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Abstract: In this paper we study Kenmotsu manifold admitting a semi-symmetric metric connection whose concircular curvature
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1 Introduction

In 1971, Kenmotsu [14] defined a type of contact metric manifold which is nowadays called Kenmotsu manifold. It may
be noticed that a Kenmotsu manifold is not a Sasakian manifold. Also a Kenmotsu manifold is not compact because of
divE = 2n. In [14], Kenmotsu showed that locally a Kenmotsu manifold is warped product I x ¢ N of an interval I and
Kahler manifold N with warping function f(¢) = se’, where s is a non-zero constant. Kenmotsu manifolds have been
studied by many authours Hui ([8]-[10]), Hui and Lemence [11], Prakasha, Hui and Vikas [15], Shaikh and Hui [17] and
others.

In 1924, Friedmann and Schouten [6] introduced the idea of semi-symmetric linear connection on a differentiable
manifold. A systematic study of semi-symmetric metric connection on a Riemannian manifold with different structures
was done by Yano [20], Amur and Pujar [1], Bagewadi et, al ([2],[3]), Sharafuddin and Hussain [12] and many others.

The present paper is organized as follows: In section 2, we give some preliminaries that will be needed thereafter. In
Section 3, we study Kenmotsu manifold satisfying C - R = 0 and we obtained that the manifold is n-Einstein. In Section
4, we proved that a Kenmotsu manifold is locally concircular ¢-symmetric with respect to semi-symmetric metric
connection V if and only if it is so with respect to Levi-Civita connection V. Finally we obtained that a concircularly
¢-recurrent Kenmotsu manifold with respect to semi-symmetric metric connection is a 1-Einstein manifold.

2 Preliminaries

Let (M™",g) be an n-dimensional almost contact metric manifold with almost contact metric structure (¢,1,&,g), where
¢ is a (1,1)-tensor field, n is a 1-form, & is the associated vector field and g is the Riemannian metric. Then the structure
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(9,7m,&,g) satisfies the following:

¢§:07 71(¢X):07 8(X,§):"1(X)7 77(5):17 (1)
9°X = X +n(X)E, )
8(¢X,9Y) =g(X,Y) —n(X)n(Y), 3)

for all vector fields X,Y € T,M. If moreover

(VX¢)Y = _g(Xade)é _n(Y)¢X7 and “4)
Vx§=X-n(X)¢E, (5)

holds, where V denotes the Riemannian connection of g, then M" is called a Kenmotsu manifold.

In a Kenmotsu manifold M", the following relations hold: [14].

g(9X,Y) = —g(X,9Y), (6)
RX,Y)E=n(X)Y —n(Y)X, (7)
S(X,8)=(1-n)n(X), (8)
(Vxm)(¥) =gX.Y) —nX)n(Y), )
S(¢X,9Y) =S(X,Y) + (n—1)n(X)n(Y). (10)

for all vector fields X,Y € T,M, S(X,Y) = g(QX,Y) and Q¢ = ¢Q.

Let V be the Levi-Civita connection on M". A linear connection V on (M",g) is said to be semi-symmetric [6] if the
torsion tensor T of the connection V satisfies

T(X,Y)=U(Y)X —U(X)Y, (11)

where U is a 1-form on M" with p as associated vector field, i.e., U(X) = g(X, p) for any differentiable vector field X on
M" . A semi-symmetric connection V is called semi-symmetric metric connection if it further satisfies Vg = 0.

In an almost contact manifold, semi-symmetric metric connection is defined by identifying the 1-form ¢ of (11) with the
contact-form 7,

T(X,Y)=n¥)X -nX)Y, (12)

with £ as associated vector field i.e., g(X,&) = 1(X). The relation between the semi-symmetric metric connection V and
the Levi-Civita connection V of (M", g) has been obtained by K.Yano [20], which is given by

VxY = VxY +1(Y)X —g(X,Y)E. (13)

If R and R are the curvature tensors of the Levi-Civita connection V and the semi-symmetric metric connection V,
respectively, then we have

R(X.Y)Z=R(X,Y)Z+3{g(X,2)Y —g(Y,Z)X} +2n(Z){n(Y)X —n(X)Y} +2{g(Y,Z)n(X) — (X, Z)n(¥)}&. (14)
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Putting X = W = ¢; in above equation and summing over i, 1 <i < n, we get

S(Y,Z)=5(Y,Z)— (3n—5)g(Y,Z) +2(n—2)n(Y)n(2), (15)
where § and S are the Ricci tensor of the connections V and V respectively. Contracting above equation, we get

F=r—(3n*—Tn+4), (16)

where 7 and r are the scalar curvatures of the connections V and V respectively.
In a Riemannian manifold (M", g), the concircular curvature tensor is defined by [19]

C(X,Y)Z=R(X,Y)Z— H(Tr_l){g(Y,Z)X—g(X,Z)Y}, 17)
forall X,Y,Z € T,M, where r is scalar curvature.
Let C be the concircular curvature tensor with respect to semi-symmetric metric connection and is given by

C(X,Y)Z = R(X,¥)Z - MT’iD{g(Y,Z)X—g(X,Z)Y}. (18)

Definition 1. A Kenmotsu manifold (M",g) is said to be n-Einstein manifold if its Ricci tensor S satisfies the condition

S(X,Y)=ag(X,Y)+bn(X)n(), forall X,Y € T,M,

where a and b are functions on M". In particular, if b =0, then M" is an Einstein manifold.

3 Kenmotsu manifold admitting semi-symmetric metric connection with R(&,X)-C =0

Let us consider a Kenmotsu manifold admitting a semi-symmetric metric connection satisfying

(R(E,X)-C)(Y,Z)W =0.
The above relation (20), gives

R(E.X)C(Y,Z)W —C(R(E,X)Y,Z)W —C(Y,R(E,X)Z)W —C(Y,Z)R(§,X)W = 0.
Putting W = & in (21) and simplifying, we get

r—(3n> —Tn+4)
nn—1)

C(Y,2)X = [2 + ] [8(X,Y)Z—g(X,2)Y].

Simplifying (22), gives

R(Y,Z)X +3[g(Y,X)Z - ¢(Z,X)Y] +2n(X)[n(Z)Y —n(Y)Z]+2[¢(Z,X)n(Y) — (¥, X)n(Z)]&
r—3n*—Tn+4) r—3n®—Tn+4)
n(n—1) n(n—1)

} [g(Z,X)Y —g(Y,X)Z]— [2—1— } [g(X,Y)Z—g(X,Z)Y] =0.

(19)

(20)

21

(22)

(23)
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Taking innerproduct of (23) with U, we get

8(R(Y,Z)X,U)+3[g(Y,X)g(Z,U) — g(Z,X)g(Y,U)]+2n(X)[n(Z2)g(Y,U) = n(Y)g(Z,U)] (24)
r— i’l2 —/n
22 X0nN) - s Xn@n)] - | =T
r—(3n*—Tn+4)
n(n—1)

(8(Z,X)g(Y,U) —g(Y,X)g(Z,U)]

— 2+

[g(va)g(Z7U) _g(XvZ)g(Y’U)} =0.

Now let {¢;} be an orthonoral basis of the tangent space at each point of the manifold M" for i = 1,2,...,n. Putting
Y = U = ¢; in (24) and then taking summation over i, we get

8(Z,X) = (n—=3)8(2,X) =2(n=2)n(Z)n(X). (25)

In view of (25), we conclude the following:

Theorem 1. If a kenmotsu manifold admitting semi-symmetric metric connection satisfies R(&,X)-C = 0, then M" is an
n-Einstein manifold.

4 Kenmotsu manifold admitting semi-symmetric metric connection with C(£,X)-R =0

Let us consider Kenmotsu manifold admitting a semi-symmetric metric connection satisfying (C(&,X)-R)(Y,Z)W = 0.
Then we have

C(E,X)R(Y,Z)W —R(C(E,X)Y,Z)W —R(Y,C(E,X)Z)W —R(Y,Z)C(E,X)W = 0. (26)
On plugging W = £ in (26) and then by virtue of (18), we get either r = (n— 1)(n—4) or
R(Y,2)X =2[g(X,Y)Z—g(X,Z)Y]. 27
Using (14) in (27), we get

RY,Z)X +3{g(Y,X)Z - g(Z,X)Y} +2n(X){n(2)Y —n(Y)Z} (28)
+2{g(Z,X)n(Y) —s(v,X)n(2)}§ = 2[¢(X,Y)Z - g(X, Z)Y].
On contracting above equation with respect to Y, we get
S(X,Z) = (n—3)g(X,Z) =2(n=2)n(X)n(2). (29)

Thus, we can state the following:

Theorem 2. A kenmotsu manifold M" satisfying C (&,X)-R =0 with respect to semi-symmetric metric connection is either
n-Einstein or the manifold is of constant scalar curvature with respect to Levi-civita connection.

5 Locally Concircular ¢-symmetric Kenmotsu manifold with respect to semi-symmetric metric
connection

Definition 2. A Kenmotsu manifold M" is said to be locally concirular ¢-symmetric with respect to semi-symmetric metric
connection if

¢*((VwC)(X,Y)Z) =0, (30)
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Jor all vector fields X ,Y,Z,W orthogonal to vector field .
From equation (13), we have
(VwC)(X,1)Z = (VyC)(X,¥)Z+n(C(X,V)Z)W — g(W,C(X,Y)Z)E. G1)

Now, differentiating (18) covariantly with respect to W, we get

(VwO)(X,Y)Z =(VwC)(X,Y)Z+2(Vwn)(Z2)[n(¥)X —n(X)Y]+2n(Z)[(Vwn) (V)X — (Vwm)(X)Y]  (32)
+2[8(V,2)(Vwn)(X) = 8(X, Z)(Vwn) (V)] +2[¢(Y, Z2)n(X) — g(X, Z)n(Y)]Vw§.

Using equations (18) and (32) in (31), we get

(FwC)(X,¥)Z =(VwC)(X.Y)Z+2[g(W,Z) —n(W)n(Z)][n(¥)X — ()Y ]+ 20(2)[g(W.Y)X —(W)n(¥)X (33)

[
W,

—eW.X)Y +n(W)n(X)Y]+2[e(¥,Z)g(W,X) — g(Y,Z)n(W)n(X)
—8(X,2)gW,Y) + (X, Z)n(W)n(Y)]g +2[g(Y,Z)n(X)W —¢(X, Z)n (Y)W
=8 ZmX)MW)E+g(X, Z)n(¥)n(W)E]+n(C(X.Y)Z)W —g(W,C(X.Y)Z)E.

Operating ¢ on both sides of equation (33) and using equation (2), we get

9> (VwO)(X,Y)Z) =9*((VwC)(X,Y)Z) +2[g(W,Z) —n(W)n(Z)][n(X)Y —n(Y)X] 34
+2n(2)mW)n(¥)X —g(W,Y)X + (W, X)Y —n(W)n(X)Y]
r—(3n> —Tn+4)
nn—1)

+2[e(X, Z)n (Y)W —g(¥,Z)n(X)W] - |6+
[¢(Y,Z)n(X) —g(X,Z)n(Y)]W.

If we consider X,Y,Z and W are orthogonal to £ then equation (34) yields

¢*(VwC)(X,Y)Z) = ¢*((VwC)(X,Y)Z). (35)

In view of (35), we conclude the following:

Theorem 3. A Kenmotsu manifold is locally concircular ¢-symmetric with respect to semi-symmetric metric connection
V if and only if it is so with respect to Levi-Civita connection V.

6 Concircular ¢-Recurrent Kenmotsu manifold with respect to semi-symmetric metric
connection

Definition 3. A Kenmotsu manifold M" is said to be concircularly ¢-recurrent with respect to semi-symmetric metric
connection if

O (VwO(X,Y)Z) =AW)C(X,Y)Z, (36)
for arbitrary vector fields X ,Y,Z and W.

Let us consider an concircular ¢-recurrent Kenmotsu manifold with respect to semi-symmetric metric connection. Then
by virtue of (36) and (2), we get

~(VwO(X.Y)Z)+n((VwC)(X,Y)Z)E = A(W)C(X,Y)Z, (37)
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from which it follows that
—g(VwO)(X,Y)Z,U) +1((VwC)(X,Y)Z)n(U) = A(W)g(C(X,Y)Z,U), (38)
which on simplification, we get

dr(W)+4r—(3n* —Tn+4)
n

(VwS)(Y,8) +2(n—=2)g(W,Y) =2(n=2)n(W)n(Y) +(r=DAW)+1)n¥)=0. (39

Also we have
(VwS)(Y,8) = =S¥, W) —(n—1)g(¥,W). (40)
In view of (39) and (40), we get

dr(W)+r—(3n> —Tn+4) N

S, W) —(n=3)g(Y,W)+2(n=2)n(W)n(Y) + p,

(n—1DAW)+1)|n¥)=0. 41)
Replacing Y and W by ¢Y and ¢W in above equation and using (3) and (10), we get
SY,W)=(n=3)g(Y,W)=2(n=2)n(W)n(Y). 42)

Hence, we can state the following theorem.

Theorem 4. A concircular ¢-recurrent Kenmotsu manifold (M", g) with respect to semi-symmetric metric connection is
an n-Einstein manifold .
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