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Abstract: In this paper, we investigate some set-valued contraction mappings in partial Hausdorff metric spaces and prove the existence
of fixed point of this set-valued mappings in partial Hausdorff metric spaces. We also give an example as support of our results.
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1 Introduction

In 1920, Banach introduced and proved the famous Banach Contraction Principle. The fixed point theory in metric

spaces is an important part of functional analysis since that day and many researchers have introduced new contraction

mappings and new fixed point theorems. Matthews introduced the notion of a partial metric space in [1]. He extended

Banach contraction principle in the setting of complete partial metric space in the same study. After, further studies have

been made by many authors ([4],[11],[12], [9], [8], [2], [3] and [13]). In [5], they proved the some generalized versions

of the fixed point theorem of Matthews and established a homotopy results. Based on the partial metric on a setX, in [7],

they presented a notion of partial Hausdorff metric on theΩCp(X). Besides, in [7], they studied of fixed point theorem

for multi-valued mappings on a partial metric space using the partial Hausdorff metric and generalized Nadler’s fixed

point theorem. Further, in [6], he introduced the notion of Banach G-contractions. Then many authors extended the

Banach G-contraction different from Jachymaski [15], [16], [17] and [18].

The aim of this paper is to prove some fixed point theorems for set-valued mappings in Hausdorff metric spaces.

Throughout this paper,Ω p
C (X) is the family of all nonempty closed and bounded subsets of a partial metric space(X, p) .

Firstly, the following definition of partial metric space and some related results that are will be needed in the progression

is given by Matthews ([1]).

Definition 1. [1] Let X be a nonempty set. A mapping p: X×X → R
+ is a partial metric on X, if for all x,y,z∈ X. We

have

(p1) p(x,x) = p(y,y) = p(x,y) if and only if x= y,

(p2) p(x,x)≤ p(x,y) ,

(p3) p(x,y) = p(y,x) ,

(p4) p(x,z)≤ p(x,y)+ p(y,z)− p(y,y) .

The pair(X, p) is then called a partial metric space. If p(x,y) = 0, then p1) and p2) imply that x= y. But the reverse does

not satisfy always.
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Example 1. [1] Let X = {[a,b] : a,b∈R,a≤ b} , that is,X = ΩC (R) and define a functionp : X×X → R
+ is defined

asp(x,y) = p([a,b] , [c,d]) = max{b,d}−min{a,c}, then(X, p) is a partial metric space.

[1] Every metric space is a partial metric space. Each partial metric p on X generates aT0 topologyτp on X with as a

base the family of the openp-balls
{

Bp(x,ε) : x∈ X,ε > 0
}

, whereBp(x,ε) = {y∈ X : p(x,y)< p(x,x)+ ε}.

Definition 2. [1] Let (X, p) be a partial metric space. Then:

(a) A sequence(xn) in (X, p) converges to a point x∈ X with respect toτp if and only if p(x,x) = limn→∞ p(x,xn).

(b) A sequence(xn) in (X, p) is called Cauchy sequence if there exists and is finitelimn,m→∞ p(xn,xm).

(c) A partial metric space(X, p) is called a complete partial metric space if every Cauchy sequence{xn} in X converges

with respect toτp to a point x∈ X.

Remark.[1] Let (X, p) be a partial metric space. Then the functiondp : X×X → [0,∞) defined by

dp (x,y) = 2p(x,y)− p(x,x)− p(y,y)

is a metric onX. Let (X, p) be a partial metric space, a sequence{xn} in (X,dp) is said to be convergent to a pointx∈ X

if and only if

p(x,x) = lim
n→∞

p(x,xn) = lim
n,m→∞

p(xn,xm) .

Lemma 1.[7] Let (X, p) be a partial metric space. Then:

(a) A sequence(xn) in X is a Cauchy with respect to p if and only if it is Cauchy withrespect to dp.

(b) A partial metric space(X, p) is complete if and only if the metric space(X,dp) is complete.

Now, let us give the definition of partial Hausdorff metric space and reletad results. First, we remember and state the

definition of Hausdorff metric for metric spaces.

Let (X,d) be a metric space andΩC (X) denotes the collection of all nonempty closed and bounded subsets ofX. For

A,B∈ ΩC (X), define

H (A,B) = max

{

sup
a∈A

d (a,B) ,sup
b∈B

d (b,A)

}

,

whered (x,A) = inf {d (x,a) : a∈ A} is the distance of a pointx to the setA. We know thatH is a metric onΩC (X),

called the Hausdorff metric induced by the metricd.

[7] In a partial metric space closedness is taken from(X,τp) and boundedness is given as follows:A is a bounded subset

in (X, p) if there existx0 ∈ X andM ≥ 0 such that for alla∈ A, we havea∈ Bp(x0,M), that is,p(x0,a) < p(a,a)+M.

Again in [7] following nations are defined. ForA,B∈ Ω p
C (X) andx∈ X,

p(x,A) = inf {p(x,a) ,a∈ A} andδp (A,B) = sup{p(a,B) : a∈ A} .

From here for the functionsδp : Ω p
C (X)×Ω p

C (X)→R
+ andHp : Ω p

C (X)×Ω p
C (X)→R

+, we have the following

Hp(A,B) = max
{

δp (A,B) ,δp (B,A)
}

.

Remark.[5] Let (X, p) be a partial metric space andA be any nonempty subset ofX, then

a∈ A if and only if p(a,A) = p(a,a) .
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Proposition 1. [7] Letδp : Ω p
C (X)×Ω p

C (X)→R
+. For all A,B,C∈ Ω p

C (X), we have the following:

(i) δp(A,A) = sup{p(a,a) : a∈ A} ,
(ii) δp (A,A)≤ δp (A,B) ,

(iii) δp (A,B) = 0 implies that A⊆ B,

(iv) δp (A,B)≤ δp (A,C)+ δp(C,B)− infc∈C p(c,c).

Proposition 2. [7] Let (X, p) be a partial metric space. For any A,B,C∈ Ω p
C (X), we have

(1) Hp (A,A)≤ Hp (A,B) ,

(2) Hp (A,B) = Hp (A,B) ,

(3) Hp (A,B)≤ Hp (A,C)+Hp(C,B)− infc∈C p(c,c) .

We know that a multi-valued mappingT : X → ΩC (X) is said to be contraction if

H (Tx,Ty)≤ kd(x,y)

for all x,y∈ X and for somek∈ [0,1). After above definition Nadler (in [14]) was proved the following theorem.

Theorem 1. [14] Let(X,d) be a complete metric space and T: X → ΩC (X) be a contraction mapping. Then, there exists

x∈ X such that x∈ Tx.

Lemma 2. [7] Let (X, p) be a partial metric space, A,B ∈ Ω p
C (X) and h> 1. For any a∈ A, there exists b= b(a) ∈ B

such that

p(a,b)≤ hHp(A,B) .

Theorem 2.[7] Let(X, p) be a complete partial metric space. If T: X → ΩC (X) is a multi-valued mapping such that for

all x,y∈ X, we have

Hp (Tx,Ty)≤ kp(x,y)

where k∈ (0,1). Then T has a fixed point.

2 Main results

In this section, we give some fixed point results for multi-valued mappings on a complete partial metric space.

Theorem 3.Let (X, p) be a complete partial metric space and let T: X → Ω p
C (X) be a set-valued map such that

Hp(Tx,Ty)≤ α max

{

p(x,y) , p(y,Ty)
[1+ p(x,Tx)]

1+ p(x,y)

}

(1)

for all x,y∈ X whereα ∈ (0,1) . Then T has a fixed point.

Proof. Let x0 ∈ X andx1 ∈ Tx0. By using Lemma2, we havex2 ∈ Tx1 such that

p(x1,x2)≤
1√
α

Hp (Tx0,Tx1) .

for 1√
α > 1. From (1) and above inequality, we get

p(x1,x2)≤
1√
α

α max

{

p(x0,x1) , p(x1,Tx1)
[1+ p(x0,Tx0)]

1+ p(x0,x1)

}

≤
√

α max{p(x0,x1) , p(x1,x2)} .
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Now, if max{p(x0,x1) , p(x1,x2)}= p(x1,x2), then we get a contradiction. Thus, max{p(x0,x1) , p(x1,x2)}= p(x0,x1) .

So, we have

p(x1,x2)
√

α p(x0,x1) .

Again from (1), for x2 ∈ Tx1, there existsx3 ∈ Tx2 such that

p(x2,x3)≤
1√
α

Hp (Tx1,Tx2) .

From (1) and above, we get

p(x2,x3)≤
1√
α

α max

{

p(x1,x2) , p(x2,Tx2)
[1+ p(x1,Tx1)]

1+ p(x1,x2)

}

≤
√

α max{p(x1,x2) , p(x2,x3)} .

Now, if max{p(x1,x2) , p(x2,x3)}= p(x2,x3), then we get a contradiction. Thus, max{p(x1,x2) , p(x2,x3)}= p(x1,x2) .

So, we have

p(x2,x3)
√

α p(x1,x2) .

Continuing this process, we get{xn} ⊂ X andxn−1 ∈ Txn such that

p(xn,xn+1)≤
√

α p(xn−1,xn) for all n∈N.

From here we obtainp(xn,xn+1)≤
(√

α
)n

p(x0,x1) for all n∈N. Using this and the property (p4) of a partial metric, for

anym∈N, we have

p(xn,xn+m)≤ p(xn,xn+1)+ p(xn+1,xn+2)+ ...+ p(xn+m−1,xn+m)

≤
(√

α
)n

p(x0,x1)+
(√

α
)n+1

p(x0,x1)+ ...+
(√

α
)n+m−1

p(x0,x1)

=
(

(√
α
)n

+
(√

α
)n+1

+ ...+
(√

α
)n+m−1

)

p(x0,x1)

≤
(√

α
)n

1−√
α

p(x0,x1)→ 0 asn→+∞

since 0< α < 1. This shows that{xn} is a Cauchy sequence in(X, ps) . Since(X, p) is a complete partial metric space,

by Lemma1, (X, ps) is a complete metric space. Therefore, the sequence{xn} converges to somex ∈ X with respect to

the metricps, that is, limn→∞ ps(xn,x) = 0. Again from Remark1, we have

p(x,x) = lim
n→∞

p(xn,x) = lim
n,m→∞

p(xn,xm) = 0. (2)

Now, we show thatp(x,Tx) = 0. On the contrary, suppose thatp(x,Tx)> 0. By using the (p4) inequality, (1) and (2), we

have

p(x,Tx)≤ p(x,xn+1)+ p(xn+1,Tx)− p(xn+1,xn+1)

≤ p(x,xn+1)+Hp(Txn,Tx)

≤ p(x,xn+1)+α max

{

p(xn,x) , p(x,Tx)
1+ p(xn,Txn)

1+ p(xn,x)

}

lettingn→ ∞, we get

p(x,Tx)≤ α p(x,Tx) .
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But, this is impossible forα < 1. Thus,p(x,Tx) = 0. Therefore, we have

p(x,Tx) = 0= p(x,x) ,

which from Remark1 implies thatx∈ Tx.

Example 2.Let X = {0,1,3,7} andp(x,y) = max{x,y} for all x,y∈ X. It is clear that(X, p) is a complete partial metric

space. LetT : X →ΩCp (X) be defined byT (0) = T (1) = {0}, T (3) = {0,1} andT (7) = {0,3}. It is easy that the subsets

{0} ,{0,1} and{0,3} are bounded. So, ifx∈ {0,1,3,7}, then we get

x∈ {0}⇔ p(x,{0}) = p(x,x)⇔ p(x,{0}) = x⇔ x∈ {0} .

Also,

x∈ {0,1}⇔ p(x,{0,1}) = p(x,x)⇔ min{p(x,0) , p(x,1)}= x⇔ x∈ {0,1} .

And,

x∈ {0,3}⇔ p(x,{0,3}) = p(x,x)⇔ min{p(x,0) , p(x,3)}= x⇔ x∈ {0,3} .

Hence,{0} ,{0,1} and{0,3} are closed with respect to the partial metricp. Now, we will show that, for allx,y∈ X, the

contractive condition (1) is satisfied withα = 1
2. To see that it is sufficient to consider the following four cases:

If x,y∈ {0,1}, then (1) trivially holds.

If x∈ {0,1} andy= 3, then

Hp (Tx,Ty) = 1≤ α max

{

p(x,y) , p(y,Ty)
1+ p(x,Tx)
1+ p(x,y)

}

.

If x∈ {0,1} andy= 7, then

Hp (Tx,Ty) = 3≤ α max

{

p(x,y) , p(y,Ty)
1+ p(x,Tx)
1+ p(x,y)

}

.

If x,y∈ {3,7}, then

Hp (Tx,Ty) = 3≤ α max

{

p(x,y) , p(y,Ty)
1+ p(x,Tx)
1+ p(x,y)

}

.

Thus, all the conditions of Theorem3 are satisfied andx= 0 is a fixed point ofT.

Now, we state another fixed point theorem on a complete partial metric space.

Theorem 4.Let (X, p) be a complete partial metric space and let T: X → Ω p
C (X) be a set-valued map such that

Hp (Tx,Ty)≤ α {p(x,Tx) p(y,Ty)} 1
2 (3)

for all x,y∈ X whereα ∈ (0,1). Then T has a fixed point.

Proof. Let x0 ∈ X andx1 ∈ Tx0. By using Lemma2, we havex2 ∈ Tx1 such that

p(x1,x2)≤
1√
α

Hp (Tx0,Tx1) . (4)
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for 1√
α > 1. From (3) and (4), we obtain

p(x1,x2)≤
1√
α

α {p(x0,Tx0) p(x1,Tx1)}
1
2 ≤

√
α p(x0,x1)

1
2 p(x1,x2)

1
2 ≤ α p(x0,x1)

Continuing the same way, we get{xn} ⊂ X andxn−1 ∈ Txn such that

p(xn,xn+1)≤ α p(xn−1,xn)≤ α2p(xn−2,xn−1)≤ . . .≤ αnp(x0,x1) for all n∈N.

Using this and the property (p4) of a partial metric, for anym∈ N, we have

p(xn,xn+m)≤ p(xn,xn+1)+ p(xn+1,xn+2)+ ...+ p(xn+m−1,xn+m)

≤ αnp(x0,x1)+αn+1p(x0,x1)+ ...+αn+m−1p(x0,x1)

=
(

αn+αn+1+ ...+αn+m−1) p(x0,x1)

≤ αn

1−α
p(x0,x1)→ 0 asn→+∞

since 0< α < 1. This shows that{xn} is a Cauchy sequence in(X, ps) . Since(X, p) is a complete partial metric space,

by Lemma1, (X, ps) is a complete metric space. Therefore, the sequence{xn} converges to somex ∈ X with respect to

the metricps, that is, limn→∞ ps(xn,x) = 0. Again from Remark1, we have

p(x,x) = lim
n→∞

p(xn,x) = lim
n,m→∞

p(xn,xm) = 0. (5)

Now, we show thatp(x,Tx) = 0. Assume this is not true the from (p4) inequality, (3) and (5), we have

p(x,Tx)≤ p(x,xn+1)+ p(xn+1,Tx)− p(xn+1,xn+1)

≤ p(x,xn+1)+Hp(Txn,Tx)

≤ p(x,xn+1)+α {p(xn,Txn) p(x,Tx)} 1
2 .

Passing to limit asn→ ∞, we get

p(x,Tx)≤ 0.

which is a contradiction. Thus,p(x,Tx) = 0. Thus, we get

p(x,Tx) = 0= p(x,x) ,

andx∈ Tx.

We can give the following another two fixed point theorems forset-valued mapping defined in complete partial metric

spaces.

Theorem 5.Let (X, p) be a complete partial metric space and let T: X → Ω p
C (X) be a set-valued map such that

Hp(Tx,Ty)≤ α
{

p(x,Tx) p(x,Ty)+ p(y,Ty) p(y,T x)
p(x,Ty)+ p(y,Ty)

}

(6)

whereα ∈ (0,1) and p(x,Ty)+ p(y,Ty) 6= 0 for all x,y∈ X. Then T has a fixed point.
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Proof. Let x0 ∈ X, x1 ∈ Tx0 andp(x,Ty)+ p(y,Ty) 6= 0. By using Lemma2, we havex2 ∈ Tx1 such that

p(x1,x2)≤
1√
α

Hp (Tx0,Tx1) . (7)

for 1√
α > 1. From (6) and (7), we have

p(x1,x2)≤
1√
α

α
{

p(x0,Tx0) p(x0,Tx1)+ p(x1,Tx1) p(x1,Tx0)

p(x0,Tx1)+ p(x1,Tx1)

}

≤
√

α
{

p(x0,x1) p(x0,x2)+ p(x1,x2) p(x1,x1)

p(x0,x2)+ p(x1,x2)

}

≤
√

α p(x0,x1)

Continuing this process, we obtain{xn} ⊂ X andxn−1 ∈ Txn such that

p(xn,xn+1)≤
√

α p(xn−1,xn)≤
√

α2
p(xn−2,xn−1)≤ . . .≤

√
αn

p(x0,x1) for all n∈ N.

Using this and the property (p4) of a partial metric, for anym∈ N, we have

p(xn,xn+m)≤ p(xn,xn+1)+ p(xn+1,xn+2)+ ...+ p(xn+m−1,xn+m)

≤
√

αn
p(x0,x1)+

√
αn+1

p(x0,x1)+ ...+
√

αn+m−1
p(x0,x1)

≤
√

αn

1−√
α

p(x0,x1)→ 0 asn→+∞

since 0< α < 1. This yields that{xn} is a Cauchy sequence in(X, ps) . Since(X, p) is a complete partial metric space,

by Lemma1, (X, ps) is a complete metric space. Therefore, the sequence{xn} converges to somex ∈ X with respect to

the metricps, that is, limn→∞ ps(xn,x) = 0. Again from Remark1, we have

p(x,x) = lim
n→∞

p(xn,x) = lim
n,m→∞

p(xn,xm) = 0.

From (p4) inequality and (6), we have

p(x,Tx)≤ p(x,xn+1)+ p(xn+1,Tx)− p(xn+1,xn+1)

≤ p(x,xn+1)+Hp(Txn,Tx)

≤ p(x,xn+1)+α
{

p(xn,Txn) p(xn,Tx)+ p(xn,Txn) p(x,Txn)

p(xn,Tx)+ p(x,Tx)

}

.

Lettingn→ ∞, we get

p(x,Tx)≤ 0.

But, this is impossible. Thus,p(x,Tx) = 0. Therefore, we get

p(x,Tx) = 0= p(x,x) ,

which from Remark1 implies thatx∈ Tx.
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Theorem 6.Let (X, p) be a complete partial metric space and let T: X → Ω p
C (X) be a set-valued map such that

Hp (Tx,Ty)≤ α

{

p(x,Tx) p(x,Ty)+ [p(x,y)]2+ p(x,Tx) p(x,y)
p(x,T x)+ p(x,y)+ p(x,Ty)

}

(8)

whereα ∈ (0,1) and p(x,Tx)+ p(x,y)+ p(x,Ty) 6= 0 for all x,y∈ X. Then T has a fixed point.

Proof. Let x0 ∈ X, x1 ∈ Tx0 andp(x,Tx)+ p(x,y)+ p(x,Ty) 6= 0. By using Lemma2, we havex2 ∈ Tx1 such that

p(x1,x2)≤
1√
α

Hp (Tx0,Tx1) . (9)

for 1√
α > 1. From (8) and (9), we obtain

p(x1,x2)≤
1√
α

α

{

p(x0,Tx0) p(x0,Tx1)+ [p(x0,x1)]
2+ p(x0,Tx0) p(x0,x1)

p(x0,Tx0)+ p(x0,x1)+ p(x0,Tx1)

}

≤
√

α

{

p(x0,x1) p(x0,x2)+ [p(x0,x1)]
2+ p(x0,x1) p(x0,x1)

2p(x0,x1)+ p(x0,x2)

}

≤
√

α p(x0,x1) .

On repeating this process, we get{xn} ⊂ X andxn−1 ∈ Txn such that

p(xn,xn+1)≤
√

α p(xn−1,xn)≤
√

α2
p(xn−2,xn−1)≤ . . .≤

√
αn

p(x0,x1) for all n∈ N.

Using this and the property (p4) of a partial metric, for anym∈ N, we have

p(xn,xn+m)≤ p(xn,xn+1)+ p(xn+1,xn+2)+ ...+ p(xn+m−1,xn+m)

≤
√

αn
p(x0,x1)+

√
αn+1

p(x0,x1)+ ...+
√

αn+m−1
p(x0,x1)

≤
√

αn

1−√
α

p(x0,x1)→ 0 asn→+∞

since 0< α < 1. This shows that{xn} is a Cauchy sequence in(X, ps) . Since(X, p) is a complete partial metric space,

by Lemma1, (X, ps) is a complete metric space. Therefore, the sequence{xn} converges to somex ∈ X with respect to

the metricps, that is, limn→∞ ps(xn,x) = 0. From Remark1, we have

p(x,x) = lim
n→∞

p(xn,x) = lim
n,m→∞

p(xn,xm) = 0.

Now, we show thatp(x,Tx) = 0. Now, we shall show thatx is a fixed point ofT. For anyn∈ N it follows from (p4) and

(7) that

p(x,Tx)≤ p(x,xn+1)+ p(xn+1,Tx)− p(xn+1,xn+1)

≤ p(x,xn+1)+Hp(Txn,Tx)

≤ p(x,xn+1)+α
p(xn,Txn) p(xn,Tx)+ [p(xn,x)]

2+ p(xn,Txn) p(xn,x)
p(xn,Txn)+ p(xn,x)+ p(xn,Tx)

.

Lettingn→ ∞, we get

p(x,Tx)≤ 0.
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which is a contraction. That is,p(x,Tx) = 0. Thus, we obtain

p(x,Tx) = 0= p(x,x) ,

which from Remark1 implies thatx∈ Tx.

3 Conclusions

In this study, we investigate some contraction mapping in partial Hausdorff metric space and prove the existence of fixed

point of this mapping in partial Hausdorff metric. Further,we also give an example in support our result.
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