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Abstract: This paper is aimed to introduce a new class of functions called almost Pp-continuous functions by using Pp-open sets in
topological spaces. Also some properties and characterizations are studied.
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1 Introduction and Preliminaries

In 1982, Mashhour et al [13] defined a new class of sets called preopen sets and almost precontinuous functions is
defined in [16]. In [10] the concept of Pp-open sets is introduced. In the present paper, we introduce and investigate the
concept of almost Pp-continuous functions. It will be shown that almost Pp-continuity is weaker than Pp-continuity
mentioned in [19], but it is stronger than almost precontinuity.

Throughout the present paper, a space X always means a topological space on which no separation axiom is assumed
unless explicitly stated. Let A be a subset of a space X . The closure and interior of A with respect to X are denoted by
Cl(A) and Int(A) respectively. A subset A of a space X is said to be preopen [13] (resp., semi-open [11], α-open [17],
β -open [1] and regular open [22]), if A⊆ Int(Cl(A)) (resp., A⊆Cl(Int(A)), A⊆ Int(Cl(Int(A)), A⊆Cl(Int(Cl(A)) and
A = Int(Cl(A))). The complement of a preopen (resp., semi-open, α-open, β -open and regular open ) set is said to be
preclosed (resp., semi-closed, α-closed, β -closed and regular closed). The family of all preopen (resp., semi-open,
α-open, β -open and regular open) subsets of X is denoted by PO(X) (resp., SO(X), αO(X), βO(X) and RO(X)). A
subset A of a space X is called δ -open (resp., θ -open) if for each x ∈ A, there exists an open set G such that
x ∈ G ⊆ Int(Cl(G)) ⊆ A (resp., x ∈ G ⊆ Cl(G) ⊆ A). In 1968,Velicko [23] defined the concepts of δ -open and θ -open
sets in X (denoted by δO(X) and θO(X) respectively).

A function f : X → Y is said to be precontinuous [13] (resp., super continuous [15], strongly θ -continuous [12]) if
f−1(V ) is preopen (resp., δ -open, θ -open) in X for every open set V of Y . A function f : X → Y is said to be almost
precontinuous [16] if the inverse image of each regular open subset of Y is preopen in X . A function f : X → Y is said to
be θ -continuous [7] (resp., almost strongly θ -continuous [18]) if for each x ∈ X and each open set V of Y containing
f (x), there exists an open set U of X containing x such that f (ClU)⊆ClV (resp., f (ClU)⊆ sClV ).

Definition 1.[10] A subset A of a space X is called Pp-open, if for each x ∈ A ∈ PO(X), there exists a preclosed set F
such that x ∈ F ⊆ A.The complement of a Pp-open is Pp-closed. The family of all Pp-open subsets of a topological space
(X ,τ) is denoted by PpO(X ,τ) or PpO(X).
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The intersection of all Pp-closed (resp., preclosed, semi-closed, α-closed and δ -closed) sets of X containing A is called
the PP-closure (resp. preclosure, semi-closure, α-closure and δ -closure) of A and is denoted by PpCl(A) (resp. pCl(A)
, sCl(A), αCl(A) and Clδ (A)). The union of all PP-open (resp., preopen, semi-open, α-open and δ -open) sets of X
contained in A is called the Pp-interior (resp., preinterior, semi-interior, α-interior and δ -interior) of A and is denoted by
PpInt(A) (resp. pInt(A), sInt(A), αInt(A) and δ Int(A)).

Definition 2. A space X is said to be:

(1) locally indiscrete [5] if every open subset of X is closed.
(2) Pre-R0 [4], if U is a preopen set and x ∈U, then PCl({x})⊆U.
(3) Pre-T1[9] if for each pair of distinct points x,y of X, there exist two preopen sets one containing x but not y and other

containing y but not x.

Definition 3. [21] A space X is said to be pre-regular if for each preclosed set F and each point x /∈ F, there exist disjoint
preopen sets U and V such that x ∈U and F ⊆V

Proposition 1. [10] The following statements are true:

(1) If a space X is pre-T1, then PO(X) = PpO(X).
(2) If a space X is pre-regular, then τ ⊆ PpO(X).
(3) If a space (X ,τ) is locally indiscrete, then PO(X) = PpO(X).

Corollary 1. [14] For any space X, if X is pre-R0, then PO(X) = PpO(X).

Lemma 1. Let X be a space. The following statements are true:

(1) R ∈ RO(X) and P ∈ PO(X), then R∩P ∈ PO(P) [5].
(2) Let A⊆ X. Then A ∈ PO(X ,τ) if and only if sCl(A) = IntCl(A) [8].
(3) A is β -open if and only if Cl(A) is regular closed [3].

Lemma 2. Let A be a subset of X. Then:

(1) If A ∈ SO(X), then pCl(A) =Cl(A) [6].
(2) If A ∈ βO(X), then αCl(A) =Cl(A) [2].
(3) If A ∈ βO(X), then Clδ (A) =Cl(A) [24].

Definition 4. [10] A function f : X → Y is called Pp-continuous at a point x ∈ X if for each open set V of Y containing
f (x), there exists a Pp-open set U of X containing x such that f (U)⊆V . If f is Pp-continuous at every point x of X, then
it is called Pp-continuous.

Definition 5. [19] A function f : X → Y is called quasi θ -continuous at a point x ∈ X if for each θ -open set V of Y
containing f (x), there exists a θ -open set U of X containing x such that f (U)⊆V .

Corollary 2. [10] Every quasi θ -continuous is Pp-continuous.

Definition 6. [20] A space X is said to be semi-regular if for any open set U of X and each point x ∈U, there exists a
regular open set V of X such that x ∈V ⊆U.

2 Almost Pp-Continuous Functions

In this section, we introduce the notions of almost Pp-Continuous functions by using Pp-open sets. Some properties and
characterizations are given.
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Definition 7. A function f : X → Y is called almost Pp-continuous at a point x ∈ X if for each open set V of Y containing
f (x), there exists a Pp-open set U of X containing x such that f (U) ⊆ IntCl(V ). If f is almost Pp-continuous at every
point x of X, then it is called almost Pp-continuous.

Lemma 3. The following results follows directly from their definitions:

(1) Every Pp-continuous function is almost Pp-continuous.
(2) Every almost Pp-continuous function is almost precontinuous.

Corollary 3. labelcsh Every quasi θ -continuous function is almost Pp-continuous.

Proof. Follows from Corollary 2 and Lemma 3.

From Lemma 3, Corollary 2 and Corollary 5.4 in [10], the following diagram is obtained:

In the sequel, we shall show that none of the implications that concerning almost Pp- continuity in Diagram 1 is
reversible.

Example 1. Consider X = {a,b,c,d} with the two topologies τ = {φ ,{a},{a,b},
{c,d},{a,c,d},X} and σ = {φ ,{b},{b,d},{b,c,d},X}, PpO(X) = {φ ,{c},{d},
{a,b},{c,d},{a,b,c},{a,b,d},X}. Let f : (X ,τ)→ (X ,σ) be the identity function. Then f is almost Pp-continuous, but
it is not Pp-continuous, because {b} is an open set in (X ,σ) containing f (b) = b, there exists no Pp-open U in (X ,τ)

containing b such that b ∈ f (U)⊆ {b}.

Example 2. Consider X = {a,b,c} with the topology τ = σ = {φ ,{a},{b},
{a,b},X}. Let f : (X ,τ)→ (X ,σ) be the identity function. Then f is almost precontinuous, but it is not almost Pp-
continuous, because {a} is an open set in (X ,σ) containing f (a) = a, there exists no Pp-open U in (X ,τ) containing a
such that a ∈ f (U)⊆ IntCl({a}).

Theorem 1. For a function f : (X ,τ)→ (Y,σ), the following statements are equivalent:

(1) f is almost Pp-continuous.
(2) For each x ∈ X and each open set V of Y containing f (x), there exists a Pp-open set U in X containing x such that

f (U)⊆ sCl(V ).
(3) For each x ∈ X and each regular open set V of Y containing f (x), there exists a Pp-open set U in X containing x such

that f (U)⊆V .
(4) For each x ∈ X and each δ -open set V of Y containing f (x), there exists a Pp-open set U in X containing x such that

f (U)⊆V .

Proof. (1)⇒ (2). Let x ∈ X and let V be any open set of Y containing f (x). By (1), there exists a Pp-open set U of X
containing x such that f (U)⊆ IntCl(V ). Since V is open, hence V is preopen. Therefore, by Lemma 1 (2), f (U)⊆ sCl(V ).
(2)⇒ (3). Follow directly from definition 7 and Lemma 1(2).
(3)⇒ (4). Let x ∈ X and let V be any δ -open set of Y containing f (x). Then for each f (x) ∈V , there exists an open set
G containing f (x) such that G ⊆ IntCl(G) ⊆ V . Since IntCl(G) is a regular open set of Y containing f (x), by (3), there
exists a Pp-open set U in X containing x such that f (U)⊆ IntCl(G)⊆V . This completes the proof.
(4)⇒ (1). Let x ∈ X and let V be any open set of Y containing f (x). Then IntCl(V ) is δ -open of Y containing f (x). By
(4), there exists a Pp-open set U in X containing x such that f (U)⊆ IntCl(V ). Therefore, f is almost Pp-continuous.

Theorem 2. For a function f : X → Y , the following statements are equivalent:

(1) f is almost Pp-continuous.
(2) f−1(IntCl(V )) is a Pp-open set in X, for each open set V in Y .
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(3) f−1(ClInt(F)) is a Pp-closed set in X, for each closed set F in Y .
(4) f−1(F) is a Pp-closed set in X, for each regular closed set F of Y .
(5) f−1(V ) is a Pp-open set in X, for each regular open set V of Y .

Proof. (1)⇒ (2). Let V be any open set in Y . We have to show that f−1(IntCl(V )) is Pp-open in X . Let x∈ f−1(IntCl(V )).
Then f (x) ∈ IntCl(V ) and IntCl(V ) is a regular open set in Y . Since f is almost Pp-continuous, by Theorem 1, there
exists a Pp-open set U of X containing x such that f (U)⊆ IntCl(V ). Which implies that x ∈U ⊆ f−1(IntClV ). Therefore,
f−1(IntCl(V )) is Pp-open in X .
(2)⇒ (3). Let F be any closed set of Y . Then Y −F is an open set of Y . By (2), f−1(IntCl(Y \F)) is Pp-open in X and
f−1(IntCl(Y \F)) = f−1(Int(Y \ IntF)) = f−1(Y \ClIntF) = X \ f−1(ClIntF) is Pp-open in X and hence f−1(ClInt(F))

is Pp-closed in X .
(3)⇒ (4). Let F be any regular closed set of Y . Then F is a closed set of Y . By (3), f−1(ClInt(F)) is Pp-closed in X .
Since F is regular closed set, then f−1(ClInt(F)) = f−1(F). Therefore, f−1(F) is Pp-closed set in X .
(4)⇒ (5). Let V be any regular open set of Y . Then Y \V is regular closed of Y and by (4), we have f−1(Y \V ) =

X \ f−1(V ) is Pp-closed in X and hence f−1(V ) is Pp-open in X .
(5)⇒ (1). Let x ∈ X and let V be any regular open set of Y containing f (x). Then x ∈ f−1(V ). By (5), we have f−1(V ) is
Pp-open in X . Therefore, we obtain f ( f−1(V ))⊆V . Hence, by Theorem 1, f is almost Pp-continuous.

Theorem 3. For a function f : (X ,τ)→ (Y,σ), the following statements are equivalent:

(1) f is almost Pp-continuous.
(2) f (PpCl(A))⊆Clδ f (A) , for each subset A of X.
(3) PpCl( f−1(B))⊆ f−1(Clδ (B)), for each subset B of Y .
(4) f−1(F) is a Pp-closed set in X, for each δ -closed set F of Y .
(5) f−1(V ) is a Pp-open set in X, for each δ -open set V of Y .
(6) f−1(Intδ (B))⊆ PpInt( f−1(B)), for each subset B of Y .
(7) Intδ ( f (A))⊆ f (PpInt(A)), for each subset A of X.

Proof. (1)⇒ (2). Let A be a subset of X . Since Clδ f (A) is δ -closed in Y . By (1) and Theorem 2, f−1(Clδ f (A)) is Pp-
closed set of X . Hence, PpClA⊆ f−1(Clδ f (A)). Therefore, we obtain that f (PpClA)⊆Clδ f (A).
(2)⇒ (3). Let B be any subset of Y . Then f−1(B) is a subset of X . By (2), we have f (PpCl f−1(B)) ⊆Clδ f ( f−1(B)) =
Clδ B. Hence, PpCl f−1(B)⊆ f−1(Clδ B).
(3)⇒ (4). Let F be any δ -closed set of Y . By (3), we have PpCl f−1(F) ⊆ f−1(Clδ F) = f−1(F) and hence f−1(F) is
Pp-closed in X .
(4)⇒ (5). Let V be any δ -open set of Y . Then Y \V is δ -closed of Y and by (4), we have f−1(Y \V ) = X \ f−1(V ) is
Pp-closed in X . Hence f−1(V ) is Pp-open in X .
(5)⇒ (6). For each subset B of Y . We have Intδ B⊆ B. Then f−1(Intδ B)⊆ f−1(B). By (5), f−1(Intδ B) is Pp-open in X .
Then f−1(Intδ B)⊆ PpInt f−1(B).
(6)⇒ (7). Let A be any subset of X . Then f (A) is a subset of Y . By (6), we have f−1(Intδ ( f (A))⊆ PpInt( f−1( f (A))⊆
PpInt(A). Therefore, Intδ ( f (A))⊆ f (PpInt(A)).
(7)⇒ (1). Let x ∈ X and let V be any regular open set of Y containing f (x). Then x ∈ f−1(V ) and f−1(V ) is a subset
of X . By (7), we have Intδ ( f ( f−1(V )) ⊆ f (PpInt( f−1(V )) implies that Intδ (V ) ⊆ f (PpInt( f−1(V )). Since V is regular
open and hence it is δ -open, then V ⊆ f (PpInt( f−1(V )). This implies that f−1(V )⊆ PpInt( f−1(V )). Therefore, f−1(V )

is a Pp-open set in X which contains x and clearly f ( f−1(V ))⊆V . Hence, by Theorem 1, f is almost Pp-continuous.

Theorem 4. For a function f : X → Y , the following statements are equivalent:

(1) f is almost Pp-continuous.
(2) PpCl f−1(V )⊆ f−1(ClV ) , for each β -open set V of Y .
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(3) f−1(Int(F))⊆ PpInt( f−1(F)), for each β -closed set F of Y .
(4) f−1(Int(F))⊆ PpInt( f−1(F)), for each semi-closed set F of Y .
(5) PpCl f−1(V )⊆ f−1(ClV ), for each semi-open set V of Y .

Proof. (1)⇒ (2). Let V be any β -open set of Y . By Lemma 1(3) that Cl(V ) is regular closed in Y . Since f is almost
Pp-continuous, by Theorem 2, f−1(ClV ) is Pp-closed set in X . Therefore, we obtain PpCl f−1(V )⊆ f−1(ClV ).
(2)⇒ (3). Let F be any β -closed of Y . Then Y \F is β -open of Y and by (2), we have PpCl f−1(Y \F)⊆ f−1(Cl(Y \F))

and PpCl(X \ f−1(F)) ⊆ f−1(Y \ IntF) and hence, X \ PpInt f−1(F) ⊆ X \ f−1(IntF). Therefore,
f−1(IntF)⊆ PpInt f−1(F).
(3)⇒ (4). Obvious since every semi-closed set is β -closed.
(4) ⇒ (5). Let V be any semi-open set of Y . Then Y \ V is semi-closed in Y and by (4), we have
f−1(Int(Y \V ))⊆ PpInt f−1(Y \V ) and f−1(Y \ClV )⊆ PpInt(X \ f−1(V )) and hence, X \ f−1(ClV )⊆ X \PpCl f−1(V ).
Therefore, PpCl f−1(V )⊆ f−1(ClV ).
(5) ⇒ (1). Let F be any regular closed set of Y . Then F is a semi-open set of Y . By (5), we have
PpCl f−1(F) ⊆ f−1(ClF) = f−1(F). This shows that f−1(F) is a Pp-closed set in X . Therefore, by Theorem 2, f is
almost Pp-continuous.

Theorem 5. For a function f : X → Y , the following statements are equivalent:

(1) f is almost Pp-continuous.
(2) PpCl f−1(V )⊆ f−1(αClV ), for each β -open set V of Y .
(3) PpCl f−1(V )⊆ f−1(ClδV ), for each β -open set V of Y .
(4) PpCl f−1(V )⊆ f−1(PpClV ), for each semi-open set V of Y .
(5) PpCl f−1(V )⊆ f−1(pCl(V ), for each semi-open set V of Y .

Proof. (1)⇒ (2). Follows from Theorem 4 and Lemma 2(2).
(2)⇒ (3). Follows from the fact that αClV ⊆ClδV .
(3)⇒ (4) and (4)⇒ (5). Follows from Theorem 4 and Lemma 2(1).
(5)⇒ (1). Follows from Theorem 4 and Lemma 2(1).

The following result also can be concluded directly.

Corollary 4. For a function f : X → Y , the following statements are equivalent:

(1) f is almost Pp-continuous.
(2) f−1(αIntF)⊆ PpInt f−1(F) , for each β -closed set F of Y .
(3) f−1(Intδ F)⊆ PpInt f−1(F) , for each β -closed set F of Y .
(4) f−1(PpIntF)⊆ PpInt f−1(F) , for each semi-closed set F of Y .
(5) f−1(pIntF)⊆ PpInt f−1(F) , for each semi-closed set F of Y .

Theorem 6. A function f : X → Y is almost Pp-continuous if and only if f−1(V ) ⊆ PpInt f−1(IntClV ) for each preopen
set V of Y .

Proof. Necessity. Let V be any preopen set of Y . Then V ⊆ IntClV and IntClV is a regular open set in Y . Since f is
almost Pp-continuous, by Theorem 2, f−1(IntClV ) is Pp-open in X and hence we obtain that
f−1(V )⊆ f−1(IntClV ) = PpInt f−1(IntClV ).
Sufficiency. Let V be any regular open set of Y . Then V is a preopen set of Y . By hypothesis, we have
f−1(V ) ⊆ PpInt f−1(IntClV ) = PpInt f−1(V ). Therefore, f−1(V ) is Pp-open in X and hence by Theorem 2, f is almost
Pp-continuous.

Corollary 5. The following statements are equivalent for a function f : X → Y :
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(1) f is almost Pp-continuous.
(2) f−1(V )⊆ PpInt f−1(sClV ) for each preopen set V of Y .
(3) PpCl f−1(ClIntF)⊆ f−1(F) for each preclosed set F of Y.
(4) PpCl f−1(sIntF)⊆ f−1(F) for each preclosed set F of Y .

Corollary 6. For a function f : X → Y , the following statements are equivalent:

(1) f is almost Pp-continuous.
(2) For each neighborhood V of f (x), x ∈ PpInt f−1(sClV ).
(3) For each neighborhood V of f (x), x ∈ PpInt(IntClV ).

Proof. Follows from Theorem 6 and Corollary 5.

Theorem 7. Let f : X → Y be an almost Pp-continuous function and let V be any open subset of Y . If x ∈ PpCl f−1(V )\
f−1(V ), then f (x) ∈ PpClV .

Proof. Let x ∈ X be such that x ∈ PpCl f−1(V ) \ f−1(V ) and suppose f (x) /∈ PpClV . Then there exists a Pp-open set H
containing f (x) such that H ∩V = φ . Then ClH ∩V = φ implies IntClH ∩V = φ and IntClH is a regular open set. Since
f is almost Pp-continuous, by Theorem 1, there exists a Pp-open set U in X containing x such that f (U) ⊆ IntClH.
Therefore, f (U)∩V = φ . However, since x ∈ PpCl f−1(V ), U ∩ f−1(V ) 6= φ for every Pp-open set U in X containing x, so
that f (U)∩V 6= φ . We have a contradiction. It follows that f (x) ∈ PpClV .

Theorem 8. If f : X → Y is almost Pp-continuous and g : Y → Z is super continuous function, then the composition
function g◦ f : X → Z is Pp-continuous.

Proof. Let W be any open subset of Z. Since g is super continuous, g−1(W ) is δ -open of Y . Since f is almost Pp-continuous,
by Theorem 3, (g◦ f )−1(W ) = f−1(g−1(W )) is Pp-open in X . Therefore, by Definition 4, g◦ f is Pp-continuous.

Theorem 9. If f : X → Y is almost Pp-continuous and g : Y → Z is continuous and open, then the composition function
g◦ f : X → Z is almost Pp-continuous.

Proof. Let x∈X and W be an open set of Z containing g( f (x)). Since g is continuous, g−1(W ) is an open set of Y containing
f (x). Since f is almost Pp-continuous, there exists a Pp-open set U of X containing x such that f (U)⊆ Int(Cl(g−1(W ))).
Also, since g is continuous, then we obtain (g ◦ f )(U) ⊆ g(Int(g−1(Cl(W )))). Since g is open, we obtain (go f )(U) ⊆
Int(Cl(W )). Therefore, g◦ f is almost Pp-continuous.

Theorem 10. If f : X → Y is an almost Pp-continuous function and Y is semi-regular, then f is Pp-continuous.

Proof. Let x ∈ X and let V be any open set of Y containing f (x). By the semi-regularity of Y , there exists a regular open
set G of Y such that f (x) ∈ G ⊆ V . Since f is almost Pp-continuous, by Theorem 1, there exists a Pp-open set U of X
containing x such that f (U)⊆ G⊆V . Therefore, f is Pp-continuous.

Proposition 2. If f : X → Y is an almost Pp-continuous function and g : Y → Z a strongly θ -continuous function, then
g◦ f : X → Z is almost Pp-continuous.

Proof. Let W be an open subset of Z. In view of strong θ -continuity of g, g−1(W ) is a θ -open subset of Y . Again, since f
is almost Pp-continuous, (g◦ f )−1(W )= f−1(g−1(W )) is Pp-open in X . Hence, g◦ f is almost Pp-continuous.

Theorem 11. Let f : X→Y be almost Pp-continuous. If Y is a preopen subset of Z , then f : X→ Z is almost Pp-continuous.

Proof. Let V be any regular open set of Z. Since Y is preopen, by Lemma 1(1), V ∩Y is a regular open set in Y . Since
f : X → Y is almost Pp-continuous, by Theorem 2, f−1(V ∩Y ) is a Pp-open set in X . But f (x) ∈ Y for each x ∈ X . Thus
f−1(V ) = f−1(V ∩Y ) is a Pp-open set of X . Therefore, by Theorem 2, f : X → Z is almost Pp-continuous.
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Corollary 7. Let f : X → Y be a function and let X be a pre-T1 space. Then f is almost precontinuous if and only if f is
almost Pp-continuous.

Proof. Follows from Proposition 1(1).

Corollary 8. Let f : X → Y be a function and let X be a pre-R0 space. Then f is almost precontinuous if and only if f is
almost Pp-continuous.

Proof. Follows from Corollary 1.

Corollary 9. Let f : X → Y be a function and let X be a pre-regular space. If f is almost continuous, then f is almost
Pp-continuous.

Proof. Follows from Proposition 1(2).

Corollary 10. Let f : X → Y be a function and let X be a locally indiscrete space. Then f is almost precontinuous if and
only if f is almost Pp-continuous.

Proof. Follows from Proposition 1(3).

Theorem 12. If a function f : X → Y is almost strongly θ -continuous, then f is almost Pp- continuous.

Proof. Let V be any regular open set of Y . Since f is almost strongly θ -continuous, so f−1(V ) is θ -open and hence it is
Pp-open. Therefore, by Theorem 2, f is almost Pp-continuous.
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