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Abstract: In this study, solitary wave solutions were obtained by ggolynomial function method for some cases in the 6th order
nonlinear modified Boussinesq equation. The differencehiaf $tudy from the other studies in the literature is thatBloeissinesq
equation and its analogues, which had been studied so thndwlinearity in the terms having derivatives with resgeche space
variables. However, in this study, the non-linearity isrfidun the time-derivative terms of the analogues of the Bioess equation.
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1 Introduction
The Boussinesq equation was first described by Joseph Besgsin the 1870s as follows:

A2A Ut — U +0%Au=0 1)

Here,A is the Laplace operatak, ando are real numbers.
The equation modeling the shallow water waves is the namliBoussinesq equation.
Christov and Christoud] studied the following 2-dimensional Boussinesq equation

Ut =Au—u?—Au] 2)

Weakly time-dependent, nonlinear Boussinesg-type egustivhich include dispersion have become the most popular
equation for predicting wave transformations in coastgiaes. For the modeling of the waves in deeper waters and for
the development of standard equations, several modified Boussinesq equations have been studied.

Bingham et al. recreated the Boussinesq type models whioh stedied by Madsen et alf][ Liu et al. [14] developed a
higher-order Boussinesq equation for the wave model ofasurwave propagation. They proposed and applied a
simplified model of a mobile base and simulated the effectsanfhquakes of several kinds. The finite element method
was used by Zhao et al2§] to solve the generalized Boussinesq equati@1 [The travelling wave solutions for the
Boussinesq equation with dimension (2+1) was examined mth8eelan [L5] using the method of homogeneous
balance. Similar type of equation was also examined by Chah €] using a new generalized transformation in the
method of homogenous balance, where they obtained someaietioss for solitons and periodic waves. Again, the
solutions for the Boussinesq equation of dimension (2+19 stadied by Abdel Rady et al4] using the method of
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repeated homogeneous balance and achieved new exaabssliati travelling waves.

A weak nonlinear Hamiltonian model had been developed byizuftir 2-dimensional water waves with a specific depth
[29]. In his study, he obtained an equation of Boussinesq typedyg various differential equation solution methods.
Seadawy et al. found the solitary wave solutions of the Bioess equation, obtained by Zufiria, through a series
expansion methodf]. This method was shown by Seadawy et 6)6[10,12,13,16,17,18,19,20,21,22,23,24] to give
practical results for the solutions of several types ofiphdifferential equations.

In this article, we study the analogue of the Boussinesq temug@iven below, which is used in the modelling of
propagation of electrical signal in the communication dingavelling waves in non-linear elastic ba5], plasma
waves [L1] and heat transfer in spongy mediufr]:

H Usoooox + Uktxex + GZUXX*BZ(Q(U))tt = f(x1). 3)

The main purpose of this article is to investigate solitaigvev solutions of such equations. In the analogues of the
Boussinesq equation, which has been researched and wharsples are given above, nonlinearity is found in the terms
having derivatives with respect to the space variables. I@n dther hand, Boussinesq equations which contain
nonlinearity in time-derivative terms, also appear. THf@ing can be given as an example to these equations:

Utpo + 0 %Uoc — B2(Q(U))it = F(X.1). (4)

Here,q(&) is a continuous function. For such an equation, the soliepiof different boundary-value problems has been
proven by imposing certain conditions into the functm(g ) [1]. As a continuation of this study, the boundary-value
problem was solved to find approximate solutions and theilgyabf the solution under certain conditions were
investigated 2]. In addition, solitary wave solutions were obtained byngspolynomial function and tanh function

methods in the case gf &) = &2 for the same type of equatiof][

In this study, the the analogue of the Boussinesq equatfamhich we will find the solitary wave solutions in particular
is the following equation:

(a(u) )t — Uxx — Uyt — H Uspooox = 0. (5)

Here,q(&) is a continuous function. The solitary wave solutions ofamn 6) correspondingto thege =0vepu =1
cases fog(&) = &2 will be investigated using the polynomial function method.
2 Method: polynomial function method

Step 1: x andt are independent variables. Let us look at the following ima&ar partial differential equation, wheunes
the dependent variable.

P(u, U, Uy, Uit , Uxy, ... ) = 0. (6)

Here, P(u) is a polynomial function. To obtain the solitary wave salus of the equation6j which includes partial
derivatives, the following change of variables

{=x—ct (7)
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is performed such that the equation is transformed into dimary differenaital equation. Thereforgx,t) = u(¢).

Step 2: The partial differential equation in the form d)(is converted into the below ordinary differential equatadter
performing the change of variableg (

p(u,—cu, U, ¢’ u",...) =0 (8)

Step 3: Equation B) is integrated in sufficient amount where the integrationstants are taken as zero.

Step 4: For obtainingm (to be described in step 6), the degree of the highest ortariteEquation 8) is taken equal to
the highest degree of the nonlinear terms, such that thetieqgua homogenized. For this purpose, the degree of the
nonlinear term will be calculated as follows:

deg[uchj—;) ] =mq+s(m-+r) 9)

Step 5: The functiong is taken as the solution to the ordinary differential equatiiven below:

(¢(8)? = a@?(&) + BE*(&) + v (&). (10)

Here,a, 3,y are unknown constants.
Step 6: The solution of the equatio) is searched in the following form:

m

u(xt) = .%aj(Pi (11)

Here,a coefficients are unknowns in the beginning.

Step 7: By placing the function (11) in the equatiohl), we have a polynomial in the powers of the functipnAfter
the polynomial coefficients are set as zero, an overdetedrafgebraic equation system that is dependerat an 3,y
is obtained.

Step 8: This algebraic equation system is solved using Mathematidaunknown constanss, a, 3, y are obtained.
Step 9: The coefficients that we found are put into the equatibl).(Changing the variables as given if),(a solitan
solution of the equatiorf] is obtained.

After step 3 of the polynomial method, the equatigptékes the form below.

c?U? —u— CPUgg — HUgggs =0 (12)

3 Results and discussion
Casei. First, foru = 0, equation 12) becomes
2,2

cA? —u—C?ugg = 0. (13)

After the homogenization of equatioh3) as explained in step 4, the numimers obtained as follows:

2m=m-+2

m=2
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Then, according to step 6 of the polynomial method, we wiirsh for the solution of equatioiiQ) as follows:

u(é) =ao+ a1 (&) +ax?(€). (14)

Here,@(&) is the solution to the ordinary differential equatidid) given in step ) for the casey = 0.

By substituting the functionl@) in the equation13), we will obtain a polynomial in powers ap(¢), with coefficients
depending on the constandg,a;,az,a,3 andc. If we equate those polynomial coefficients to zero, we obtai
overdetermined algebraic equation system with respebetomknown constantg, a;,ay, a, 8 andc as given below:

—a;— (1+ac?) =0,

}(_al(—2a1+3ﬂ)cz—a2(2+ 80{02)) =0,

2 (15)
ap (284 —5B)c* =0,
a3c?=0
Solving this equation system in Mathematica, we find theofeilhg:
1 2
=0, a#£0, %=0 c£0, a=-5 B=" (16)

As seen from this solution the coefficiemtanda; are arbitrary constants different than zero. For simpliditve equate
c=1,a; = 1, the constants inl@) takes the values below:

2
aO:O; a1:17 C:]-a a:*]., Bzé

According to these values, the ordinary differential equefl0) has the following solution:

2
co(é)%(lﬂan[%(ﬂﬁ)} ) 17

In this regard, the solution of the partial differential etjon for u = 0 is found as given below after considering the
change of variable§ = x — ct:

2
u(x,t):g<l+tan[%(x—t+\/§)} ) (18)

The following graph of the solution can be plotted using Matiatica:

Caseii. Now, let us consider equatiof?) for u = 1 which becomes:

C2U27U7C2U557U5555 =0 (19)

Homogenizing the equatioi ) as described in step 4, we find the value of m as follows:

2m=m+4

m=4
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Fig. 1: The behavior of the solution of equatios) for u = 0

In this case, we search for the solution of the equation angielow according to the step 6:

u(é) = a0+ a1 (&) +ax¢?(&) +ag@®(&) +aug* () (20)

Here, (&) is the solution of the ordinary differential equatiob0) given in step (5) for the cas@. Substituting the
function R0) in the equation19), we will have a polynomial in powers ap(§), with coefficients depending on the
constantsg, a;,ap,as, a4, ad,y andc. Similarly, when we set those polynomial coefficients toozem overdetermined
algebraic equation system is obtained with respect to thkeamn constantsg, a;, ay,as, as, o, y andc as given below:

ao(—1+agc?) =0
—ay(1+a?—2a,c®>+ac?) =0
a2c? — ap(1+ 16a% — 2apc? + 4ac?) = 0
—ag(1+ 81a’— 2apc?® + 9ac?) — 2a;[—apc? + (10a + c%)y] = 0

a5¢? + 2a1agc? — ay(1+ 25602 — 2ayc? + 16a¢?) — 6ay(20a + ¢?)y = 0, (21)
0
0
0
0

Solving this equation system in Mathematica, we find theofoilhg:

13 c? /aaC
=0, a4=0, a»=0, =0, 0, c=/—, a=——, = 22
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. - . . /13
Since the coefficientsanda, are arbitrary numbers different than zero, we can tgke 1,c = 5 Then, the constants
in (22) becomes as seen below:

13 1 V13
=0, a1=0, a=0 az3=0, =1 c=4/—=, A=—, Y=—1
ao 1 2 3 as 6 on Y 12V3%

According to these values, the ordinary differential equa¢l 0) has the following solution:

cot[%(—Z\/ﬁ—\/éf)]\/\/4_554—\/4f5tan{1i2<—2\/ﬁ—\/55)r
(&)= /26

Accordingly, the solution of the partial differential ediga (5) for can be written as below:

(23)

u(E) = gmcotlliz(_zm_%s)r(\/ﬁa @tan[liz(_zﬁ_\/éz)ry (24)

The solution of the partial differential equation for= 1 is found as given below after considering the change o&tiées
& =x—ct:

2

u(x,t)ze—%cotl%z<—2\/ﬁ0—\/éx_\/gﬂ‘l<\/ﬁ+\/4_55tan[li2(_2\/m_\/éx_\/g)]z> 25

We obtain the following graph of the solution by the help ofthamatica:

Fig. 2: The behavior of the solution of equatids) for u =1
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4 Conclusion

In this paper, the soliton solutions of the nonlinear anaésyof the Boussinesq Equatios) vere found using the
polynomial function method at Mathematica software for thsesu = 0 andu = 1 by. The behaviors of the solitary
wave solutions are shown in the plotted graphs.
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