilize in the proposed model below. The main drawback with regular graph cut methods is their
difficulty handling weak boundaries and noisy images, and so methods have incorporated techniques to overcome this,
such as the random walkers algorithm [32]. Other recent proposed models include [46], which utilizes a four-step
process including a kernelized fuzzy c-means (FCM), confidence connected region growing algorithm, and graph cut. In
[8], kernel density estimation is used to develop a nonlinear statistical shape prior in such a way that the energy
functional can be minimized through iterative graph cuts. And, [42] applies minimal surfaces and MRFs to the watershed
transform to create an interactive graph cut method using a region graph in place of a pixel graph.

In this paper, we propose a semi-automatic method of liver CT scan segmentation that incorporates the time series data
for each pixel into a feature vector to make the BK algorithm more robust to weak boundaries and noise. This addition
utilizes the differences over time in the intensities of the different tissue types as a result of their response to the injected

c© 2019 BISKA Bilisim Technology

www.ntmsci.com/jacm


83 L.Paxton, Y. Cao, K. R. Vixie, Y. Wang, C. Ng and B. Hobbs: A Time Series Graph Cut Image...

contrast agent in each patient. Adding a simplified perimeter term and normalizing both terms in the energy functional,
we perform the graph cut twice using the BK max-flow algorithm described above; once to separate the healthy and
tumor tissues and again to separate the tumor and vessel tissues. Predetermined tissue means are provided in the
functional from sample regions obtained from regions of interest (ROI’s) produced by expert raters. To the best of our
knowledge, this is the first time the time series data has been incorporated into 2D liver image segmentation in this way,
and we show that doing so results in a relatively high degree of accuracy for a short computational time and an algorithm
that is simple to implement computationally as compared to other proposed methods in the literature. For example, no
training process is required.

2 Materials and Methods

The proposed method was evaluated on a clinical CT dataset of 2D images containing 10 hepatic tumors obtained as
dicom images from the M.D. Anderson Cancer Center at the University of Texas, and ground truth segmentations and
liver masks were provided by expert raters for evaluation of the method along with ROI’s for obtaining sample tissue
means for healthy, tumor, and vessel tissues. While this was provided for 10 different slice depths for each tumor, we
segmented only the most shallow depth so as to limit intensity variations from different body compositions as much as
possible. In the case where more than one ROI was provided for a tissue type, we used the first one provided for tumor
tissue and the second one provided for healthy tissue corresponding to the slide depth. We utilized phase 1 of a 64-stage
CT scanner in which a total of 59 slices were present in each series taken 0.5 sec apart over 30 seconds. The pixel spacing
was either .70 mm or .86 mm. The slice thickness was 5 mm, and the image resolution was 512 × 512 in all cases. All
segmentations are performed on the 59th image in the series to allow the contrast agent to reach its full efficacy. The units
of intensity in the CT images are Hounsfield units (HU). Note that all computations were performed using Matlab 2018a
on a personal computer with 4 Gb of RAM and a 2.5 GHz Intel Core i5 CPU.

2.1 Preprocessing

We use 59 images in each series taken over a sampling interval of 30 seconds. Let the image I be the 59th image. Utilizing
the full time series, we form a feature vector for each pixel pi ∈ I using the values of the intensities at each time step
for pi. We do this without smoothing the images so that we preserve the time series intensity values for each pixel. Also,
since each sequence of images is taken from the same patient over a short period of time, during which patients hold
their breath, we did not perform registration or motion correction on the sequence, and we assume in this model that any
movement between images for a given patient is negligible. Thus, we have

pi
59 −→ (pi

1, pi
2, pi

3, . . . , pi
59) ∀pi ∈ I.

Since the three different tissue types, healthy, tumor, and vessel, each respond with varying intensities over the time
series as the injected contrast agent is processed in the liver, we are able to incorporate the temporal information in tissue
intensity differences in addition to the spatial information in the initial image.

As a means of comparison with the proposed model, we also evaluate the data set using the BK graph cut on 1) the scalar
pixel intensities after a 3× 3 neighborhood median filter is applied; and 2) the case in which each pixel is vectorized
through the use of an averaging filter. In this case, we create a multiscale descriptor by taking the anisotropic average
around each pixel at different length scales. That is, we perform 10 convolutions such that the first entry of each
vectorized pixel, which we denote by pi

1, is generated by taking the convolution over a 1× 1 neighborhood of pi. The
second entry pi

2 uses a 2 × 2 neighborhood of pi, and so on so that the kth entry is formed using a k× k neighborhood of
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pi, where k ∈ {1,2, . . . ,10}. Pixels outside of a 10×10 neighborhood of pi are not considered to be of significant impact
on pi. We state the results for each of these approaches in the Results and Discussion section below.

2.2 Segmentation

Segmentation via graph cuts is formulated in terms of energy minimization; more precisely as finding the optimal surface
with the minimal cost. (See the graph cuts section of the Introduction for a brief overview of the theory behind graph
cuts.) Let F(L) be the energy functional to be minimized in the BK algorithm described above.

F(L) = ∑
i
||Ii−µLi ||2 +λ

 ∑
{i, j |Li 6=L j ,

i, j are neighbors}

min{||Ii− I j||−1
2 ,1}

 , (1)

where Ii denotes the ith vectorized pixel with label Li = 1,2 that has a predefined cluster center µ1 or µ2, respectively. L
denotes a particular labeling scheme, i.e. segmentation of the image I, such that L ∈L , the set of all possible labelings
of the pixels in I. “Neighbors” are defined via 8-connectivity. Further, we fix λ ≡ 1 for all the calculations below and
incorporate a normalizing feature for both terms, as described below.

The Data Term

We may interpret the first term in the functional as a data fidelity term that computes the 2-norm of the difference between
each vectorized pixel and the mean of those vectorized pixels in the region it is labeled with. After preprocessing, means
are derived from sample regions obtained from regions of interest (ROI’s) produced by expert radiologists. The first time
we run the graph cut, the two labels used are that of healthy and tumor, and thus µ1 is the mean value of the preprocessed
pixel vectors from a sample healthy region in I, and µ2 is the mean value from a tumor region. The second time, we use
the labels of vessel and tumor and their corresponding sample means. We note that the primary reason for performing the
second graph cut is to obtain a more complete segmentation of the tumor regions and not to obtain a precise location of
the vessel regions, which proves to be a challenging task in and of itself.

The Perimeter Term

We may interpret the second term in the functional as a perimeter regularization term that computes the edge weight
assigned between two pixels that are in different labels. In this case, it is the 2-norm of the difference between any two
vectorized pixels along a boundary. This means that perimeter penalties are charged only where the edge between two
pixels is cut. Normally this term, which we may denote by B(p,q), is large when pixels p and q are similar (e.g. in their
intensity) and B(p,q) is close to zero when the two are very different. For example, costs may be based on local intensity
gradient, Laplacian zero-crossing, gradient direction, geometric, or other criteria [6].
One standard form [6] of this term is

B(p,q) ∝ exp
(
−
(Ip− Iq)

2

2σ2

)
· 1

dist(p,q)
.

Another perimeter term in the literature [46] is

B(p,q) = ((Ip− Iq)
2 +1)−1 +λ Isg,
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when p and q are adjacent, and B(p,q) = 0 otherwise. Here Isg encapsulates the tumor gradient, and λ > 0.

We propose a simpler variant of the latter
min{||Ii− I j||−1

2 ,1},

which requires no user input or training data. Loosely speaking, it encourages cuts where the norm of the difference of
the vectorized pixels is large, such as on ground truth boundaries, and discourages them where this norm is small, with a
maximum penalty per cut of one. However, cuts can become too “cheap” and lead to grainy segmentations, which is why
we introduce the following normalizing component to the data and perimeter terms in (1).

Terminal and Edge Weight Matrices

For the BK algorithm, we compute the terminal weight matrix, which carries the weights for each pixel to the source
and sink, and the edge weight matrix, which represents the cost of cutting between pixels. We let our source and sink
each be one of µ1 or µ2, the tissue mean vectors that we generate from the tissue sample ROI’s provided by taking the
entrywise mean of the vectorized pixels in the corresponding region. We then compute the terminal weight matrix with
||Ii−µ1||2 and ||Ii−µ2||2 forming the entries in each column, i = 1,2, . . . ,5122. We compute the edge weight matrix by
first defining an 8-neighborhood of each pixel, by which we form a set of edges and the positions of their nodes, with the
latter comprising the first two columns of the edge weight matrix. The weights for all edges are then computed using the
perimeter term min{||Ii− I j||−1

2 ,1}, where Ii and I j are neighbors, i 6= j. Note that the forward and reverse directions
along an edge both carry the same weight since the graph is undirected.

In order to fix λ ≡ 1 and prevent the cost of cuts from being too low, we normalize the resulting terminal weights and
edge weights by dividing each weight vector by its maximum value. For each vectorized pixel pi, this results in the
corresponding values in the data and perimeter terms being between 0 and 1 so that the two terms in the functional (1)
are equally scaled and, intuitively, the graph cut doesn’t over- or undercharge for either term as compared to their
magnitudes. Otherwise, λ would need to vary over different segmentations, which is not practical. Lastly, by using the
BK algorithm twice, we obtain a 3-label segmentation in terms of healthy, tumor, and vessel tissues.

Time Series Matrix Algorithm

input: The paths of the 59 image folders and the slice depth
output: A matrix M of vectorized pixels and the 59th image for segmenting

(1) Load the 59 time series image folders
(2) Obtain the slice location of each image from each folder
(3) Create a 3D array of the images 512×512×59
(4) Set the smoothing parameter (if desired) for the images
(5) Perform the smoothing (if any) using 2D convolution
(6) Reshape the time series into a 5122×59 matrix M

Segmentation Algorithm

input: Time series matrix M of vectorized pixels, 59th image, and ROI paths for each tissue type
output: Segmented 3-label image
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(1) Load ROI’s for vessel, tumor, and healthy tissues
(2) Generate 8-connectivity matrix B from M
(3) Compute edge weight matrix from B using perimeter term
(4) Calculate the three tissue mean vectors using ROI’s and M
(5) Compute the terminal weight matrix from M using data term
(6) Run BK graph cut using healthy and tumor means to get Labels1 vector
(7) Find only those vectors in Labels1 labeled tumor
(8) Run BK graph cut using vessel and tumor means to get Labels2 vector
(9) Apply the pre-made liver mask to the full CT image

(10) Assign color scales using both sets of labels and reshape output image

2.3 Evaluation

As a quantitative assessment of the proposed model, we utilized the ground truth expert segmentations for the data set
along with three standard statistical performance measures commonly reported in the literature [17], [32], [43], [9], [46]
and the run time.

Volumetric Overlap Error

To compute the volumetric overlap error (VOE), we divide the number of pixels in the intersection of a segmented tumor
(S) and the ground truth (T) by the total number in the union. A score of 0 represents perfect segmentation. Note that in
the case of 2D data, we use the term volume in place of area for VOE and RVD.

VOE(%) =

(
1− |S∩T |
|S∪T |

)
×100

Relative Volume Difference

The relative volume difference (RVD) represents a measure of over- or under-segmentation of a tumor region (positive
being over and negative being under). Yet, it is not a standalone indicator of performance since if the segmented tumor (S)
has the same volume as the ground truth (T), a perfect segmentation value of 0 would be reported even if the two regions
did not overlap.

RV D(%) =

(
|S|
|T |
−1
)
×100

Dice Similarity Coefficient

The overall performance of the segmentation is given by the Dice similarity coefficient (DSC), where a score of 1
represents a perfect segmentation.

DSC =
2|S∩T |
|S|+ |T |
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3 Results and Discussion

Figures 1 and 2 below present the segmentations using the proposed method and the ground truth segmentations for each
patient. In all images, yellow represents tumor tissue, green represents vessel tissue, and blue indicates healthy tissue.

Fig. 1: The segmented image on the left and ground truth image on the right for the first five tumors using the proposed
method. Yellow is tumor and green is vessel tissue. c© 2019 BISKA Bilisim Technology
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Fig. 2: The segmented image on the left and ground truth image on the right for the second five tumors using the proposed
method. Yellow is tumor and green is vessel tissue.

Table 1. presents the statistical comparison of the proposed method with other methods from the literature, including
both automatic and semi-automatic. Data sets for the other methods shown include several different clinical CT sets,
3Dircadb, and LTSC, which came from the Medical Image Computing and Computer Assisted Intervention Society’s
(MICCAI) Liver Tumor Segmentation Challenge 2008. Note that while most of the other methods shown use 3D data
sets and/or 3D approaches, comparing 2D results with 3D results is standard practice [33], [3], [32], [28]. See [38] and
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[11] for a discussion of this comparison.

When compared to the expert provided ground truth segmentations for the 10 tumors in the clinical CT dataset, the
proposed method obtains a VOE of 36.7%, RVD of 35.1%, DSC of .77, and mean runtime of 1.25 min/slice. We observe
that using the time series feature vector significantly outperforms that of using the convolution-based feature vector,
described in the preprocessing section above, and that of using only a median filter and scalar pixel intensities, with VOE
53.1% and 61.5%, respectively, and DSC .58 and .48, respectively. While the RVD score is higher for the proposed
method than either of these alternatives (31.6% and 23.5%, respectively), it should be recalled that segmentation
methods can achieve a good score in this area and yet still be very inaccurate as they only have to segment the same
volume as that of the ground truth but may overlap little or none at all.

Compared to the other methods shown in Table 1., the proposed method scores well in the DSC metric (although many
methods do not report this value), which measures the overall performance of the algorithm. It is also comparable to the
DSC score of .83 for manual segmentation on the MIDAS dataset of 10 tumors [32]. It performs well in terms of
runtime, being faster per slice than five of the nine other methods reporting runtime. In this regard, it is a viable
alternative for expert raters since the average manual segmentation time often cited is 4.2 minutes per tumor [16]. While
some methods’ training time can be up to 6 hours on average [22], it is important to note that no training process or time
is required for the proposed method; only the three sample regions of each tissue type need to be provided as ROI’s to
compute the tissue sample means used in (1). Another important advantage is that the algorithm is relatively simple to
implement computationally when compared to most of the other methods shown. The results achieved are noteworthy in
this way even though they are not the highest overall scores. Looking at the four other methods in Table 1. that
incorporate graph cuts (GC) [42], [30], [32], and [46], we see similar results as just described. The proposed method’s
DSC of .77 is higher than two of the other three GC methods reporting; the runtime is comparable to all four; and the
VOE of 36.7% is only 7% higher than two of the other GC approaches. However, the RVD of 35.1% is significantly
higher than the other GC methods.

The contributions of the proposed method are as follows: 1) The time series data is incorporated into a feature vector to
make the BK algorithm more robust to weak boundaries and noise. 2) A simplified perimeter term is used together with a
normalization on both the data and perimeter terms, which scales both terms and removes the need for optimizing λ in
the energy functional. 3) A fast runtime and relatively accurate segmentation are achieved for an algorithm of low
computational complexity that requires no lengthy training process. In place of a training process, for new images to be
segmented using our semi-automatic method, radiologists need only to supply for the image a sample ROI for each tissue
type, healthy, tumor, and vessel. These sample regions can be identified by experts quickly in most cases since each
region need only contain 500-1000 pixels, enough to compute a sample mean for their respective tissue type. Then, our
algorithm uses these sample means in the functional F(L) to segment the image.

Several limitations of the method are that it often misses small tumors (which has a large effect on the VOE since it is a
relative measure), but oversegments in other areas (which results in the RVD being higher than desired). Both of these
are most likely due to the low contrast or weak boundaries of the tumors, which pose a significant challenge in liver
tumor segmentation, in general. To improve these issues, additional preprocessing could be tested, such as registration of
the 59 images in the series, which may yield a more precise time series representation for each pixel, or image contrast
enhancement techniques. In this case, however, we did not do this so as to keep the computational complexity and run
times at a minimum and also since each sequence of images is taken from the same patient over a 30-second period,
during which patients hold their breath. An additional limitation is that the second graph cut did not perform well at
locating the vessel tissues. While this was secondary to tumor segmentation in this case, it is deserving of further
investigation.
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. 

Method 
# of 

tumors 
Mean 

VOE (%) 
Mean 

RVD (%) 
Mean 
DSC 

Mean run- 
time (min) 

Stawiaski et al., 2008 
Interactive 

10 29.5 23.4 n/a 5-8/tumor 

Zhou et al., 2010 
Semi 

37 25.7±17.1 17.9±27.8 n/a 2-3/slice 

Masuda et al., 2011 
Auto 

15 37.2 30.7 n/a n/a 

Li et al., 2012 
Semi 

10 26.3±5.8 -10.6±7.6 n/a 0.5/slice 

Linguraru et al., 2012 
Auto 

79 n/a 12.4±12.0 .74±.16 50-60/tumor 

Häme and Pollari, 2012 
Semi 

20 30.4±11.0 2.4±1.4 n/a 0.5/slice 

Huang et al., 2013 
Auto 

20 32.9 22.0 n/a n/a 

Kadoury et al., 2015 
Auto 

10 25.2±1.7 14.3±2.8 n/a 1.7/slice 

Ronneberger et al., 2015 
Auto 

120 39 87 .73 n/a 

Foruzan and Chen, 2016 
Semi 

120 30.6±10.4 16.0±12.0 .82±.07 2.5/slice 

Christ et al., 2016 
Auto 

20 16.0 -6.0 .91 n/a 

Moghbel et al., 2016 
Auto 

120 22.8±12.2 8.6±18.8 .75±.15 0.5/slice 

Wu et al., 2017 
Semi 

120 29.0±8.2 -2.2±15.9 .83±.06 .75/slice 

Graph cut using median 
filter and scalar pixels 

Semi 

10 61.5±29.4 23.5±60.3 .48±.35 0.5/slice 

Graph cut using 
convolution feature 

vector; Semi 

10 53.1±27.1 31.6±34.1 .58±.30 1.8/slice 

Proposed method 
Semi 

10 36.7±11.2 35.1±38.7 .77±.09 1.25/slice 

Table 1. The statistical measures for the proposed method versus other methods [48], [42], [31], [28], [30], [16], [19],
[22], [39], [13], [9], [32], [46].
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4 Conclusions

In this paper, we propose a semi-automatic method of liver CT scan segmentation that incorporates the time series data
in a novel way by creating a feature vector for each pixel using the 59 intensity values over time. We use a simplified
perimeter cost term and normalize the data and perimeter terms in the functional to execute the graph cut without having
to optimize the scaling parameter λ in (1). In place of a training process, predetermined tissue means are provided in the
functional that are computed from sample regions of interest (ROI’s) produced by experts, which we use to perform a
graph cut twice using the BK max-flow algorithm. We first separate healthy and tumor tissues and then vessel and tumor
tissues. The proposed method yields a relatively high degree of accuracy (e.g., a mean DSC of .77) for a short runtime
(1.25 min./slice) and an algorithm of comparatively low computational complexity; e.g., there is no training process
required. We shall implement additional features to address the higher than desired RVD value and enhance the ability of
the proposed method to accurately detect small tumors. Testing the method on additional datasets would also be beneficial.
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