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Abstract: Firstly, some new definitions which are the special cases ofh-convex stochastic proceses are given. Then, we establish a
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1 Introduction

The classical Hermite-Hadamard inequality which was first published in [5] gives us an estimate of the mean value of a

convex functionf : I → R,

f

(

a+b
2

)

≤
1

b−a

∫ b

a
f (x)dx≤

f (a)+ f (b)
2

(1)

An account the history of this inequality can be found in [3]. Surveys on various generalizations and developments can

be found in [2] and [9].

In 1980, Nikodem [10] introduced convex stochastic processes and investigatedtheir regularity properties. In 1992,

Skwronski [14] obtained some further results on convex functions.

Let (Ω ,A ,P) be an arbitrary probability space. A functionX : Ω → R is called a random variable if it is

A −measurable. A functionX : I ×Ω →R, whereI ⊂ R is an interval, is called a stochastic process if for everyt ∈ I the

functionX (t, .) is a random variable.

Recall that the stochastic processX : I ×Ω → R is called(i) continuous in probability in intervalI , if for all t0 ∈ I we

have

P− lim
t→t0

X (t, .) = X (t0, .) ,

whereP− lim denotes the limit in probability.(ii) mean-square continuousin the intervalI , if for all t0 ∈ I

lim
t→t0

E
[

(X (t)−X (t0))
2
]

= 0,

whereE [X (t)] denotes the expectation value of the random variableX (t, .).

Obviously,mean-squarecontinuity implies continuity in probability, but the converse implication is not true.
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Definition 1. Suppose we are given a sequence{∆m} of partitions,∆m= {am,0, ...,am,nm}. We say that the sequence{∆m}

is a normal sequence of partitions if the length of the greatest interval in the n−th partition tends to zero, i.e.,

lim
m→∞

sup
1≤i≤nm

|am,i −am,i−1|= 0.

Now we would like to recall the concept of the mean-square integral. For the definition and basic properties see [15].

Let X : I ×Ω → R be a stochastic process withE
[

X (t)2
]

< ∞ for all t ∈ I . Let [a,b]⊂ I , a= t0 < t1 < t2 < ... < tn = b

be a partition of[a,b] andΘk ∈ [tk−1, tk] for all k = 1, ...,n. A random variableY : Ω → R is called the mean-square

integral of the processX on [a,b], if we have

lim
n→∞

E





(

n

∑
k=1

X (Θk)(tk− tk−1)−Y

)2


= 0

for all normal sequence of partitions of the interval[a,b] and for allΘk ∈ [tk−1, tk], k= 1, ...,n. Then, we write

Y (·) =

b
∫

a

X (s, ·)ds(a.e.).

For the existence of the mean-square integral it is enough toassume the mean-square continuity of the stochastic process

X.

Throughout the paper we will frequently use the monotonicity of the mean-square integral. IfX (t, ·) ≤ Y (t, ·) (a.e.) in

some interval[a,b], then
b
∫

a

X (t, ·)dt ≤

b
∫

a

Y (t, ·)dt (a.e.).

Of course, this inequality is the immediate consequence of the definition of the mean-square integral.

Definition 2. We say that a stochastic processes X: I ×Ω → R is convex, if for allλ ∈ [0,1] and u,v∈ I the inequality

X (λu+(1−λ )v, ·)≤ λX (u, ·)+ (1−λ )X (v, ·) (a.e.) (2)

is satisfied. If the above inequality is assumed only forλ = 1
2, then the process X is Jensen-convex or1

2−convex. A

stochastic process X is concave if(−X) is convex. Some interesting properties of convex and Jensen-convex processes are

presented in ([10], [ 15]).

Now, we present some results proved by Kotrys [6] about Hermite-Hadamard inequality for convex stochasticprocesses.

Lemma 1. If X : I ×Ω → R is a stochastic process of the form X(t, ·) = A(·)t +B(·), where A,B : Ω → R are random

variables, such that E
[

A2
]

< ∞,E
[

B2
]

< ∞ and[a,b]⊂ I, then

b
∫

a

X (t, ·)dt = A(·)
b2−a2

2
+B(·)(b−a) (a.e.).
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Proposition 1. Let X : I ×Ω → R be a convex stochastic process and t0 ∈ intI . Then there exist a random variable

A : Ω → R such that X is supported at t0 by the process A(·) (t − t0)+X (t0, ·). That is

X (t, ·)≥ A(·) (t − t0)+X (t0, ·) (a.e.).

for all t ∈ I.

Theorem 1.Let X : I ×Ω → R be Jensen-convex, mean-square continuous in the interval Istochastic process. Then for

any u,v∈ I we have

X

(

u+ v
2

, ·

)

≤
1

v−u

v
∫

u

X (t, ·)dt ≤
X (u, ·)+X (v, ·)

2
(a.e.) (3)

In [11], Sarıkaya et al. proved the following refinement of the inequality (3):

Theorem 2. If X : I ×Ω → R be Jensen-convex, mean-square continuous in the interval Istochastic process. Then for

any u,v∈ I and for all λ ∈ [0,1] , we have

X

(

u+ v
2

, ·

)

≤ h(λ )≤
1

v−u

v
∫

u

X (t, ·)dt ≤ H (λ )≤
X (u, ·)+X (v, ·)

2
, (4)

where

h(λ ) := λX

(

λv+(2−λ )u
2

, ·

)

+(1−λ )X
(

(1+λ )v+(1−λ )u
2

, ·

)

and

H (λ ) :=
1
2
(X (λv+(1−λ )u, ·)+λX (u, ·)+ (1−λ )X (v, ·)) .

In [1], Barraez et al. introduced the concept ofh−convex stochastic process with following definition.

Definition 3. Let h: (0,1)→ R be a non-negative function, h6= 0.we say that a stochastic process X: I ×Ω → R is an

h−convex stochastic process if, for every t1, t2 ∈ I , λ ∈ (0,1), the following inequality is satisfied

X (λu+(1−λ )v, ·)≤ h(λ )X (u, ·)+h(1−λ )X (v, ·) (a.e.) (5)

Obviously, if we takeh(λ ) = λ andh(λ ) = λ s in (5), then the definition ofh−convex stochastic process reduces to the

definition of classical convex stochastic process [10] and s−convex stochastic process in the second sense [12]

respectively. Moreover, A stochastic processX : I ×Ω → R is:

(1) Godunova-Levin stochastic process if, we takeh(λ ) = 1
λ in (5),

X (λu+(1−λ )v, ·)≤
X (u, ·)

λ
+

X (v, ·)
1−λ

(a.e.) (6)

(2) P−stochastic process if, we takeh(λ ) = 1 in (5),

X (λu+(1−λ )v, ·)≤ X (u, ·)+X (v, ·) (a.e.) (7)

Authors proved the following Hermite-Hadamard inequalityfor h−convex stochastic process in [1].

Theorem 3. If X : I ×Ω → R Let be h: (0,1)→ R a non-negative function, h6= 0 and X : I ×Ω → R a non negative,

h−convex, mean square integrable stochastic process. For every u,v ∈ I ,(u < v), the following inequality is satisfied
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almost everywhere

1

2h
(1

2

)X

(

u+ v
2

, ·

)

≤
1

v−u

v
∫

u

X (t, ·)dt ≤ [X (u, ·)+X (v, ·)]

1
∫

0

h(λ )dλ .

For more information and recent developments on Hermite-Hadamard type inequalities for stochastic process, please refer

to ([1], [4], [6]-[8], [11]-[13], [16]). The aim of this paper is to establish an improvement of Hermite-Hadamard inequality

for h−convex stochastic process.

2 Main results

Theorem 4. If X : I ×Ω → R Let be h: (0,1)→ R a non-negative function, h6= 0 and X : I ×Ω → R a non negative,

h−convex, mean square integrable stochastic process. For every u,v∈ I ,(u< v), we have the following inequality

1

4
[

h
(

1
2

)]2 X

(

u+ v
2

, ·

)

≤ ∆1 ≤
1

v−u

v
∫

u

X (t, ·)dt ≤ ∆2 ≤ [X (u, ·)+X (v, ·)]

[

1
2
+h

(

1
2

)]
1
∫

0

h(λ )dλ (8)

where

∆1 :=
1

4h
(

1
2

)

[

X

(

3u+ v
4

, ·

)

+

(

u+3v
4

, ·

)]

and

∆2 :=

[

X (u, ·)+X (v, ·)
2

+X

(

u+ v
2

, ·

)] 1
∫

0

h(λ )dλ .

Proof.SinceX : I ×Ω → R is ah−convex stochastic process, we have

X

(

u+ u+v
2

2
, ·

)

= X

(

λu+(1−λ ) u+v
2 +(1−λ )u+λ u+v

2

2
, ·

)

(9)

≤ h

(

1
2

)[

X

(

λu+(1−λ )
u+ v

2
, ·

)

+X

(

(1−λ )u+λ
u+ v

2
, ·

)]

.

Integrating (9) from 0 to 1 with respect toλ , we get

X

(

3u+ v
4

, ·

)

≤ h

(

1
2

)





1
∫

0

X

(

λu+(1−λ )
u+ v

2
, ·

)

dλ +

1
∫

0

X

(

(1−λ )u+λ
u+ v

2
, ·

)

dλ





≤ h

(

1
2

)







2
v−u

u+v
2
∫

u

X (t, ·)dt+
2

v−u

u+v
2
∫

u

X (t, ·)dt






(10)

=
4h
(1

2

)

v−u

u+v
2
∫

u

X (t, ·)dt.

That is,

1

4h
(1

2

)X

(

3u+ v
4

, ·

)

≤
1

v−u

u+v
2
∫

u

X (t, ·)dt. (11)
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SinceX is ah−convex stochastic process, we also have

X

( u+v
2 + v

2
, ·

)

= X

(

λ u+v
2 +(1−λ )v+(1−λ ) u+v

2 +λv

2
, ·

)

(12)

≤ h

(

1
2

)[

X

(

λ
u+ v

2
+(1−λ )v, ·

)

+X

(

(1−λ )
u+ v

2
+λv, ·

)]

.

Integrating (12) from 0 to 1 with respect toλ , we get

X

(

u+3v
4

, ·

)

≤ h

(

1
2

)





1
∫

0

X

(

λ
u+ v

2
+(1−λ )v, ·

)

dλ +

1
∫

0

X

(

(1−λ )
u+ v

2
+λv, ·

)

dλ





≤ h

(

1
2

)







2
v−u

v
∫

u+v
2

X (t, ·)dt+
2

v−u

v
∫

u+v
2

X (t, ·)dt







=
4h
(1

2

)

v−u

v
∫

u+v
2

X (t, ·)dt,

i.e.
1

4h
(

1
2

)X

(

u+3v
4

, ·

)

≤
1

v−u

v
∫

u+v
2

X (t, ·)dt. (13)

Summing inequalities (11) and (13), we obtain

∆1 =
1

4h
(

1
2

)

[

X

(

3u+ v
4

, ·

)

+

(

u+3v
4

, ·

)]

≤
1

v−u

v
∫

u

X (t, ·)dt

which finishes the proof of second inequality in (8).

Applying the Hermite-Hadamard inequality forh−convex stochastic process (Theorem3), we have

1
v−u

v
∫

u

X (t, ·)dt =
1
2







2
v−u

u+v
2
∫

u

X (t, ·)dt+
2

v−u

v
∫

u+v
2

X (t, ·)dt







≤
1
2





[

X (u, ·)+X

(

u+ v
2

, ·

)] 1
∫

0

h(λ )dλ



+
1
2





[

X

(

u+ v
2

, ·

)

+X (v, ·)

] 1
∫

0

h(λ )dλ





=

[

X (u, ·)+X (v, ·)
2

+X

(

u+ v
2

, ·

)]
1
∫

0

h(λ )dλ

= ∆2.

This completes the proof of third inequality in (8).
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For the first inequality, using theh−convexity ofX, we have

1

4
[

h
(

1
2

)]2 X

(

u+ v
2

, ·

)

=
1

4
[

h
(

1
2

)]2 X

(

1
2

3u+ v
2

+
1
2

u+3v
4

, ·

)

≤
1

4
[

h
(1

2

)]2

[

h

(

1
2

)

X

(

3u+ v
2

, ·

)

+h

(

1
2

)

X

(

u+3v
4

, ·

)]

= ∆1.

Finally,

∆2 =

[

X (u, ·)+X (v, ·)
2

+X

(

u+ v
2

, ·

)] 1
∫

0

h(λ )dλ

≤

[

X (u, ·)+X (v, ·)
2

+h

(

1
2

)

[X (u, ·)+X (v, ·)]

] 1
∫

0

h(λ )dλ

= [X (u, ·)+X (v, ·)]

[

1
2
+h

(

1
2

)] 1
∫

0

h(λ )dλ .

This completes completely the proof of the Theorem.

Remark.Under assumption of Theorem4 with h(t) = t, we have

X

(

u+ v
2

, ·

)

≤ ∆1 ≤
1

v−u

v
∫

u

X (t, ·)dt ≤ ∆2 ≤
X (u, ·)+X (v, ·)

2

where

∆1 :=
1
2

[

X

(

3u+ v
4

, ·

)

+

(

u+3v
4

, ·

)]

and

∆2 :=
1
2

[

X (u, ·)+X (v, ·)
2

+X

(

u+ v
2

, ·

)]

.

This inequality is a special case of the Theorem2 with λ = 1
2.

Corollary 1. Under assumption of Theorem4 with h(t) = ts, we have the refinement Hermite-Hadamard inequality for

s−convex stochastic processes in the second sense

22s−2X

(

u+ v
2

, ·

)

≤ ∆1 ≤
1

v−u

v
∫

u

X (t, ·)dt ≤ ∆2 ≤ [X (u, ·)+X (v, ·)]

[

1
2
+

1
2s

]

1
s+1

where

∆1 = 2s−2
[

X

(

3u+ v
4

, ·

)

+

(

u+3v
4

, ·

)]

and

∆2 =

[

X (u, ·)+X (v, ·)
2

+X

(

u+ v
2

, ·

)]

1
s+1

.
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Corollary 2. Under assumption of Theorem4 with h(t) = 1, we have the following Hermite-Hadamard type inequality

for P−stochastic processes

1
4

X

(

u+ v
2

, ·

)

≤ ∆1 ≤
1

v−u

v
∫

u

X (t, ·)dt ≤ ∆2 ≤
3
2
[X (u, ·)+X (v, ·)]

where

∆1 =
1
4

[

X

(

3u+ v
4

, ·

)

+

(

u+3v
4

, ·

)]

and

∆2 =

[

X (u, ·)+X (v, ·)
2

+X

(

u+ v
2

, ·

)]

.

Corollary 3. Under assumption of Theorem4 with h(t) = 1
t , we have the following Hermite-Hadamard type inequality

for Godunova-Levin stochastic processes

1
16

X

(

u+ v
2

, ·

)

≤ ∆ ≤
1

v−u

v
∫

u

X (t, ·)dt

where

∆ =
1
8

[

X

(

3u+ v
4

, ·

)

+

(

u+3v
4

, ·

)]

.
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