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Abstract: We introduce a class of continued fractions called Oppenhedntinued fractions (OCF). Basic properties of these
expansions are discussed and studied in the formal powges sase.
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1 On generalized continued fractions

LetFq be a finite field withg elements of characteristjt, Fq[X] the set of polynomials of coefficients iy andFq(X) its
field of fractions. The seffq((X 1)) is the field of formal power series ovEg

+o0 )
Fo(X™) ={w= Y ajX) : aj € Fq, s€ Z}.
|]=s

+oo _

Let w= Z ajX~ € Fq((X™1)), whereas # 0. We denote its polynomial part w] and {w} its fractional part. We
j=s

remark thatw = [w] + {w}. We define a non-archimedean absolute valuB4itX 1)) by | w |= e~S. It is clear that, for

all P € Fq[X], | P |= 989 and, for allQ & Fq[X], such tha 0, g |— ededP — degQ.

Let E = (Fg((X™1)))", E is a vectorial space oveFq((X~1)). We define a norm oveE as follows, for all
f=(f1,...,fn) €E,
I £ {l= max| fi |.
1<i<n
LetAy,...,An € E, then we can verify that
AL+ +Am < max | A .
1<i<m

We begin by giving a few basics facts about the generalizatiraged fractions ov@q((X*l)).
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1.1 Basics concepts

Let (an)nen and(Bn)nen € Fq((X™1)), a continued fraction

an al

K(E): B+

B>+

ar (1)
as

Bs+
is said to converge if its sequence of approximdias} converges. Here

(of; ay

wh=K" (=)= ,forn=1,2,... 2
| 1(Bi) B+ Olza3
B2+
. an
.+ T
The value of the continued fraction is then= K(@) = lim .

Bn n—+oo

Remarklf o = 1 andf; is a non constant polynomial, then we obtain the Regularimoed fraction (RCF).
If a; is a fixed polynomiaP and(S)i>1) is a sequence of non constant polynomials, then we obtaif#entinued
fraction.

a L a a
If K(=") converges, its tail& %, (o) for N=0,1,2,... also converge, and we let™ = K% ;(-") denote the

Bn Bn Bn
values of these tails fdd = 0,1,2,.... Itis easy to see thgtw™)} is a sequence witbh(?) = w, satisfying the recursion
relations a
(N) — N+1 _
wN =_— "= _forN=12,.... 3
BN+1 + wN+1) ( )

This sequence is what Waadeladd][named the sequence of right tails iof%).
n

In this section, we describe a necessary and sufficient tondifor the convergence ot), For which, we assume the
existence of the limits

nirnwan:a #Oandnllmoﬁnzﬁ. 4)

The continued fraction expansiori)(can be generated by means of the sequefs€f)} of linear fractional
transformations, a
0) = —— for B € Fq((X1)) andn=1,2,3,.... 5
w(6)=5 15 (X)) ©)

DefiningS,(0) as their composition,
S(0) =06, Si(0) =S—1(sn(0)) for andn=1,2,3,.... (6)

gives uswn = $,(0), from (2). Straightforward computation shows tf8f6) can be written

An+An_10
6)=—+——forn=0,1,2,... 7
S\( ) Bn+ Bn719 b ) ) ( )
whereA,, andB, the numerator and denominatorlq’fzo(%), respectively, are given by
(|
A1=1A0=0, An=BAn-1+anA 2, forn=12... (8)

(© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 3, 372-378 (2019)www.ntmsci.com BISKA 374

B,l = 1, BO = 07 Bn = Ban,l + Uan,z, fOf n= 1, 2, e (9)
This notation is in accordance wit8][ and it will be used throughout this paper. If we regardittie tail K;:NH(?) asa
m
continued fraction, we use the notatigf, A\" andB{" to denote the similar expressions connected Wli‘,tﬁml(%).
m
1.2 Convergence results
Theorem 1. Let (an)nen @nd (Bn)nen € Fq((X~1))[2. If in the generalized continued fraction
oo an(z)
w(z) =K* ; 10
( ) n*lﬁn(Z) ( )

lim ai(z) = a(z) # 0 and _IiT Bi(z2) = B(z), the continued fraction expansiori@) will converge if and only if
i——+o0

i—+o0
y)am— 10@)
2€ {2 F((XH)a2) = {5

< 1} except possibly at certain isolated pointg py, . .., which are poles.

Proof. If a sufficient number of terms olLQ) are omitted at the outset in whi¢hani(2) |,| Bn+i(2) |) = (| a(2) |,| B(2) |)
Vi > 1, a new continued fraction will be obtained

(N) (o _ et ON4i (D)
w ' (z) =KT" . 11
@ =1 B (2) b
For this continued fraction
BYY =1, BY = Bu11(2) andB™) = Bui 1 (2B + anyis1(2BM). (12)
Suppose first thdta(z) |= ||g((zz))||2 < 1, then, foralli > 1,
| Bnei(2) | 1
= > 1. 13
ERCINER] (13)
Let us proof that
180 [=[B@)|" (14)

if | B |=| B(z) |* for s<n, then| By ni1(2)BR" |=| B(2) " and| anins1(2B); =] a(2) || B(2) . We have
immediately from 12) and (3).
N N
1B =1 Buins1(@BYY =] B(2) M.

(N)
We claim that the sequen(:ew)n converges. The difference between the- 1)th and thenth (n > 0) convergent is
Bn

n
v G an-i(2)
Y | .
BN M, g™ gV
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(N)
AV AV a2 |
Then from (L4 = .
W1 ~em =T
Consequently fok € N,

(N) n
An_+ka“_f D a@) " B |— 0.

(N) TRB(7) |2n—1
B, BY [B@]

Now, suppose thata(z) |> 1, one shows, using a simple recurrencen@md (L2) that

N N
By <l a(@ | and | By, I<|B@) [ a@) |- (16)
. i (2 . A (2)
Now, we are able to prove the divergenc )( ) under the assumptidra(z) |> 1. Indeed, if (N)( ) converge, then
Bn z Bn Z
from (15), we deduce that
k
k |_| anyi(z
wN(z) = z : — o
k=1 k Bk 1
thenA,(\,N) (2) diverge since fromX6)
k
1)k
a
[l N+| > g |> 0
(N) (N - :
- VBN, )1 s

2 Oppenheim continued fraction expansions (OCF)

Now, we introduce Oppenheim continued fraction expansien,# = {w € Fq((X~ 1)) :| w|< 1 andw+# 0} and{h;}j>1
be a sequence of polynomials valued map defineBX]. Letw € ¢, as in the real cas@] we define the Oppenheim
algorithmTgp by

1 1 1
Now we define the polynomiaB; = Dj(w) and the formal power serieg; for j =1,2,... as follows :
aco o[l
| ot 111 (18)
Wi1=Tg(@) =To(Tg H(w) = o | — — | =
e ° hiD) +1\w oy

This algorithm generates the Oppenheim continued fraetqansion otv as follows

1
w= Dy 4+ h1(D1) +1 ’ (19)
1 hz(Dz)—l—l
D2+
Dyt .4 21+
Dj+ B
whereDj € Fy[X]\ Fq
Proposition 1. we have
| Djt1]>| hj(Dj)+1| forall j > 1. (20)
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In fact,

then| Dj.1 [>| hj(Dj) +1].

(Di)+1

Proposition 2.Let A, and B,, the numerator and denominator of'iK( hi ), then from 8) and @), (An), (Bn) are

recursively defined by

AO = Oa Al = 17 An = DnAnflJF (hnfl(anl) + 1)An72; fOI’ n Z 2 (21)
BO == :I.7 Bl = Bl, Bn = Dan,l + (hn,l(Dn,l) + :I.)Br],z7 fOf n Z 2 (22)
Then, for n> 2
n—-1
AnBn_1—An_1Bn = (_1)n I_l (hn—1(Dp-1) +1) (23)
=1
and 1 A,
D+ (h1(D1)+1) Bn (24)
5 (ho(D2) +1)
i (n1(Dy 1) + 1)
Dat .+ n—1(DPn-1
Dn
| Bn [>] An | (25)
n
| B > thi(Di +1) (26)
=

Remark. (i) Itis clear that the Oppenheim continued fraction is dipafar case of the generalized continued fraction

D.
(ii) If hj(D;) =0, then we obtain the Regular continued fraction (RCF).

(iii) If h;(Dj) =Dj—1, then we obtain the Engel continued fraction (ECF).

Proposition 3. A formal power serieso € ¢ has a finite Oppenheim continued fraction expansion if arlgl rw €
Fg(X).

Proof. Using the expressiori ) of w, we state that itv has a finite expansion theme Fq(X). Suppose nowv is rational
R; R;

— = ————— where
S DjRj +Rj1

fraction. By the algorithm, we know that fgr> 1, wj is a rational fraction in 7, thenw; :=

Si .
Ri.1|<|R;|andD; = | = |. Thus, by the algorithm, we have
i j i R,

1 1 1 R'+l Rj+1
O — = _Di)= (L . 27
i hJ(DjHl(wj J) hiDj)+1 Ry " Sjj1 @7)

Since| Rj;1 |<| R; |, then this procedure will stop at finite steps, it followstthip = 0 for some;j.
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Proposition 4. For all w € _7, we have
Aa(w) _

n—+ Bp(w)

(28)

Proof. If w is rational we conclude2@) by (20). Now letw be irrational, 24) implies that

o Aol®) + (Na(Da(®)) + 1) 10 1(0) 9)
~ Bn() + (hn(Dn()) + 1) wh+1Bn-1(w)

n—-1

Al | (Mn(Dn(w)) +1)eni1 D(hj Dj)+1)|

" Bo | TBal (Bo (Ma(Dn(@) + Dty B 0|

n-1
Since| (hn(Dn(w)) +1)tnt1|< 1, | Bn-1 |<| Bn | and] rll(hj(Dj)Jrl) |<| Bn |, then
J:

An 1

W—— |< —=—
| Bn| |Bn|

—0. (30)

Proposition 5. Let (Dy,...,Dp,...) and (hy(D1),...,hs(Dn),...) be two sequences of polynomials such {ag, 1 |>|

hi(Di) +1|. Let (An)nen @and (Bn)nen be given by 21) and (22), Theng converge to some € _#, Dn(w) = Dy and
n

hj(Dj) = hj(Dj(w) foralln > 1.

Proof. Letk € N, we have

|A”_+k,ﬁ | :|n+£7l(ﬁ,ﬂ)|
Bn+k Bn i=n B AiBFlA'
' i—1
< max |—-——=
- n§i§n+k71| Bi Bi_j |
< max t 1 —0
n<i<ntk-1|Bi| | Bn|

theng is a cauchy sequence which implies that it convergedbet Fy((X~1)) be its limit.
n

Let us prove thatw € #, Dp(w) = Dp and hy(Dn(w)) = hn(Dp). Since Ing € N such thatvn > ng we have
| w— I;ﬁ |< 1 then we obtain that
n

An An
|w|§ma)(|w_B_n|’|B_n|)<l'

For the third part, let

1
Cn = 01 Bl PR Bn =
& ML a0 B2 B
1+A1|0; Al A,
1 o o )
= ——. It follows from the first part of the proof that there exigtsc ¢ such that limC, = . We find that
Bl+A1Cn n—+oo
1 1
! hich I hatow W & dh f h hz’iiDl h
w = —— which implies thatw = € #.SinceDq an D1) are unique for whic € Z,then
B +Aiw P Aq / 1 1( l) q h]_(D]_) j

D1 = By etA; = hy(D3). By induction we find the result.
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