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Abstract: In this paper, we explore several methods of representihgessi ofR" using their geometric and analytic properties. We
present a heuristic, expository approach to estimatingitteeof various sets and their boundaries, with the goalefgmwing important
features in the representations. The aim is to stimulatFést in and serve as an introduction to this topic as welvasother well
known methods: Joneg numbers and varifolds from geometric measure theory. Weigeovarious computations and exercises,
numerous illustrations, suggestions for further reseamt an extensive list of current resources and referendbgse areas.

Keywords: Analysis, geometric measure theory, varifolds, cubicakes.

1 Introduction

In this paper we explain and illuminate a few ideas for (1yespnting sets and (2) learning from those representations
Though some of the ideas and results we explain are likeltemridown elsewhere (though we are not aware of those
references), our purpose is not to claim priority to thoseces, but rather to stimulate thought and exploration. Our
primary intended audience is students of mathematics éwemh other, more mature mathematicians may find a few of
the ideas interesting. We believe that cubical covers carsbd at an earlier point in the student career and that beth th
B numbers idea introduced by Peter Jones and the idea of idsrifioneered by Almgren and Allard and now actively
being developed by Menne, Buet, and collaborators arevetyl much underutilized by all (young and old!). To that end,
we have written this exploration, hoping that the questiand ideas presented here, some rather elementary, will
stimulate others to explore the ideas for themselves.

We begin by briefly introducing cubical covers, Jongs'and varifolds, after which we look more closely at question

involving cubical covers. Then both of the other approacresexplained in a little bit of detail, mostly as an inviteti
to more exploration, after which we close with problems fa teader and some unexplored questions.

2 Representing sets and their boundaries ifR"

2.1 Cubical refinements: dyadic Cubes
In order to characterize various setsRR, we explore the use of cubical covers whose cubes have sighlewhich are
positive integer powers o% dyadic cubes or more precisely, (closed) dyadiecubes with sides parallel to the axes.

Thus the side length at thith subdivision id (C) = 2—1d, which can be made as small as desired.

Figure1 illustrates this by looking at a unit cube ®? lying in the first quadrant with a vertex at the origin. We then

© 2019 BISKA Bilisim Technology * Corresponding author e-maikaltimemath@gmail.com and vixie@speakeasy.net


 http://dx.doi.org/10.20852/ntmsci.2019.392

513 BISKA Laramie Paxton and Kevin R. Vixie: Cubical Covers of Set&h

(0,1) (1.1)

(0,0) (1,0
d=1 d=1 d=2

I(C) = (C) =3 1C) = &

Fig. 1: Dyadic Cubes.

Fig. 2: Cubical covefs S of a setE.

form a sequence of refinements by dividing each side lengttaihsuccessively, and thus quadrupling the number of
cubes each time.

Definition 1. We shall say that the n-cube C (with side length denoted@3 Is dyadic if

n
C= |‘|1[m12*d, (mj+1)279), m; € Z, d e NU{0}.
J:

In this paper, we will assum@ to be a dyadia-cube throughout. We will denote the union of the dyadicubes with
edge Iengthzld that intersect a sé C R" by ngE and defineﬂ%dE to be the boundary of this union (see Fig@je Two
simple questions we will explore for their illustrative pases are:

(1) "If we know £"(%F), what can we say abou#(E)” and similarly,
(2) "If we know s#"~1(9%F), what can we say abou#"1(JE)”

© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 4, 512-533 (2019)www.ntmsci.com BISKA 7514

===

Fig. 3: Jones’S Numbers. The green lines indicate the thinnest cylindetainimg I” in the cubeC. We see from this
relatively large width thaf is not very “flat” in this cube.

2.2 Jones3 numbers

Another approach to representing set®Rih developed by Jone&J], and generalized by Okikiolu3g], Lerman R5],
and Schul 5], involves the question of under what conditions a boundgdEscan be contained within a rectifiable
curvel”, which Jones likened to the Traveling Salesman Problemrmtaker an infinite set. (See Definitidhbelow for
the definition of rectifiable.)

Jones showed that if the aspect ratios of the optimal cantaiylinders in each dyadic cube go to zero fast enough, the
set E is contained in a rectifiable curve. Jones’ approach ends rapiging one useful approach of defining a
representation for a set R" similar to those discussed in the next section. We returhitotopic in Sectiorb.1 The
basic idea is illustrated in Figuf®@

2.3 Working upstairs: varifolds

A third way of representing sets IR" usesvarifolds Instead of representirig C R" by working inR", we work in the
Grassmann BundJ&" x G(n,m).

We parameterize the Grassmann@(®,1) by taking the upper unit semicircle I®? (including the point1,0), but not
including (1, m), where both points are given in polar coordinates) andgditaning it out into a vertical axis (as in
Figure4). The bundleR? x G(2,1) is then represented B2 x [0, 7).

Figure5 illustrates how the tangents are built into this repred@ntaf subsets oRR", giving us a sense of why this
representation might be useful. A circular curveRA becomes two half-spirals upstairs (in the Grassmann bundle
representation, as shown in the first image of Figi)r®ther curves ifR? are similarly illuminated by their Grassmann
bundle representations. We return to this idea in Se&ién
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Fig. 4: The vertical axis for the “upstairs.”

Fig. 5: Working Upstairs in the Grassmann bundle.

3 Simple questions

LetE C R" andC be any dyadin-cube as before. Define
% (E,d)={C|CNE#0, 1(C) =1/2%}

and, as above,

%= |J C
Ce%(E,d)
Here are two questions:
(1) GivenE C R", when is there &g such that for ald > do, we have
L"(%5) <M(n).Z£"(E) 1)

for some constari(n) independent oE?
(2) GivenE C R", and anyd > 0, when does there existgla such that for ald > dy, we have

LMN65) < (140).£"(E)? (2)
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Fig. 6: Concentric Cubes.

Remark.Of course using the fact that Lebesgue measure is a Radoruraga® can very quickly get that far large
enough (i.e. 29 small enough), the measure of the cubical cover is as cldke tneasure of the set as you want, as long as
the set is compact and has positive measure. But the fochssqfdaper is on what we can get in a much more transparent,
barehanded fashion, so we explore along different patlisngeanswers that are, by some metrics, suboptimal.

Example 1.1f E=Q"N[0,1]", then.Z"(E) = 0, but.Z"(¢f) = 1vd > 0.

Example 2.Let E be as in Exampld. EnumerateéE asdy,d»,ds,.... Now letD; = B(qj, %) andE; = {UD;} N[0, 1]"

with & chosen small enough so thet"(E;) < 155. Then.Z"(E;) < 755, but.#"(¢;°) = 1vd > 0.

3.1 A Union of balls

For a given seF C R", suppose&E = Uxcr B(X, ), @ union of closed balls of radiuscentered at each poirtn F. Then
we know thatE is regular (locally Ahlfors n-regular orlocally n-regular), and thus there existfOm < M < o and an
ro > 0 such that for alk € E and for all 0< r < rg, we have

mr" < #"(B(x,r)NE) < Mr".

This is all we need to establish a sufficient condition for &tipn (1) above.

Remark.The upper bound constaht is immediate sinc& is a union ofn-balls, soM = ap, the n-volume of the unit
n-ball, works. However, this is not the case feregular sets iR", k < n, since we are now asking for a bound on the
k-dimensional measure of amdimensional set which could easily be infinite.

(1) Suppos& = Uxer B(x,r), a union of closed balls of radiuscentered at each poirtin F.
(2) Let%® = %(E,d) for somed such thatzid <, and letd = {3C| C € ¢}, where & is ann-cube concentric witiC
with sides parallel to the axes ah@C) = 3I(C), as shown in Figuré.
(3) This implies that for @ € €
Z"(3CNE)
Z£"(3C)
(4) We then make the following observations:
(a) Note that there aré'8lifferent tilings of the plane by@cubes whose vertices live on tljglattice. (This can be
seen by realizing that there are $hifts you can perform on &3cube and both (1) keep the originally central
cubeC in the 3 cube and (2) keep the vertices of the Gube in thez—ldr lattice.)

>0 >0, with 8 eR. 3)
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(b) Denote the @ cubes in these tilings7,i = 1,...,3".
(c) Definedi =¥ N 4.
(d) Note now that by Ste8], the number of @ cubes in6; cannot exceed

N = _Z"(E)
' 0.4"(3C)’
(e) Denote the total number of cubesdhby N%/dE.
(f) The number of cubes i, N%E' cannot exceed
3" gn(E)

i;Ni 23”7992&”(3@.

(g) Putting it all together, we get

LEE) = L"(Ucee©) = Nyg £7(C) < 3“%3”(@ - 26, @

(5) This shows that iE = Uy B(X,r), then
1
LNEE) < 5-Z"(E).
We now have two conclusions:

(1) (Regularized sets) We notice that for any fixgd> 0, as long as we piclly big enough, them < ro andd > dy
imply thatE = Uyep B(x,r) satisfies
1
n E < n
L) < gL "E),
for a8(n) > 0 that depends on n, but not &n
(2) (Regular sets) Now suppose that

FeZn={WCR"|mM< " WnNB(x,r)), VxeW andr <ro}.
Then we immediately get the same result: for a big enat@depending only omg),
LNEg ) <

wheref8(m) > 0 depends only on the regularity class tRalives in and not on which subset in that class we cover
with the cubes.

3.2 Minkowski content

Definition 2. (Minkowski content).Let W C R", and let W = {x | d(x,W) < r}. The (h— 1)-dimensional Minkowski

Content is defined a%/”*l(W) =lim;_o znz(:/v,) , when the limit exists (see Figuré.

Definition 3. ((-#™, m)-rectifiable set)A set WC R" is called(s#™, m)-rectifiable if 7#™(W) < o and #™-almost all
of W is contained in the union of the images of countably mapschitz functions fronR™ to R". We will userectifiable
and (7™ m)-rectifiable interchangeably when the dimension of the sets are clear flee context.

Definition 4. [m-rectifiable] We will say that E= R" is mrrectifiable if there is a Lipschitz function mapping a bounded
subset ofR™ onto E.
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N y W

Fig. 7: Minkowski Content.

Theorem 1..#"~Y(W) = s#"~1(W) when W is a closedn-1)-rectifiable set.
See Theorem 3.2.39 i2{] for a proof.

Remark Notice thatm-rectifiable is more restrictive th&apZ’™, m)-rectifiable. In fact, Theorert is false for(#™, m)-
rectifiable sets. See the notes at the end of section 3.2[29ifor details.

Now, letW be (0-1)-rectifiable, sety = /n (Eld) and chooses small enough so that
LM(W) <M HW)2rg + B,

foralld e NU{0} such thaty <rs. (Note: Because the diameter of atube with edge Iengt% isrg =+/n (Zid) , ho

point of ¢}V can be farther thary away fromw. Thus%y' € W,.)

Assume thatZ?"(E) # 0 anddE is (n-1)-rectifiable. LettingV = JE, we have
LNEE) - LNE) < L W) < A" HOE)2rg+ 8 < A" IE)2r5 + 6

so that

5 «  M"YIE)2r5+ 6
n E n _ [
LNET) < (1+90).L"(E), whered = "E) .

(5)

Since we controt s andd, we can make as small as we like, and we have a sufficient condition to éskhaBquation
(2) above.

The result: let & be as in Equation5) andE C R" such that#"(E) # 0. Suppose thadE (which is automatically
closed) is §-1)-rectifiable and#"~1(JE) < oo, then, for every > 0 there exists do such that for ald > do,

LNER) < (1+8)L"(E).

Problem 1. Suppose thaE C R" is bounded. Show that for amy> 0, E;, the set of points that are at most a distance
r from E, has a(#"~1,n— 1)-rectifiable boundary. Show this by showing tf&; is contained in a finite number of

© 2019 BISKA Bilisim Technology


www.ntmsci.com

(_/
519 BISKA Laramie Paxton and Kevin R. Vixie: Cubical Covers of Set&h

graphs of Lipschitz functions froR"* to R. Hint: cutE; into small chunks; with common diameteD < r and prove
that(F); is the union of a finite number of Lipschitz graphs.

Problem 2.Can you show that in fact the boundaryif dE;, is actually (-1)-rectifiable? See if you can use the results
of the previous problem to help you.

Remark.We can cover a unioi of open balls of radiugs, whose centers are bounded, with a co@ satisfying
Equation ). In this cased%dE certainly meets the requirements for the result just shown.

3.3 Smooth boundary, positive reach

In this section, we show that #E is smooth(at leasiC1), thenE has positivaeachallowing us to get an even cleaner
bound, depending in a precise way on the curvatutof

We will assume tha€k is closed. Definek; = {x € R"|dist(x,E) < r}, cls(x) = {y € E | d(x,E) = |[x—y|} and
uniqueE) = {x| cls(x) is a single poin.

Definition 5. [Reach] Thereach of E,reaciE), is defined
reaclE) = sup(r | E; C uniqueE)}

RemarkSets of positive reach were introduced by Federer in 19601 a paper that also introduced the famous coarea
formula.

Remark!f E ¢ R"is (n-1)-dimensional ané is closed, theft = JE.

An_other equivalent definition involves rolling balls ara@uthe boundary of. The closed balB(x,r) touchesE if

0B(x,r)NJE # 0 and 3 3
B(x,r)NE C dB(x,r)NJE

Definition 6. Thereach of E,reaciE), is defined
reaclE) = sup(r | every ball of radius r touching E touches at a single pint

Put a little more informally, readk) is the supremum of radii of the balls such that each ball of that radius rolling
around E touches E at only one point (see Fig8)teAs mentioned above, #E is CH1, then it has positive reach (see
Remark 4.20in20]). That is, if for allx € dE, there is a neighborhood &fUx C R", such that after a suitable change of
coordinates, there is@"! function f : R"™1 — R such thadE NUy is the graph off. (Recall that a function i€ if its
derivative is Lipschitz continuous.) This implies, amorthey things, that the (symmetric) second fundamental fofm o
JE exists./#"~1-almost everywhere ofE. The fact thadE is C1* implies that at#"~1-almost every point 0PE, the
n— 1 principal curvatures; of our set exist angki| < m fori<i<n-—1.
We will use this fact to determine a bound for tfre— 1)-dimensional change in area as the boundary of our set is
expanded outwards or contracted inwardsk{gee Figured, Diagram 1). Let us first look at this iR? by examining the
following ratios of lengths of expanded or contracted amsskctors of a ball ifR? as shown in Diagram 2 in Figu@
below.

HHg) (r+e)0 g
2 R
AN _g) (r—€)8 &
) T re Ty iTEe
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Fig. 8: Positive and Non-positive reach.
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o |
Diagram 1.

Fig. 9: Moving out and sweeping in.

wherek is the principal curvature of the circle (the boundary of 2hkall), which we can think of as defining the reach
of a setE ¢ R? with C11-smooth boundary.

The Jacobian for the normal map pushing in or outebwhich by the area formula is the factor by which the area
changes, is given by~ (1+ £k;) (see Figur®, Diagram 1). If we defin& = max{|k1/, |Kz|, ..., |kn_1|}, then we have
the following ratios:

Max Fractional Increase o#"~* boundary “area” Moving Out:
n-1

_I_!(1+ eki) < (14 k)" L.

Max Fractional Decrease o#"~ boundary “area” Sweeping In:
n-1

rl(lf £K) > (1—ek)" L.
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: s 1
RemarkNotice thatk = Feachae) -

For a ball, we readily find the value of the ratio

ZN(B(O,r +¢))
Z"(B(0,r))

= (r Jrr 8) ’ = (1+¢€k)" (settingd = ek) = (1+9)", (6)

wherek = % is the curvature of the ball along any geodesic. Now we cateuhe bound we are interested in &y
assumingE is CH1. DefineE; ¢ R" = {x| d(x,E) < €}. We first compute a bound for

PNE:) _ LE)+ LNENE) _,  LT(ENE)

78 2 Z7E) 7)

Sincek; is a function ofx € dE defined.#”"~1-almost everywhere, we may set up the integral below é&and do the
actual computation ovae?E \ K, whereK = {the set of measure 0 whekgis not defined. Computing bounds for the
numerator and denominator separately in the second ter),iwé find, by way of the Area Formul8]],

SE\E) = /OS/(;EH(H rki)d" Ldr

&
§/ / (1+rk)"1dotdr
0 JOE

= #""1(9E) % :
— #"(GE) <%%> 8)

and

SN(E) > /Oro /aE in|'|1(1 rki)d. " dr

r
> / ’ / (1 r&)™Lde"tdr
0 JE

_ en-og) Ao TR)
Nk

0

n-1
— L’@E)7 Whenro —
nK

: (9)

EINE

From?7, 8, and9, we have

nK nK

n—1 (I+e)" 1
e ) (et - 1)

ZNE) = A" 1(9E)

= (1+&R)" (settingd = k)
= (145" (9

From this we get that
LN(Ee) < (1+€R)"Z"(E)

so that
LN Ghi) < (1+R)"L(E)
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Fig. 10: Cubes on the boundary.

whered(€) = Iogz(@) is found by soIving\/ﬁzid = &. Thus, wherdE is smooth enough to have positive reach, we find

a nice bound of the type in EquatioP)(with a precisely known dependence on curvature.

4 A boundary conjecture

What can we say about boundaries? Can we bound

%nfl(acng) R
A"1(GE)

Conjecture 11f E ¢ R" is compact andE is C11,

limsu M <n
doa AI(GE)

Proof. [Brief Sketch of Proof foin = 2]

(1) SincedE isCH1, we can zoom in far enough at any point dE so that it looks flat.
(2) LetC be a cube in the coveéf (E,d) that intersects the boundary neeand has faces in the boundeE. Define
F=0CNnost.
(3) (Case 1) Assume that the tangem,aidE, is not parallel to either edge direction of the cubical edgee Figurd 1).
(1) Letll be the projection onto the horizontal axis and notice t%%g—) < 2+ ¢ for any epsilon.
(2) This is stable to perturbations which is important sitieactual piece of the boundae we are dealing with
is not a straight line.
(4) (Case 2) Suppose that the tangent, aJE, is parallel to one of the two faces of the cubical cover, aty} be a
neighborhood ok € JE.
(1) Zooming in far enough, we see that the cubical boundamyocdy oscillate up and down so that the maximum
ratio for any horizontal tangent is (locally) 2.
(2) Butwe can create a sequence of examples that attais esticlose to 2 as we like by finding a careful sequence

of perturbations that attains a ratio locally ofZ for any ¢ (see Figurel0).
AL EENU,
(8) Thatis, we can create perturbations that, on an unbalseteofd's, {d;}{* ;, yield a ratio%

and we can sengd — 0.
(5) Use the compactness@E to put this all together into a complete proof.

— &,

Problem 3. Suppose we exclud@’s that contain less than some fracti@rof E (as defined in Conjectur® from the
cover to get the reduced covéE. In this case, what is the optimal bouB(@®) for the ratio of boundary measures

. ALOECF)
| = d/ <B(6)?
msupige) < B
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aCt  oE

Fig. 11: The case in whicl®, the angle betweefdE and thex-axis, is neither 0 nor/2.

5 Other representations

5.1 The JonesB approach

As mentioned above, another approach to representingsits developed by Jone&y], and generalized by Okikiolu
[33], Lerman P5], and Schul B9, involves the question of under what conditions a boundgdEscan be contained
within a rectifiable curvd™, which Jones likened to the Traveling Salesman Problermtaker an infinite set. While
Jones worked i€ in his original paper, the work of Okikiolu, Lerman, and Stbxtended the results fR" Vn € N as
well as infinite dimensional space.

Recall that a compact, connected Eet- R? is rectifiable if it is contained in the image of a countableafeipschitz
maps fromR into R?, except perhaps for a set o#1 measure zero. We have the result thaf ifis compact and
connected, thehI") = #1(I") < o implies it is rectifiable (see pages 34 and 351]].

Let W denote the width of the thinnest cylinder containing theEsét the dyadian-cubeC (see Figurel2), and define
the 8 number ofE in C to be
We

Be(C) ic)

Jones’ main result is this theorem:

Theorem 2.[23] Let E be a bounded set and be a connected set both B?. Definefr (C) = %, where W is the
width of the thinnest cylinder in tHacube C containing . Then, summing over all possible C,

B3(r) = Z(Br (3C))?I(C) < nl(r) < », wheren € R.

Conversely, i3?(E) < o there is a connected s&t, with E C I, such that
() < (1+ &) diam(E) + asB?(E),

where >0 and a5 = a(d) € R.
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Fig. 12: Jones’B Numbers and\t. Each of the two green lines in a cuBds an equal distance away from the red line
and is chosen so that the green lines define the thinnestleylaontaininge NC. Then the red lines are varied over all
possible lines irC to find that red line whose corresponding cylinder is theribst of all containing cylinders. In this
sense, the minimizing red lines are the best fiEtm eachC.

Jones’ main result, generalizedRd, is that a bounded s& C R" is contained in a rectifiable curveif and only if
B(E) = Z(BE(SC))Zl (C) <o,
where the sum is taken over all dyadic cubes.

Note that eacl8 number ofE is calculated over the dyadic cub€,3as defined in Sectiod.1 Intuitively, we see that in
order forE to lie within a rectifiable curvé , E must look flat as we zoom in on points Bfsincel” has tangents at
*-almost every poink € I". Since bothA¢ andl(C) are in units of lengthfg (C) is a scale-invariant measure of the
flatness oE in C. In higher dimensions, the analogous cylinders’ widths eutte edge lengths are also divided to get a
scale-invarianfg (C).

The notion of local linear approximation has been explongdnany researchers. See for example the work of Lerman
and collaborators15,5,40,6]. While distances other than the sup norm have been comsidehen determining
closeness to the approximating line, s&g][ there is room for more exploration there. In the sectiololweProblems
and Questionswe suggest an idea involving the multiscale flat norm frommngetric measure theory.

5.2 A varifold approach

As mentioned above, a third way of representing seRrusesvarifolds Instead of representirig c R" by working

in R", we work in theGrassmann BundJeR" x G(n,m). Advantages include, for example, the automatic encodfng o
tangent information directly into the representation. Bilding into the representation this tangent informatiwa,make
set comparisons where we care about tangent structure edsyatural.

Definition 7. [Grassmannian] The m-dimensional Grassmanniafkh
G(n,m) = G(R",m),

is the set of all m-dimensional planes through the origin.
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For example(3(2,1) is the space of all lines through the origin¥, andG(3,2) is the space of all planes through the
origin in R3. The Grassmann bundR" x G(n,m) can be thought of as a space wh&@, m) is attached to each pointin
R".

Definition 8. [Varifold] A varifold is a Radon measurg on the Grassmann bundR" x G(n,m).

Supposer: (x,g) € R" x G(n,m) — x. One of the most common appearances of varifolds are thedeatlse from

rectifiable set€. In this case the measure onR" x G(n,m) is the pushforward ofr-Hausdorff measure of by the
tangent maf : x — (X, TxE).

LetE C R" be an (#™, m)-rectifiable set (see Definitiod). We know the approximat@-dimensional tangent spadgE
exists.7#’M-almost everywhere sinde is (##™, m)-rectifiable, which in turn implies that, except for a#™-measure 0
set,E is contained in the union of the images of countably many dhijig functions froniR™ to R".

The measure oA C R" x G(n,m) is given by u(A) = #™T~{A}). Let S= {(x, TxE) |x € E}, the section of the
Grassmann bundle defining the varifoRl.intersected with each fibéx} x G(n,m), is the single pointx, TxE), and so
we could just as well use the projectiarin which case we would haye: (A) = #™((ANYS)).

Definition 9. A rectifiable varifoldis a radon measurgie defined on an ™, m)-rectifiable set E- R". Recalling S=
{(X, TkE) |x € E}, let AC R" x G(n,m) and define

He(R) = #™((ANS)).

We will call E = m(S) the “downstairs” representation &for any Sc R" x G(n,m), and we will callS=T(E) C
R" x G(n,m) the “upstairs” representation of any rectifiable EetvhereT is the tangent map over the rectifiable Bet

Fig. 13: Working upstairs.

Figurel3, repeated from above, illustrates how the tangents artibtdlthis representation of subsetsRif, giving us a
sense of why this representation might be useful. Suppodeawe three line segments almost touching each other, i.e.
appearing to touch as subsetsRst The upstairs view puts each segment at a different heighésponding to the angle

of the segment. So, these segments are not close in any sek$e iG(n,m). Or consider a straight line segment and a
very fine sawtooth curve that may look practically indistirgiable, but will appear drastically different upstairs.

We can use varifold representations in combination with l@ical cover to get a quantized version of a curve that has
tangent information as well as position information. Ify é&xample, we cover a s&tC R? x G(2,1) with cubes of edge
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Iengthzid and use this cover as a representatiorSaxe know the position and angle to with&ﬁ. In other words, we
can approximate our cun®c R? x G(2,1) by the union of the centers of the cubes (with edge Ierzﬂg)ﬁlntersectings
This simple idea seems to merit further exploration.

6 Problems and questions

Problem 4.Find a smootE, with E C R", such that
A" HOCE) ) " HIE) = 0Vd.
Hint: Look at unbounde& c R? such that??(E®) < o.
Problem 5. Suppose thaE is open and#"~1(9E) < . Show that if theeach of JE is positive, then

Y oEE)
m _— >
i inf A#"1(9E) =1

Hint: First show thatE has unique inward and outward pointing normals. (Takes af bibbrk!) Next, examine the map
F : 0E — R", whereF (x) = x4+ n(x)N(x), N(x) is the normal todE atx, andn(x) is a positive real-valued function
chosen so thabcally F(JE) = 96F. Use the Binet-Cauchy Formula to find the Jacobian, and tppty ahe Area
Formula. To do this calculation, notice that at any poie JE we can choose coordinates so tlgE is horizontal
(i.e. N(xo) = en). Calculate using : T, 0E = R"~1 — R" whereF (x) = x+ n(x)N(x). (See Chapter 3 ofL] for the
Binet-Cauchy formula and the Area Formula.)

Problem 6. SupposéE has dimensiom — 1, positive reach, and is locally regular {&f%).
(a) Find bounds for?™™ (%) / ;.
(b) How does this ratio relate te#”"~*(E)?

Hint: Use the ideas in Sectidh3to calculate a bound on the volume of the tube with thickn%@antered or.

Question 1Can we use the “upstairs” version of cubical covers to finteoeepresentations for sets and their boundaries?
(Of course, “better” depends on your objective!)

For the following question, we need the notion of theltiscale flat norni32). The basic idea of this distance, which
works in spaces of oriented curves and surfaces of any diomre lksnown as currents), is that we can decompose the
curve or surfacq into (T — dS) + dS, butwe measure the cost of the decomposition by adding the valwfie — 0S
andS (not 09). By volume, we mean therdimensional volume, om-volume of anm-dimensional object, so if is
m-dimensional, we would add the-volume of T — dSand the (+1)-volume ofS (scaled by the paramet&j). We get
that

FA(T) = MinMu(T = 99) + AMm1(9).

Itturns out thall — dSis the best approximation tbthat has curvature bounded by 2]. We exploit this in the following
ideas and questions.

Remark Currents can be thought of as generalized oriented curvesrtaces of any dimensida More precisely, they
are members of the dual space to the spadefofms. For the purposes of this section, thinking of thenfpeshaps
unions of pieces of) orientdddimensional surfaced/, so thatw and—W are simply oppositely oriented and cancel if
we add them, will be enough to understand what is going onafice introduction to the ideas, see for example the first
few chapters of31].
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Question 2Choosek € {1,2,3}. In what follows we focus on sefs which are one-dimensional, the interior of a cbe
will be denotedC®, and we will work at some scats i.e. the edge length of the cube will @@

Consider the piece df in C° " NCP°. Inside the cub€ with edge Iengtf%, we will use the flat norm to

(1) find an approximation of NC° with curvature bounded by = 2¢+k and
(2) find the distance of that approximation frgnm C°.

This decomposition is then obtained by minimizing

M1 ((I NC°) — 39) + 29+KMy(S) = 72 ((IF NC°) — 39) + 29K £2(S).
The minimalSwill be denotedy; (see Figurel4).

Fig. 14: Multiscale flat norm decomposition inspiring the definitiain3E .

Suppose that we defirg¥ (C) by
B (O)I(C) = 2 2%(sy)
so that
BF(C) = 227 2%(sy).
What can we say about the properties (e.qg. rectifiability) gfiven the finiteness df ¢ (B,I-F(SC))ZI (C)?

Question 3.Can we get an advantage by using the flat norm decompositiarpasconditioner before we find cubical
cover approximations? For example, define

Fi =% andly =T — 0%,
whereS; = argmin(%l(l' —09) + 2d+k.22(8)) .
s

Since the flat norm minimizers have bounded mean curvatitkis enough to force the cubical covers to give us better
quantitative information oif ? How about in the case in whi¢gh= dE, E c R2?
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7 Further exploration

There are a number of places to begin in exploring these feder. Some of these works require significant dedication
to master, and it is always recommended that you have sonveloméas mastered a path into pieces of these areas that
you can ask questions of when you first wade in. Nonetheliegsiremember that the language can always be translated
into pictures, and you make the effort to do that, headwaytd&/mastery can always be made. Here is an annotated list
with comments:

(1) (Primary Varifold References) Almgren’s little book][and Allard’s founding contributionl]] are the primary
sources for varifolds. Leon Simon’s book on geometric meatheory B6] (available for free online) has a couple
of excellent chapters, one of which is an exposition of Allapaper.

(2) (Recent Varifold Work) Both Buet and collaboratogsd, 7,10,11] and Charon and collaboratorsZ, 13,14] have
been digging into varifolds with an eye to applications. Whiese papers are a good start, there is still a great deal
of opportunity for the use and further development of vddioOn the theoretical front, there is the work of Menne
and collaborators?9,30]. We want to call special attention to the recent introduttio the idea of a varifold that
appeared in the December 2017 AMS Noticgq [

(3) (Geometric Measure Theory I) The area underlying thasdeere are those from geometric measure theory. The
fundamental treatise in the subject is still Federer's 18@@metric Measure Theof21] even though most people
start by reading Morgan'’s beautiful introduction to thejegh Geometric Measure Theory: A Beginner's Gujdé]
and EvansMeasure Theory and Fine Properties of Functigt§]. Also recommended are Leon Simon'’s lecture
notes B6], Francesco Maggi's book that updates the classic Italgm@ach 7], and Krantz and Park€seometric
Integration Theonj24].

(4) (Geometric Measure Theory Il) The book by Matt?8] approaches the subject from the harmonic-analysis-fialor
thread of geometric measure theory. Some use this as a fingecin geometric measure theory, albeit one that does
not touch on minimal surfaces, which is the focus of the otherts above. De Lellis’ expositioRectifiable Sets,
Densities, and Tangent Measufé§] or Priess’ 1987 papgbeometry of Measures IR": Distribution, Rectifiability,
and Densitie§34] is also very highly recommended.

(5) (Jones’B) In addition to the papers cited in the tex23[33,25,35], there are related works by David and Semmes
that we recommended. See for examlé][ There is also the applied work by Gilad Lerman and his catators
that is often inspired by Jonef’ and his own development of Jones’ ideas2B][ See also 15,40,39,5]. See also
the work by Maggioni and collaborator2g, 3].

(6) (Multiscale Flat Norm) The flat norm was introduced by Wkl in 1957 B8] and used to create a topology on
currents that permitted Federer and Fleming, in their laanttnpaper in 196032, to obtain the existence of
minimizers. In 2007, Morgan and Vixie realized that a vaoiaal functional introduced in image analysis was
actually computing a multiscale generalization of the fatm[32]. The ideas are beginning to be explored in these

papers B7].

A Measures: a brief reminder

In this section we remind the reader of a handful of conceptslin the text.

(1) (Measure) One way to think of a measure is as a geneializat the familiar notions of length, area, and volume
in a way that allows us to define how we assign “size” to a givgrsst of a seX, the most common being that of
n-dimensional Lebesgue measu®. Formally, letX be a nonempty set and e the collection of all subsets Xt
A measurds defined L8] to be a mapping : 2X — [0, ] such that

(@) p(0)=0and
(b) if
ACUZA,
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then

u(A)Siu(A)-

Note that in most texts, this definition is known asarer measurebut we use this definition with the advantage
that we can still “measure” non-measurable sets.
(2) (u-measurable) A subs&tc X is calledu-measurable if and only if it satisfies the Carathéodorydation for each
setAC X:
p(A) = u(ANS) + U(A\S).

(3) (Radon Measure) Let us define the Borel sef®'rto be those sets that are derived from the set of all openrsets i
R" through the operations of countable union, countablesetgion, and set difference. Then a meaguon R" is
aRadonmeasure if 1§

(a) every Borel setigi-measurable; i.eu is aBorel measure

(b) for eachA C R" there exists a Borel s&such thatA ¢ Bandu(A) = u(B); i.e. u is Borel regular.
(c) for each compact sét € R", u(K) < oo; i.e. u is locally finite.

(4) (Hausdorff Measure) With this outer (radon) measurecare measurk-dimensional subsets &" (k < n). While
it is true that?™ = 7" for n € N (see section 2.2 oflB]), Hausdorff measurg# is also defined fok € [0, ) so
that even sets as wild as fractals areasurablen a meaningful way (see Figue). To compute thé-dimensional
Hausdorff measure & C R"™:

(a) CoverA with a collection of set&’ = {E; };* ;, where dianiE;) < d Vi.
(b) Compute th&-dimensional measure of that cover:

. Nk
rim =Sl ()

wherea (k) is thek-volume of the unik-ball.

(c) DefineZK(A) =infs 7¥(A), where the infimum is taken over all covers whose elements imaximal diameter
d.

(d) Finally, we defines¥(A) = limgj 0 2(A).

Z.““j":‘ (\.1 \.\.)I _.\>

‘ diam(FE)

Fig. 15: The Hausdorff Measure is derived from a cover of arbitratg.se
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(5) (Approximate Tangent Plane) We present here an appaiginangentk-plane based on integration. (The
one-dimensional version is of course an approximate tangen) We start with the fact that we can integrate
functions defined ofiR" overk-dimensional sets usinkrdimensional measurgs (typically .7). We zoom in on
the pointp through dilation of the sdf:

Fo(p) = {xeR"| x= %)vL p for somey € F}.

We will say that the seff has an approximate tangdaplanel at p if the dilation of F,(p) converges weakly tb;

ie.if i i
/ edu — /(pdu asp—0
JRo Ju
for all continuously differentiable, compactly supportedR" — R. In the next two figures, we note that the solid

green lines are the level sets @fvhile the dashed green line indicates the boundary of thpatipf ¢. Note also
that thep’s of 0.4, 0.1, and 0.02 are approximate.

Fig. 16: The case of 1-planes (lines) wherés the weak limit of the dilations df.

Fig. 17: The case of 1-planes (lines) wherés not the weak limit of the dilations of .
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