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Abstract: Brucellosis is a neglected zoonotic infection caused by gram-negative bacteria of genus brucella. In this paper, a
deterministic mathematical model for the infectiology of brucellosis with vaccination of ruminants, culling of seropositive animals
through slaughter, and proper environmental hygiene and sanitation is formulated and analyzed. A positive invariant region of the
formulated model is established using the Box Invariance method, the effective reproduction number, Re of the model is computed
using the standard next generation approach. We prove that the brucellosis free equilibrium exists, locally and globally asymptotically
stable if Re < 1 while the endemic equilibrium point exists, locally and globally asymptotically stable if Re > 1. Sensitivity analysis of
the effective reproductive number shows that, natural mortality rate of ruminants, recruitment rate, ruminant to ruminant transmission
rate, vaccination rate, and disease induced culling rate are the most sensitive parameters and should be targeted in designing of the
control strategies for the disease. Numerical simulation is done to show the variations of each subpopulation with respect to the
control parameters.
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1 Introduction

Brucellosis is a zoonotic infection caused by gram-negative bacteria of genus brucella (B. abortus primarily from cattle,
B. melitensis from small ruminants, B. suis from swine, and B. canis from dogs) [14,34,52,57]. It is considered by the
Food and Agriculture Organisation (FAO), the World Health Organisation (WHO) and World Organization for Animal
Health (Office International des Epizooties (OIE)) as one of the most widespread zoonoses in the world alongside bovine
tuberculosis and rabies [45]. The disease is an ancient one that was described more than 2000 years ago by the Romans
[24] and has been known by various names, including Mediterranean fever, Malta fever, gastric remittent fever, bang’s
disease, crimean fever, gibraltar fever, rock fever, lazybones disease and undulant fever [55]. A British military medical
officer David Bruce isolated brucella bacteria from an infected individual’s blood for the first time in 1887 and hence the
disease was named brucellosis to honor his contribution [54]. Furthermore, in 1905 Zamitt carried out an experiment on
goats to investigate the origin of human brucellosis, and found that, human brucellosis originates from goats [2]. To date,
eight species have been identified and named primarily for the source animal or features of infection. Of these, the
following four have moderate-to-significant human pathogenicity: Brucella melitensis (highest pathogenicity), Brucella
suis (high pathogenicity) named after the source animal (swine), Brucella abortus (moderate pathogenicity) named after
the feature of infection, Brucella canis named after the source animal (moderate pathogenicity) [37,38,56].
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In animals, brucellosis is transmitted when susceptible animals ingest contaminated materials like tissues or discharges
from infected animals while in humans the bacteria is transmitted by ingestion of contaminated unpasteurized milk or
other dairy products. Furthermore, direct contact with aborted fetuses, discharges and occupational accidents through
needle injection during mass vaccination and during laboratory manipulation is another route of brucellosis transmission
in the human population. In this view, farmers, laboratory personnels, abattoir workers and veterinarians are more
susceptible to the disease. Infected animals exhibit clinical signs that are of economic significance to stakeholders and
include reduced fertility, abortion, poor weight gain, lost draught power, and a substantial decline in milk production [21,
53]. Symptoms in humans include: continuous or intermittent fever, headache, weakness, profuse sweats, chills, joint
pains, aches, weight loss as well as devastating complications in pregnant women. Neurological complications,
endocarditis and testicular or bone abscess formation can also occur [13,16]. The infection can also affect the liver and
spleen, it may last for days or months, and sometimes for a year or more if not treated. The clinical signs in human
present diagnostic difficulties because the disease can be confused with typhoid fever, malaria, rheumatic fever, joint
diseases and relapsing fever. Human brucellosis is debilitating and requires prolonged treatment with combination of
antibiotics [27].

The global burden of human brucellosis remains enormous: The infection causes more than 500,000 cases per year
worldwide. The annual number of reported cases in United States (now about 100) has dropped significantly because of
aggressive animal vaccination programs and milk pasteurization. Most US cases are now due to the consumption of
illegally imported unpasteurized dairy products from Mexico. Approximately 60% of human brucellosis cases in the
United States now occur in California and Texas [43].

In Africa Brucellosis exists throughout sub-Saharan Africa, but the prevalence is unclear and poorly understood with
varying reports from country to country, geographical regions as well as animal factors [50]. Most African countries are
of poor socioeconomic status, with people living with and by their livestock, while health networks, surveillance and
vaccination programs are virtually non-existent. In Tanzania, the first outbreak of brucellosis was reported in Arusha in
1927 [48]. Previous surveys in Tanzania have demonstrated the occurrence of the disease in cattle in various production
systems, regions and zones with individual animal level seroprevalence varying from 1 to 30%. There has been isolation
of Brucella for more than 50 years ago and at that time B. abortus and B. melitensis were isolated from cattle and small
ruminants respectively. In humans, the average prevalence varies from 1 to 5% [49], a recent study by [8]shows that
brucellosis incidence is moderate in northern Tanzania and suggests that the disease is endemic and an important human
health problem in this area. Moreover, special cases had been reported in areas of northern, eastern, lake and western
zones with seroprevalence varying from 0.7 to 20.5%. [46].

Despite the WHO, FAO, OIE efforts and interventions are available, brucellosis continues to pose great economic threat
by affecting livelihood and food security in both developed and developing countries; it is endemic in most of the
developing world and causes devastating losses to the livestock industry especially small-scale livestock holders, thereby
limiting economic growth and hindering access to international markets [21] from generation to generation. Thus, there
is a need to assess the current control strategies and their cost-effectiveness if we are to control or eradicate the disease.
So far few studies [3,25,33,39,40,44,56], have been developed to analyze dynamics of and spread of brucellosis in a
homogeneous/heterogeneous populations. However, none of these studies have considered the mathematical approach
for the impact of vaccination of ruminants, culling of seropositive animals through slaughter, and proper environmental
hygiene and sanitation in reducing or eradicating the disease in cattle, small ruminants and human populations using
mathematical models. This paper is at hand to fill the gap.
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2 Model formulation

2.1 Dynamics of brucellosis

In this section, we formulate a deterministic mathematical model for the transmission dynamics of Brucellosis in domestic
small ruminants, cattle and human populations. The model includes: direct transmission of brucellosis within the cattle
population, within small ruminants (sheep and goats) and from both species to human and indirect transmission from the
environment to livestock and humans. Cattle and small ruminants newborns are either vaccinated or remain susceptible.
Based on the epidemiological status, the cattle population at any time t is divided into vaccinated Vc(t) , susceptible
Sc(t), and infective Ic(t) classes. Similarly, the small ruminant population at any time t is divided into vaccinated Vs(t),
susceptible Ss(t), and infectious Is(t) subpopulations while the total human population, Nh(t) at any time t is divided
into susceptible, Sh(t), infected, Ih(t) and recovered, Rh(t) individuals. Susceptible cattle become infected when they are
in contact with infected cattle (direct transmission) at the rate of βc or through contact with infected raw blood, meat,
placentas, aborted fetus, unpasteurized milk or other dairy products (indirect transmission) at the rate αc, and susceptible
small ruminants become infected when they are in contact with infectious small ruminants at the rate of βs or through
contact with their products at the rate αs while the transmission to humans is expressed as additive contributions of
transmission from infective cattle, small ruminants and their products. Appertaining to the fact that it is very difficult to
determine the quantity of brucella in environment, we define the average number of brucella that is enough for a host to be
infected with brucellosis as an infectious unit and let B(t) to be the number of infectious units in the environment. During
the incubation period, Brucellosis is hardly detected, but individuals at this period can infect the susceptible individuals at
the same transmission rate as the infectious individual and discharge the same quantity of brucella into the environment
per unit time. It is against this background, we assume that individuals in the incubation period and post incubation period
are hosted in the same population compartment called infectious. The interaction within and between the four populations
shows that, veterinary surgeons, laboratory assistants, and farmers are predominantly exposed to the pathogen (See Figure
1).

2.2 Model assumptions

In formulation of the model, the following assumptions are taken into consideration:

(i) There is no direct transmission between cattle and small ruminants.
(ii) Infected animals shed the brucellosis pathogen in the environment.

(iii) Livestock seropositivity is a life-long lasting.
(iv) Immunized individuals cannot be infected unless their vaccine efficacy wanes.
(v) There is constant natural mortality rate in each of the species.

(vi) The mixing in each population is homogeneous.
(vii) The birth rate for each population is greater than natural mortality rate.

The variables and parameters used in this model are respectively summarized in Table 1 and Table 2.

2.3 Compartmental Flow Diagram for the Disease Dynamics

The interactions between the human, cattle, small ruminants populations and the brucella in the environment are illustrated
in Figure 1.
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Table 1: Model Variables

Variable Description
Sh(t) Number of susceptible humans at time t
Ih(t) Number of infected human at time t
Rh(t) Number of recovered humans at time t
Sc(t) Number of susceptible cattle at time t
Ic(t) Number of infected cattle at time t
Vc(t) Number of vaccinated cattle at time t
Ss(t) Number of susceptible small ruminants at time t
Is(t) Number of infected small ruminants at time t
Vs(t) Number of vaccinated small ruminants at time t
B(t) Number of brucella bacteria load per unit volume in the environment at time t

Fig. 1: A schematic diagram for direct and indirect transmission of brucellosis in cattle, small ruminants and human
populations. Solid arrows represent transfer of individuals from one subpopulation to another while dotted lines represent
interactions leading to infections.
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Table 2: Model Parameters used in the model and their description

Parameter Description
πc Per capita cattle birth rate
φc Cattle vaccination rate
πh Per capita human birth rate
σ Human recovery rate
µh Per capita human natural death rate
ψc Cattle vaccine efficacy waning rate
βc Within cattle transmission rate
dc Culling rate of seropositive cattle
µc Per capita cattle natural death rate
αc Brucella from the environment to cattle transmission rate
αs Brucella from the environment to small ruminants transmission rate
αh Brucella from the environment to human transmission rate
ρc Brucella shedding rate by infected cattle
ρs Brucella shedding rate by infected small ruminants
βch Cattle to human transmission rate
βsh Small ruminants to human transmission rate
γ The rate at which recovered human become susceptible
ε Decaying rate of brucella in the environment
τ Environmental hygiene and sanitation rate
πs Small ruminants per capita birth rate
φs Vaccination rate of small ruminants
ψs Small ruminant vaccine efficacy
βs Within small ruminants transmission rate
ds Culling rate of seropositive small ruminants
µs Per capita small ruminants natural mortality rate

2.4 Model equations

Based on the assumptions and the inter-relations between the variables and the parameters as shown in Figure 1, the
transmission dynamics of Brucellosis can be described by the following ordinary differential equations:

dVc

dt
= φcSc− (µc +ψc)Vc,

dSc

dt
= πcNc +ψcVc− (λ1 +φc +µc)Sc,

dIc

dt
= λ1Sc− (µc +dc)Ic,

dVs

dt
= φsSs− (µs +ψs)Vs,

dSs

dt
= πsNs +ψsVs− (λ2 +φs +µs)Ss, (1)

dIs

dt
= λ2Ss− (µs +ds)Is,

dB
dt

= ρcIc +ρsIs− (ε + τ)B,

dSh

dt
= πhNh + γRh− (λ3 +µh)Sh,

dIh

dt
= λ3Sh− (σ +µh)Ih,

dRh

dt
= σ Ih− (γ +µh)Rh,
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where, λ1 = βcIc +αcB,λ2 = βsIs +αsB and λ3 = βhcIc +βhsIs +αhB.

3 Model properties

Basing on the fact that the first seven equations of system (1) are independent of the last three equations, let us first
consider the following model for cattle and the ruminants:

dVc

dt
= φcSc− (µc +ψc)Vc,

dSc

dt
= πcNc +ψcVc− (λ1 +φc +µc)Sc,

dIc

dt
= λ1Sc− (µc +dc)Ic, (2)

dVs

dt
= φsSs− (µs +ψs)Vs,

dSs

dt
= πsNs +ψsVs− (λ2 +φs +µs)Ss,

dIs

dt
= λ2Ss− (µs +ds)Is,

dB
dt

= ρcIc +ρsIs− (ε + τ)B.

3.1 Invariant region

In this subsection we use Box Invariance method proposed by [1] to assess the well-posedness of the model by
investigating the existence and feasibility of its solution. In other words, we investigate whether the solutions are
epidemiologically (variables have biological interpretation) and mathematically well-posed (a unique bounded solution
exists for all the time). That is solutions of model system (2) with nonnegative initial data remain nonnegative for all time
t ≥ 0. The model system (2) can be expressed in the compact form as:

dX
dt

= A(X)+F.

where, X = (Vc,Sc, Ic,Vs,Ss, Is,B), F is a column vector given by F = (0,πcNc,0,0,πsNs,0,0,0)T and

A =



−(µc +ψc) φc 0 0 0 0 0

ψc −(λ1 +φc +µc) 0 0 0 0 0

0 λ1 −(µc +dc) 0 0 0 0

0 0 0 −(µs +ψs) φc 0 0

0 0 0 ψs −(λ2 +φs +µs) 0 0

0 0 0 0 λ2 −(µs +ds) 0

0 0 ρc 0 0 ρs −(ε + τ)


.

It can be noticed that A(X) is Meltzer matrix since all of its off diagonal entries are non negative, for all X ∈ R7
+.

Therefore, using the fact that F ≥ 0, the model system (2) is positively invariant in R7
+ which means that an arbitrary

trajectory of the system starting in R7
+ remains in R7

+ forever. In addition, the right hand F is Lipschitz continuous. Thus,
a unique maximal solution exists and so

Ω = {(Vc,Sc, Ic,Vs,Ss, Is,B)≥ 0} ∈ R7
+,
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is the feasible region for the model (2). Thus, the model (2) is epidemiologically and mathematically well-posed in the
region Ω .

4 Model analysis

4.1 Disease free equilibrium

The Brucellosis free equilibrium point is obtained by setting the right hand side of equations in model system (2) to zero,
that is:

dVc

dt
=

dSc

dt
=

dIc

dt
=

dVs

dt
=

dSs

dt
=

dIs

dt
=

dB
dt

= 0.

Let the disease free equilibrium point of Brucellosis model be E0. In case there is no disease Ic = Is = B = 0 that is, the
sum of susceptible and vaccinated populations is equal to total population. There exists a disease free equilibrium
E0 = (V 0

c ,S
0
c ,0,V

0
s ,S

0
s ,0,0) for model system (2) where:

S0
c =

(µc +ψc)πcN0
c

µc(φc +ψc +µc)
, S0

s =
(µs +ψs)πsN0

s

µs(φs +ψs +µs)
, V 0

c =
φcπcN0

c

µc(φc +ψc +µc)
,

V 0
s =

φsπsN0
s

µs(φs +ψs +µs)
.

4.2 The effective reproduction number

In this subsection, we compute the effective reproduction number for model system (2) using the standard method of
the next generation matrix developed in [17,18]. The effective reproduction number, Re is defined as the measure of
average number of infections caused by a single infectious individual introduced in a community in which intervention
strategies are administered [41]. Its magnitude is a useful indicator of both the risk of an epidemic and the effort required
to control an infection [58]. When there are no interventions or controls, the number of secondary infections caused by
typical infected individual in a completely susceptible population during its entire period of infectiousness is called basic
reproduction number, R0. It is the threshold parameter to determine whether or not the disease can invade the susceptible
population successfully. Due to the natural history of some infections, transmissibility is better quantified by the effective
reproduction number rather than the basic reproduction number [15]. Considering the system for the infective variables:

dIc

dt
= (βcIc +αcB)Sc− (µc +dc)Ic,

dIs

dt
= (βsIs +αsB)Ss− (µs +ds)Is,

dB
dt

= ρcIc +ρsIs− (ε + τ)B. (3)

The effective reproduction number is obtained by taking the spectral radius of the next generation matrix

FV−1 =

[
∂Fi(E0)

∂ t

][
∂Vi(E0)

∂ t

]−1

,

where E0 is the brucellosis-free equilibrium point while Fi and Vi are vectors representing respectively, the rate of
appearance of new infection in compartment i and the transfer of infections from one compartment i to another, such that:
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Fi =

(βcIc +αcB)Sc

(βsIs +αsB)Ss

0

 ,

Vi =

 (µc +dc)Ic

(µs +ds)Is

−ρcIc−ρsIs +(ε + τ)B

 .
It is important to note that Vi is a resultant vector of the two vectors V +

i defined as the rate of transfer of individuals into
compartment i by all other means, and V −i which is the rate of transfer of individuals out of compartment i. That is:

Vi = V −i −V +
i , i = {1,2,3}.

The Jacobian matrices F of Fi and V of Vi evaluated at E0 are respectively:

F =

βcS0
c 0 αcS0

c

0 βsS0
s αsS0

s

0 0 0

 ,
and

V =

µc +dc 0 0
0 µs +ds 0
−ρc −ρs (ε + τ)

 .
Referring to the infected states with indices i and j, for i, j ∈ [1,2,3], the entry Fi j is the rate at which individuals in
infected state j give rise or produce new infections to individuals in infected state i, in the linearized system. Thus, when
there is no new cases produced in infected state i by an individual in infected state j immediately after infection, we have
Fi j = 0. The inverse of V is found to be

V−1 =


1

µc +dc
0 0

0
1

µs +ds
0

ρc

(µc +dc)(ε + τ)

ρs

(µs +ds)(ε + τ)

1
ε + τ

 .
The entry

(
V−1

)
i j is the average length of time an infected individual spends in compartment j during its lifetime when

introduced into the compartment i of disease free equilibrium, assuming that the population remains near the disease free

equilibrium and barring reinfection. In particular,
1

µc +dc
is an average time an infectious cattle spends in the state of

being infective,
1

µs +ds
is the average time spent by an infective small ruminant in the infectious state and

1
ε + τ

is the

average time brucella spend in the environment. Furthermore,
ρc

(µc +dc)
is the probability that an infective cattle will shed

brucella into the environment while
ρs

(µs +ds)
is the probability that an infected small ruminant will shed brucella into

the environment. Moreover, the Next Generation Matrix is calculated to be:

FV−1 =


βcS0

c

µc +dc
+

αcρcS0
c

(µc +dc)(ε + τ)

αcρsS0
c

(µs +ds)(ε + τ)

αcS0
c

ε + τ

αsρcS0
s

(µc +dc)(ε + τ)

βsS0
s

µs +ds
+

αsρsS0
s

(µs +ds)(ε + τ)

αsS0
s

ε + τ

0 0 0

 .

© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 4, 387-405 (2019) / www.ntmsci.com 395

The matrix FV−1 can be written as:

FV−1 =

R11 R12 R13

R21 R22 R23

0 0 0

 .
The (i,k) entry of the Next Generation Matrix FV−1 is the expected number of secondary infections in compartment i
produced by individuals initially in compartment k assuming that the environment seen by the individual remains
homogeneous for the duration of its infection [51]. In particular; R11 is the expected number of infected cattle produced
by one infectious cattle, R12 is the expected number of infected cattle produced by one infectious small ruminant via
consumption of brucella from the environment, R21 is the expected number of infected small ruminant as a result of one
infected cattle, and R22 is the expected number of infected small ruminant as a result of one infected small ruminant. It
can further be noticed that, matrix FV−1 is non-negative and therefore, has a nonnegative eigenvalue. The non-negative
eigenvalue is associated with a non-negative eigenvector which represents the distribution of infected individuals that
produces the greatest number Re of secondary infections per generation [42]. Thus, the spectral radius for our Next
Generation Matrix is

ρ(FV−1) = Re =
R11 +R22 +

√
(R22−R11)2 +4R12R21

2
(4)

where,

R11 =
(βc(ε + τ)+αcρc)(ψc +µc)πcN0

c

µc(µc +dc)(ε + τ)(φc +ψc +µc)
, R22 =

(βs(ε + τ)+αsρs)(ψs +µs)πsN0
s

µs(µs +ds)(ε + τ)(φs +ψs +µs)
,

R12 =
(ψc +µc)αcρsπcN0

c

µc(µs +ds)(ε + τ)(φc +ψc +µc)
, R21 =

(ψs +µs)αsρcπsN0
s

µs(µc +dc)(ε + τ)(φs +ψs +µs)
,

When there is no livestock vaccination: ψc = ψs = φc = φs = 0 and

R11 =
(βc(ε + τ)+αcρc)πcN0

c

µc(µc +dc)(ε + τ)
, R22 =

(βs(ε + τ)+αsρs)πsN0
s

µs(µs +ds)(ε + τ)
,

,

R12 =
αcρsπcN0

c

µc(µs +ds)(ε + τ)
, R21 =

αsρcπsN0
s

µs(µc +dc)(ε + τ)
,

When there is no intervention: ψc = ψs = φc = φs = τ = 0, the effective reproduction number becomes the basic
reproduction number:

R0 =
R0

11 +R0
22 +

√
(R0

22−R0
11)

2 +4R0
12R0

21

2
, (5)

where,

R0
11 =

(βcε +αcρc)πcN0
c

µc(µc +dc)ε
,R0

22 =
(βsε +αsρs)πsN0

s

µs(µs +ds)ε
,R0

12 =
αcρsπcN0

c

µc(µs +ds)ε
,

and

R0
21 =

αsρcπsN0
s

µs(µc +dc)ε
.

In view of the fact that, the first seven equations of model system (1) are independent of the last three equations, system
(1) and system (2) have the same effective reproduction and the same basic reproduction number. Thus, the effective
reproduction and basic reproduction number for system (1) are Re and R0, respectively.
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4.3 Local stability of the disease free equilibrium

In this subsection we use the trace-determinant method to investigate the local stability of the brucellosis free equilibrium
point.

Theorem 1. The disease free equilibrium for the brucellosis model system(2) is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Proof. We show that, variational matrix J(E0) of the brucellosis model at DFE has a negative trace and positive
determinant.
The Jacobian matrix for system 3.2 is given by:

J(E0) =



−(µc +ψc) φc 0 0 0 0 0
ψc −(φc +µc) −βcS0

c 0 0 0 −αcS0
c

0 0 a0 0 0 0 αcS0
c

0 0 0 −(µs +ψs) φs 0 0
0 0 0 ψs −(φs +µs) −βsS0

s −αsS0
s

0 0 0 0 0 a1 αsS0
s

0 0 ρc 0 0 ρs −(ε + τ)


where,

a0 = βcS0
c − (µc +dc),

a1 = βsS0
s − (µs +ds).

The trace of the Jacobian matrix J(E0) is given by:

Tr(J(E0)) =− (φc +ψc +2µc + ε + τ +φs +ψs +2µs)+βcS0
c − (µc +dc)+βsS0

s − (µs +ds),

=− (φc +ψc +2µc + ε + τ +φs +ψs +2µs),

− (µc +ds)

(
1− βcS0

c

µc +dc

)
− (µs +ds)

(
1− βsS0

s

µs +ds

)
.

Thus, the trace of the Jocobian matrix is the less than zero, that is Tr(J(E0))< 0, if:

βcS0
c

µc +dc
< 1 and

βsS0
s

µc +ds
< 1.

On the hand, the determinant of matrix J(E0) is:

Det(J(E0)) =µcµs(φc +ψc +µc)(φs +ψs +µs)[(µs +ds)(ε + τ)βcS0
c

(
1− βsS0

s

µs +ds

)
+(µc +dc)ρsαsS0

s

(
1− βcS0

c

µc +dc

)
+(µs +ds)ρcαcS0

c

(
1− βsS0

s

µs +ds

)
−(µc +dc)(µs +ds)(ε + τ)

(
1− βsS0

s

µs +ds

)
],

=µcµs(φc +ψc +µc)(φs +ψs +µs)(µc +dc)(µs +ds)(ε + τ)αcρcS0
c

(
1− βsS0

s

µs +ds

)
(ε + τ)(µs +ds)

−
(

1− βcS0
c

µc +dc

)(
1− (βs(ε + τ)+αsρs)S0

s

(ε + τ)(µs +ds)

) .
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The determinant of the Jacobian matrix is positive (i.e. J(E0)> 0) iff:αcρcS0
c

(
1− βsS0

s

µs +ds

)
(ε + τ)(µs +ds)

>

(
1− βcS0

c

µc +dc

)(
1− (βs(ε + τ)+αsρs)S0

s

(ε + τ)(µs +ds)

) ,

βcS0
c

µc +dc
< 1,

βsS0
s

µc +ds
< 1,

and
((ε + τ)βc +ρcαc)S0

c

(ε + τ)(µc +dc)
< 1.

Furthermore,
βcS0

c

µc +dc
and

βsS0
s

µc +ds
are respectively the average number of cattle infections as a result of direct contact

between susceptible and infected cattle and the average number of small ruminant infections as a result of direct contact

between susceptible and infected small ruminant, and
((ε + τ)βc +ρcαc)S0

c

(ε + τ)(µc +dc)
is the expected number of infected cattle

caused directly or indirectly by one infectious cattle. Thus, the brucellosis free equilibrium for each population is locally
asymptotically stable if and only if the number of secondary infections, (Re) is less than unit, that is R0 < 1. This completes
the proof.

4.4 Global stability of the disease-free equilibrium

In this section, we analyze the global stability of the disease-free equilibrium point by applying the [11] approach. We
write model system (2) in the form: 

dXs

dt
= A(Xs−XDFE,S)+A1Xi,

dXi

dt
= A2Xi,

(6)

where Xs is the vector representing the non-transmitting compartments and Xi is the vector representing the transmitting
components. The DFE is globally asymptotically stable if A has real negative eigenvalues and A2 is a Metzler matrix (i.e.
the off-diagonal elements of A2 are non-negative). From model system (2) we have:

Xi = (Ic, Is,B)T ,Xs = (Vc,Sc,Vs,Ss)
T ,Xs−XDFE,s =



Vc−
φcπcN0

c

µc(φc +µc +ψc)+ψc

Sc−
(φc +µc)πcN0

c

µc(φc +µc +ψc)+ψc

Vs−
φsπsN0

s

µs(φs +µs +ψs)+ψs

Ss−
(φs +µs)πsN0

s

µs(φs +µs +ψs)+ψs


,

and

A1 =


0 0 0

−βcSc 0 −αc

0 0 0
0 −βsSs −αs

 .
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We need to check whether a matrix A for the non-transmitting compartments has real negative eigenvalues and that A2 is
a Metzler matrix. From the equation for non-transmitting compartments in (2) we have:

A =


−(ψc +µc) φc 0 0

ψc −(φc +µc) 0 0
0 0 −(ψs +µs) φs

0 0 ψs −(φs +µs)

 ,

with eigenvalues λ1 =−µs,λ2 =−(ψs +φs +µs),λ3 =−µc,λ4 =−(ψc +φc +µc) and

A2 =

βcS0
c − (µc +dc) 0 αcS0

c

0 βsS0
s − (µs +ds) αsS0

s

ρc ρs −(ε + τ)

 .
It can be seen that, A2 which is a Metzler matrix, and A, have real negative eigenvalues. This implies that the disease free
equilibrium for the model system (2) is globally asymptotically stable.

4.5 Global stability of endemic equilibrium

The local stability of the disease free equilibrium suggests local stability of the endemic equilibrium for the reverse
condition [9,10,51]. In this subsection we study the global behaviour of the endemic equilibrium, E∗ for the model
system (2).

Theorem 2. The endemic equilibrium point for the brucellosis model system (2) is globally asymptotically stable on Ω if
R0 > 1.

Proof. We construction an explicit Lyapunov function for model system (2) using [7,30,31,32,36] approach as it is useful
to most of the sophisticated compartmental epidemiological models. In this approach, we construct Lyapunov function of
the form:

V = ∑ai(xi− x∗i lnx),

where ai is a properly selected positive constant, xi is the population of the ith compartment and x∗i is the equilibrium
level. We define the Lyapunov function candidate V for model system (2) as:

L =(Sc−S∗c lnSc)+A1(Vc−V ∗c lnVc)+A2(Ic− I∗c ln Ic)+(Ss−S∗s lnSs)

+A3(Vs−V ∗s lnVs)+A4(Is− I∗s ln Is)+A5(B−B∗ lnB), (7)

where A1,A2,A3,A4 and A5 are positive constants. The time derivative of the Lyapunov function L is given by:

dL
dt

=

(
1− S∗c

Sc

)
dSc

dt
+A1

(
1− V ∗c

Vc

)
dVc

dt
+A2

(
1− I∗c

Ic

)
dIc

dt
+

(
1− S∗s

Ss

)
dSs

dt

+A3

(
1− V ∗s

Vs

)
dVs

dt
+A4

(
1− I∗s

Is

)
dIs

dt
+A5

(
1− B∗

B

)
dB
dt

. (8)
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Considering (2) at E∗ we have:

φ =
(ψc +µc)V ∗c

S∗c
,

πcN∗c = (βcI∗c +αcB∗+φc +µc)S∗−ψcV ∗c ,

µc +dc =
(βcI∗c +αcB∗)S∗

I∗c
,

(ε + τ) =
ρcI∗c +ρsI∗s

I∗c
.

Then, equation (8) may be re-written as:

dL
dt

=− (φc +µc)Sc

(
1− S∗c

Sc

)2

− (φs +µs)Ss

(
1− S∗s

Ss

)2

−
(

1− S∗c
Sc

)(
βcIcSc

(
1− I∗c S∗c

IcSc

)
+αcBSc

(
1− B∗S∗c

BSc

)
+ψcVc

(
V ∗c
Vc
−1
))

−
(

1− S∗s
Ss

)(
βsIsSs

(
1− I∗s S∗s

IsSs

)
+αsBSs

(
1− B∗S∗s

BSs

)
+ψsVs

(
V ∗s
Vs
−1
))

− (ψc +µc)BVcA1

(
1− V ∗c

Vc

)(
1− V ∗c

VcS∗c

)
− (ψs +µs)BVsA3

(
1− V ∗s

Vs

)(
1− V ∗s

VsS∗s

)
+A2

(
1− I∗c

Ic

)(
βcIcSc

(
1− S∗c

Sc

)
+αcBSc

(
1− B∗S∗cIc

BScI∗c

))
+A4

(
1− I∗s

Is

)(
βsIsSs

(
1− S∗s

Ss

)
+αsBSs

(
1− B∗S∗s Is

BSsI∗s

))
+A5

(
1− B∗

B

)(
ρcIc

(
1− BI∗c

B∗Ic

)
+ρsIs

(
1− BI∗s

B∗Is

))
. (9)

Equation (9) can be written as:

dL
dt

=−

(
(φc +µc)Sc

(
1− S∗c

Sc

)2

+(φs +µs)Ss

(
1− S∗s

Ss

)2
)
+F(Sc,Vc, Ic,Ss,Vs, Is,B),

where F is the balance of the right hand terms of equation (9). Following the approach of [7,30,31,32,33,36], F is a

non-positive function for Sc,Vc, Ic,Ss,Vs, Is,B > 0. Thus,
dL
dt

< 0 for Sc,Vc, Ic,Ss,Vs, Is,B > 0 and is zero if Sc = S∗c ,Vc =

V ∗c , Ic = I∗c ,Ss = S∗s ,Vs = V ∗s , Is = I∗s , and B = B∗. Therefore, if Re > 1, model system (2) has a an endemic equilibrium
point E∗ which is locally and globally asymptotically stable.

5 Sensitivity analysis

In this section, we investigate the relative importance of the parameters featuring in the effective reproduction number.
Brucellosis incidences and prevalences can best be reduced or eradicated if the parameters with significant impact in the
transmission dynamics of the disease are taken into consideration when planning for and implementing intervention
strategies. Sensitivity analysis is commonly used to determine the robustness of model predictions to parameter values,
since there are usually errors in data collection and presumed parameter values [12]. Sensitivity indices provide
information on how vital each parameter is to disease transmission and prevalence, and permits measurement of relative
changes in a state variable when a parameter changes. Thus, we use sensitivity analysis to discover parameters that have
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high impact on the reproduction number, Re and that should be targeted by intervention strategies. We know that initial
disease transmission is directly related to Re, therefore we compute the sensitivity indices of Re for the parameters in
model 2. The explicit expression of Re is given by equation 4. Since Re depends only on twenty parameters, we derive an
analytical expression for its sensitivity to each parameter using the normalized forward sensitivity index [35] as follows:

ϒ
Re

µc =
∂Re

∂ µc
× µc

Re
=−0.84,

ϒ
Re

πc =
∂Re

∂πc
× πc

Re
=+0.69.

In a similar fashion, we compute the sensitivity indices for all parameters used in equation 4 and present the results in Table
3. Table 3 shows that the most sensitive parameters of the effective reproductive number in each population are natural

Table 3: Sensitivity indices for Re parameters

Parameter Value Unit Sensitivity Index
πc 0.3 year−1 0.69
βc 0.0011 year−1 0.54
φc 0.7 year−1 -0.36
ψc 0.4 year−1 0.22
µc 0.25 year−1 -0.84
dc 0.35 year−1 -0.40
αc 0.00035 year−1 0.15
ρc 10 year−1 0.15
ε 8 year−1 -0.10
τ 12 year−1 -0.16
πs 0.4 year−1 0.31
βs 0.001 year−1 0.20
φs 0.8 year−1 -0.15
ψs 0.5 year−1 0.09
µs 0.35 year−1 -0.39
ds 0.4 year−1 -0.16
αs 0.00032 year−1 0.11
ρs 15 year−1 0.11

death rate, birth rate, transmission rate, gradual culling rate of sero-positive ruminants through slaughter and vaccination
rate. The positive sign in the sensitivity index means that an increase in that parameter leads to an increase in Re and
vise-versa. For instance, an increase or decrease of cattle birth rate by 10% leads to an increase or decrease of Re by 6.9%.
On the other hand, the negative sign in the sensitivity index of a parameter indicates that an increase or decrease in a
parameter value leads to a decrease or increase in Re respectively. For instance, a 10% increase in cattle natural mortality
rate leads to a 8.4% decrease in the effective reproductive number. This implies that culling in large livestock flocks is
inevitable if we want to control brucellosis transmissions.

6 Numerical Simulations

This section presents numerical simulations for model system 1 for the purpose of verifying some of the analytical
results. The parameter values used in our computations are mainly from [34], a literature similar to this work. The
parameter values are in Table 3. Figure 2 illustrates the variations in livestock and brucella subpopulations as time
increases. Figure 2 shows that susceptible ruminants decrease rapidly due to brucellosis epidemic and vaccination of
susceptible ruminants, while the infective subpopulations initially increase with time. However, after a two-year period
these subpopulations start decreasing. The increase in the infective classes is due to high brucellosis transmission rate
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Fig. 2: Ruminants subpopulations variation

and the decrease is due to different interventions like gradual culling of infective ruminants, environmental hygiene and
sanitation, and immunization of susceptible ruminants. The graph for vaccinated classes initially increase because large
number of susceptible livestock are vaccinated at the beginning of any vaccination program and decrease due to
reduction in the number of susceptible livestock. Furthermore, the number of all infective classes goes to zero after 10
years. From Figure 3 we see that the combination of timely environmental hygiene and sanitation and ruminants
vaccination significantly controls the indirect transmission of brucella from cattle to small ruminants and vice versa. In
addition, the disease can be eliminated from the population if gradual culling of seropositive ruminants through slaughter
eliminates at least 35% and 40% of the infective cattle and small ruminants respectively.

Furthermore, Figure 4a shows that an increase in cattle vaccination rate leads to a decrease in the effective reproduction
number. For instance, the cattle population attains its disease free equilibrium at 10% vaccination rate provided that other
controls are kept constant. This implies that cattle vaccination at some points plays a significant contribution in reducing
the transmission dynamics of brucellosis. A similar trend is observed from Figure 4b that vaccination of small ruminants
significantly reduces their secondary brucellosis infections and the small ruminants brucellosis free state is achieved at 9%
vaccination rate. Moreover, if other control parameters are kept constant and disease-induced rate is varied, we obtain the
brucellosis free equilibrium (Re < 1) at 12.5% and 10% diseased induced elimination rates for cattle and small ruminants
respectively (see Figure 5a and Figure 5b ).

Generally, the combination of ruminants vaccination, test-and-slaughter and disinfection of the environment minimizes or
eliminates the disease from the populations. In line with this [47] pointed out that, gradual culling of seropositive animals
through slaughter, isolation and confinement of pregnant cows close to calving; proper disposal of placentas and aborted
foetuses, the use of the S19 vaccine, and restricted introduction of new animals leads to brucellosis elimination in animal
herds.
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Fig. 3: The impact of environmental hygiene and sanitation on brucelosis transmission

(a) (b)

Fig. 4: The impact of ruminants vaccination on brucelosis transmission.
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(a) (b)

Fig. 5: The impact of seropositive ruminants culling on the transmission of brucellosis.
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Brasileiro de Medicina Veterinária e Zootecnia, 61:135–141, 2009.
[5] J Awah-Ndukum, MMM Mouiche, HN Bayang, V Ngu Ngwa, E Assana, KJM Feussom, TK Manchang, and PA Zoli.

Seroprevalence and Associated Risk Factors of Brucellosis among Indigenous Cattle in the Adamawa and North Regions of

Cameroon, Veterinary medicine international, 2018. URL:https://doi.org/10.1155/2018/3468596.
[6] Andrew J Bouley, Holly M Biggs, Robyn A Stoddard, Anne B Morrissey, John A Bartlett, Isaac A Afwamba, Venance P Maro,

Grace D Kinabo, Wilbrod Saganda, Sarah Cleaveland, and John A Crump. Brucellosis Among Hospitalized Febrile Patients in

Northern Tanzania, The American journal of tropical medicine and hygiene, 87(6):1105–1111, 2012.
[7] Samuel Bowong, Jean Jules Tewa, and Jean Claude Kamgang. Stability analysis of the transmission dynamics of tuberculosis

models, World Journal of Modelling and Simulation; 7(2): 83–100, 2011.
[8] Manuela Carugati, Holly M Biggs, Michael J Maze, Robyn A Stoddard, Shama Cash-Goldwasser, Julian T Hertz, Jo EB Halliday,

Wilbrod Saganda, Bingileki F Lwezaula, Rudovick R Kazwala, Sarah Cleaveland, Venance P Maro, Mathew P Rubach, and John

A Crump. Incidence of human brucellosis in the Kilimanjaro Region of Tanzania in the periods 2007–2008 and 2012–2014,

Transactions of The Royal Society of Tropical Medicine and Hygiene; 112(3): 136–143, 2018.
[9] Saul C Mpeshe, Livingstone S Luboobi, and Yaw Nkansah-Gyekye. Stability analysis of the Rift Valley fever dynamical

model,Journal of Mathematical and Computational Science, 4(4): 740–762, 2014.
[10] N Nyerere, LS Luboobi, and Y Nkansah-Gyekye. Bifurcation and Stability analysis of the dynamics of Tuberculosis model

incorporating, vaccination, Screening and treatment,Communications in Mathematical biology and Neuroscience, 1:Article–ID,

2014.
[11] Carlos Castillo-Chavez, Sally Blower, Pauline van den Driessche, Denise Kirschner, and Abdul-AzizYakubu. Mathematical

approaches for emerging and reemerging infectious diseases: an introduction, 1: 2002.
[12] Nakul Chitnis, James M Hyman, and Jim M Cushing. Determining important parameters in the spread of malaria through the

sensitivity analysis of a mathematical model, Bulletin of mathematical biology, 70(5): 1272, 2008.

© 2019 BISKA Bilisim Technology

www.ntmsci.com


404 N. Nyerere, L. S. Luboobi, S. C. Mpeshe and G. M. Shirima: Mathematical model for the infectiology...

[13] CDC. Brucellosis Signs and Symptoms, https://www.cdc.gov/brucellosis/ symptoms/ index.html. Accessed 2018-11-07.

[14] CFSPH. Brucellosis Brucella abortus, http://cfsph.iastate.edu/Factsheets/pdfs/brucellosis abortus.pdf . Accessed 2018-11-07.
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