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Abstract: We introduce a class of continued fractions called Oppenheim continued fractions (OCF). Basic properties of these
expansions are discussed and studied in the formal powers series case.
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1 On generalized continued fractions

LetFq be a finite field withq elements of characteristicp, Fq[X] the set of polynomials of coefficients inFq andFq(X) its

field of fractions. The setFq((X−1)) is the field of formal power series overFq

Fq((X
−1)) = {ω =

+∞

∑
j=s

a jX
− j : a j ∈ Fq, s∈ Z}.

Let ω =
+∞

∑
j=s

a jX
− j ∈ Fq((X

−1)), whereas 6= 0. We denote its polynomial part by[ω ] and{ω} its fractional part. We

remark thatω = [ω ]+ {ω}. We define a non-archimedean absolute value onFq((X−1)) by | ω |= e−s. It is clear that, for

all P∈ Fq[X], | P |= edegP and, for allQ∈ Fq[X], such thatQ 6= 0, |
P
Q

|= edegP−degQ.

Let E = (Fq((X−1)))n, E is a vectorial space overFq((X−1)). We define a norm overE as follows, for all

f = ( f1, . . . , fn) ∈ E,

‖ f ‖= max
1≤i≤n

| fi |.

Let A1, . . . ,Am ∈ E, then we can verify that

‖ A1+ · · ·+Am ‖≤ max
1≤i≤m

‖ Ai ‖.

We begin by giving a few basics facts about the generalized continued fractions overFq((X−1)).
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1.1 Basics concepts

Let (αn)n∈N and(βn)n∈N ∈ Fq((X−1)), a continued fraction

K(
αn

βn
) =

α1

β1+
α2

β2+
α3

β3+
. . .

(1)

is said to converge if its sequence of approximants{ωn} converges. Here

ωn = Kn
i=1(

αi

βi
) =

α1

β1+
α2

β2+
α3

.. .+ αn
βn

, for n= 1,2, . . . (2)

The value of the continued fraction is thenω = K(
αn

βn
) = lim

n→+∞
ωn.

Remark.If αi = 1 andβi is a non constant polynomial, then we obtain the Regular continued fraction (RCF).

If αi is a fixed polynomialP and(βi)i≥1) is a sequence of non constant polynomials, then we obtain theP-continued

fraction.

If K(
αn

βn
) converges, its tailsK+∞

n=N+1(
αn

βn
) for N = 0,1,2, . . . also converge, and we letω(N) = K+∞

n=N+1(
αn

βn
) denote the

values of these tails forN = 0,1,2, . . .. It is easy to see that{ω(N)} is a sequence withω(0) = ω , satisfying the recursion

relations

ω(N) =
αN+1

βN+1+ω(N+1)
for N = 1,2, . . . . (3)

This sequence is what Waadeland [10] named the sequence of right tails forK(
αn

βn
).

In this section, we describe a necessary and sufficient conditions for the convergence of (1). For which, we assume the

existence of the limits

lim
n→+∞

αn = α 6= 0 and lim
n→+∞

βn = β . (4)

The continued fraction expansion (1) can be generated by means of the sequence{sn(θ )} of linear fractional

transformations,

sn(θ ) =
αn

βn+θ
, for θ ∈ Fq((X

−1)) andn= 1,2,3, . . . . (5)

DefiningSn(θ ) as their composition,

S0(θ ) = θ , Sn(θ ) = Sn−1(sn(θ )) for andn= 1,2,3, . . . . (6)

gives usωn = Sn(0), from (2). Straightforward computation shows thatSn(θ ) can be written

Sn(θ ) =
An+An−1θ
Bn+Bn−1θ

for n= 0,1,2, . . . (7)

whereAn andBn, the numerator and denominator ofKn
i=0(

αi

βi
), respectively, are given by

A−1 = 1, A0 = 0, An = βnAn−1+αnAn−2, for n= 1,2, . . . (8)
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B−1 = 1, B0 = 0, Bn = βnBn−1+αnBn−2, for n= 1,2, . . . (9)

This notation is in accordance with [9], and it will be used throughout this paper. If we regard theNth tailK+∞
m=N+1(

αm

βm
) as a

continued fraction, we use the notationS(N)
n , A(N)

n andB(N)
n to denote the similar expressions connected withK+∞

m=N+1(
αm

βm
).

1.2 Convergence results

Theorem 1. Let (αn)n∈N and(βn)n∈N ∈ Fq((X−1))[z]. If in the generalized continued fraction

ω(z) = K+∞
n=1

αn(z)
βn(z)

; (10)

lim
i→+∞

αi(z) = α(z) 6= 0 and lim
i→+∞

βi(z) = β (z), the continued fraction expansion (10) will converge if and only if

z∈ {z∈ Fq((X−1));a(z) =
| α(z) |
| β (z) |2

< 1} except possibly at certain isolated points p1, p1, . . ., which are poles.

Proof.If a sufficient number of terms of (10) are omitted at the outset in which(| αN+i(z) |, | βN+i(z) |) = (| α(z) |, | β (z) |)
∀i ≥ 1, a new continued fraction will be obtained

ω(N)(z) = K+∞
i=1

αN+i(z)
βN+i(z)

. (11)

For this continued fraction

B(N)
0 = 1, B(N)

1 = βN+1(z) andB(N)
i+1 = βN+i+1(z)B

(N)
i +αN+i+1(z)B

(N)
i−1. (12)

Suppose first that| a(z) |=
| α(z) |
| β (z) |2

< 1, then, for alli ≥ 1,

| βN+i(z) |2

| αN+i(z) |
=

1
| a(z) |

> 1. (13)

Let us proof that

| B(N)
n |=| β (z) |n . (14)

If | B(N)
s |=| β (z) |s for s≤ n, then| βN+n+1(z)B

(N)
n |=| β (z) |n+1 and | αN+n+1(z)B

(N)
n−1 |=| α(z) || β (z) |n−1. We have

immediately from (12) and (13).

| B(N)
n+1 |=| βN+n+1(z)B

(N)
n |=| β (z) |n+1

.

We claim that the sequence(
A(N)

n

B(N)
n

)n converges. The difference between the(n−1)th and thenth (n> 0) convergent is

A(N)
n

B(N)
n

−
A(N)

n−1

B(N)
n−1

=

(−1)n
n

∏
i=1

αN+i(z)

B(N)
n−1B(N)

n

, (15)
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Then from (14), |
A(N)

n

B(N)
n

−
A(N)

n−1

B(N)
n−1

|=
| α(z) |n

| β (z) |2n−1 .

Consequently fork∈N,

|
A(N)

n+k

B(N)
n+k

−
A(N)

n

B(N)
n

|=
| α(z) |n

| β (z) |2n−1 =| a(z) |n| β (z) |−→ 0.

Now, suppose that| a(z) |≥ 1, one shows, using a simple recurrence onn and (12) that

| B(N)
2n |≤| α(z) |n and | B(N)

2n+1 |≤| β (z) || α(z) |n . (16)

Now, we are able to prove the divergence of
A(N)

n (z)

B(N)
n (z)

under the assumption| a(z) |≥ 1. Indeed, if
A(N)

n (z)

B(N)
n (z)

converge, then

from (15), we deduce that

ω(N)(z) =
+∞

∑
k=1

(−1)k
k

∏
i=1

αN+i(z)

B(N)
k B(N)

k−1

thenA(N)
N (z) diverge since from (16) ∣∣∣∣∣∣∣∣∣

(−1)k
k

∏
i=1

αN+i(z)

B(N)
k B(N)

k−1

∣∣∣∣∣∣∣∣∣

≥|
α
β

|> 0.

2 Oppenheim continued fraction expansions (OCF)

Now, we introduce Oppenheim continued fraction expansion.LetJ = {ω ∈Fq((X−1)) :|ω |< 1 andω 6= 0} and{h j} j≥1

be a sequence of polynomials valued map defined onFq[X]. Let ω ∈ J , as in the real case [8] we define the Oppenheim

algorithmT0 by

T0(ω) =
1

h1(D1)+1

(
1
ω

−D1

)
∈ J whereD1 =

[
1
ω

]
. (17)

Now we define the polynomialsD j = D j(ω) and the formal power seriesω j for j = 1,2, . . . as follows :





ω1 = ω , D j =

[
1

ω j

]
,

ω j+1 = T j
0 (ω) = T0(T

j−1
0 (ω)) =

1
h j(D j)+1

(
1

ω j
−

[
1

ω j

]) (18)

This algorithm generates the Oppenheim continued fractionexpansion ofω as follows

ω =
1

D1+
h1(D1)+1

D2+
h2(D2)+1

D3+
.. .+

h j−1(D j−1)+1

D j +
. . .

, (19)

whereD j ∈ Fq[X]\ Fq

Proposition 1. we have

| D j+1 |>| h j(D j)+1 | for all j ≥ 1. (20)
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In fact,

D j+1 =

[
1

T j
0 (ω)

]
=




h j(D j)+1{
1

T j−1
0 (ω)

}




then| D j+1 |>| h j(D j)+1 |.

Proposition 2.Let An and Bn, the numerator and denominator of Kn
i=0(

hi(Di)+1
Di

), then from (8) and (9), (An), (Bn) are

recursively defined by

A0 = 0, A1 = 1, An = DnAn−1+(hn−1(Dn−1)+1)An−2, f or n≥ 2 (21)

B0 = 1, B1 = B1, Bn = DnBn−1+(hn−1(Dn−1)+1)Bn−2, f or n≥ 2 (22)

Then, for n≥ 2

AnBn−1−An−1Bn = (−1)n
n−1

∏
j=1

(hn−1(Dn−1)+1) (23)

and
1

D1+
(h1(D1)+1)

D2+
(h2(D2)+1)

D3+
. . .+

(hn−1(Dn−1)+1)
Dn

=
An

Bn
(24)

| Bn |>| An | (25)

| Bn+1 |≥

∣∣∣∣∣
n

∏
i=0

hi(Di +1)

∣∣∣∣∣ (26)

Remark. (i) It is clear that the Oppenheim continued fraction is a particular case of the generalized continued fraction

(1).

(ii) If h j(D j) = 0, then we obtain the Regular continued fraction (RCF).

(iii) If h j(D j) = D j −1, then we obtain the Engel continued fraction (ECF).

Proposition 3. A formal power seriesω ∈ J has a finite Oppenheim continued fraction expansion if and only if ω ∈

Fq(X).

Proof.Using the expression (19) of ω , we state that ifω has a finite expansion thenω ∈ Fq(X). Suppose nowω is rational

fraction. By the algorithm, we know that forj ≥ 1, ω j is a rational fraction inJ , thenω j :=
Rj

Sj
=

Rj

D jRj +Rj+1
where

| Rj+1 |<| Rj | andD j =

[
Sj

Rj

]
. Thus, by the algorithm, we have

ω j+1 =
1

h j(D j )+1

(
1

ω j
−D j

)
=

1
h j(D j )+1

Rj+1

Rj
:=

Rj+1

Sj+1
. (27)

Since| Rj+1 |<| Rj |, then this procedure will stop at finite steps, it follows that ω j = 0 for somej.
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Proposition 4. For all ω ∈ J , we have

lim
n→+∞

An(ω)

Bn(ω)
= ω . (28)

Proof. If ω is rational we conclude (28) by (20). Now letω be irrational, (24) implies that

ω =
An(ω)+ (hn(Dn(ω))+1)ωn+1An−1(ω)

Bn(ω)+ (hn(Dn(ω))+1)ωn+1Bn−1(ω)
(29)

| ω −
An

Bn
|=

| (hn(Dn(ω))+1)ωn+1

n−1

∏
j=1

(h j(D j )+1) |

| Bn || (Bn+(hn(Dn(ω))+1)ωn+1Bn−1) |
.

Since| (hn(Dn(ω))+1)ωn+1 |< 1, | Bn−1 |<| Bn | and|
n−1

∏
j=1

(h j(D j)+1) |<| Bn |, then

| ω −
An

Bn
|<

1
| Bn |

−→ 0. (30)

Proposition 5. Let (D1, . . . ,Dn, . . .) and (h1(D1), . . . ,hn(Dn), . . .) be two sequences of polynomials such that| Di+1 |>|

hi(Di)+1 |. Let (An)n∈N and(Bn)n∈N be given by (21) and (22), Then
An

Bn
converge to someω ∈ J , Dn(ω) = Dn and

h j(D j ) = h j(D j(ω) for all n ≥ 1.

Proof.Let k∈ N, we have

|
An+k

Bn+k
−

An

Bn
| =|

n+k−1

∑
i=n

(
Ai

Bi
−

Ai−1

Bi−1
) |

≤ max
n≤i≤n+k−1

|
Ai

Bi
−

Ai−1

Bi−1
|

< max
n≤i≤n+k−1

1
| Bi |

=
1

| Bn |
−→ 0

then
An

Bn
is a cauchy sequence which implies that it converge. Letω ∈ Fq((X−1)) be its limit.

Let us prove thatω ∈ J , Dn(ω) = Dn and hn(Dn(ω)) = hn(Dn). Since ∃n0 ∈ N such that∀n ≥ n0 we have

| ω −
An

Bn
|< 1 then we obtain that

| ω |≤ max(| ω −
An

Bn
|, |

An

Bn
|)< 1.

For the third part, let

Cn =

[
0;

(
B1

A1

)
, . . . ,

(
Bn

An

)]
=

1

B1+A1

[
0;

(
B2

A2

)
, . . . ,

(
Bn

An

)]

=
1

B1+A1C̃n
. It follows from the first part of the proof that there exists̃ω ∈ J such that lim

n→+∞
C̃n = ω̃ . We find that

ω =
1

B1+A1ω̃
which implies thatω̃ =

1
ω

−B1

A1
∈ J . SinceD1 andh1(D1) are unique for which

1
ω

−D1

h1(D1)
∈ J , then

D1 = B1 etA1 = h1(D1). By induction we find the result.
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