The results of the functions obtained from class K by using algebraic operations

Hasan Sahin and Ismet Yildiz
Department of Mathematics, Duzce University, Duzce, Turkey

Received: 18 April 2019, Accepted: 21 May 2019
Published online: 29 September 2019.

Abstract

Functions selected from convex functions complex number of analytical and univalent conditions and unit D disk $|z|<1$ was used. Whether the new function obtained by addition process is convex function is examined. Although $f(z) \in K$ and $g(z) \in K$ are convex function which is shown to be $f(z)+g(z) \notin K$, it is proved that the sums of two functions are not convex functions.

Keywords: Convex function, complex numbers, unit disk.

1 Introduction

It is known that $f(z)$ and $g(z)$ doesn't have value with single in $f(z)$ and $g(z)$ if provides a one-to-one match in domain D. In geometrical, the image shown in the complex plane can be visualized as a viable means a set of points. Function $f(z)$ and $g(z)$ is in D domain if the conditions $f\left(z_{1}\right)=f\left(z_{2}\right)$ and $g\left(z_{1}\right)=g\left(z_{2}\right), z_{1} \in D$ and $z_{2} \in D$ so that $z_{1}=z_{2}$ it is said to be univalent. Very simple and complex variable function theory would require some simple assumptions.

Definition 1. $D=\{z \in \mathbb{C}:|z|<1\}$ in the unit disk, if analytic function $f(z)$ provides conditions $f(0)=0, f^{\prime}(0)=1$, then

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

has a Taylor expansion. Such class of functions is indicated by class S. In the Class S,

$$
k(z)=\frac{z}{\left(1-z^{2}\right)^{2}}=z+2 z^{2}+3 z^{3}+\ldots=\sum_{n=1}^{\infty} n z^{n}
$$

the function shown in the form is called the Koebe function. This function converts disk D one-to-one $\mathbb{C}-\left(-\infty,-\frac{1}{4}\right]$ on the region. [4]

Definition 2. Let B be an area in the complex plane. The one-to-one function f in B is called an univalent function and is selected z_{1}, z_{2} must provide the condition $f\left(z_{1}\right) \neq f\left(z_{2}\right)$.

Definition 3. f, complex variable and complex valued function is defined in a neighborhood of point $z_{0} \in \mathbb{C}$. If

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

[^0]This function can be distinguished from the so-called point z_{0}. If $f(z)$ is differentiated in the neighborhood of point z_{0}, its called analytic functions and it is show with A be differentiated in the point z_{0}. If $f(z)$ is differentiated in the point z_{0} with the neighborhood, its called analytic functions and it is show with A [3].

Theorem 1. $f: D \rightarrow \mathbb{C}$ be an analytic function. If $f(z)$ necessary and sufficient condition for being convex function $f^{\prime}(0)=1$ and

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \cdot[3]
$$

Theorem 2. If $f(z)$ is the analytic of a suitable neighborhood of the point z_{0}, then

$$
f(z)=f\left(z_{0}\right)+\frac{f^{\prime}\left(z_{0}\right)}{1!}\left(z-z_{0}\right)+\frac{f^{\prime \prime}\left(z_{0}\right)}{2!}\left(z-z_{0}\right)^{2}+\ldots
$$

it is shown.
Main Theorem. $f(z) \in K$ and $g(z) \in K$ are convex function which is shown to be $f(z)+g(z) \notin K$, it is proved that the sums of two functions are not convex functions.
Proof. First of all we choose a function and $|z|<1$, let's examine the convexity of this function. If we make a Taylor expansion for function $f(z)=\frac{z}{1-z}$.

$$
\begin{aligned}
& f(z)=z+z^{2}+z^{3}+z^{4}+\ldots=z+\sum_{n=2}^{\infty} z^{n} \\
& f^{\prime}(z)=\frac{1 \cdot(1-z)-z \cdot(-1)}{(1-z)^{2}}=\frac{1}{(1-z)^{2}}=1+2 z+3 z^{2}+4 z^{3}+\ldots \\
& f^{\prime \prime}(z)=\frac{-1 \cdot(-1) \cdot 2 \cdot(1-z)}{\left[(1-z)^{2}\right]^{2}}=\frac{2}{(1-z)^{3}}=2+6 z+12 z^{2}+\ldots
\end{aligned}
$$

Then $f^{\prime}(0)=1$ and $f(0)=0$ so function $f(z)$ is in class A and analytic. Now let's examine the univalent of this function. For $z_{1} \neq z_{2}$, while, $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ it is univalent. From here

$$
\begin{aligned}
z_{1}+\sum_{n=2}^{\infty} z_{1}^{n}-\left(z_{2}+\sum_{n=2}^{\infty} z_{2}^{n}\right) & =z_{1}-z_{2}+\sum_{n=2}^{\infty} z_{1}^{n}-\sum_{n=2}^{\infty} z_{2}^{n} \\
& =z_{1}-z_{2}+z_{1}^{2}-z_{2}^{2}+z_{1}^{3}-z_{2}^{3}+z_{1}^{4}-z_{2}^{4}+\ldots \\
& =\left(z_{1}-z_{2}\right)+\left(z_{1}-z_{2}\right)\left(z_{1}+z_{2}\right)+\left(z_{1}-z_{2}\right)\left(z_{1}^{2}+z_{1} z_{2}-z_{2}^{2}\right)+\ldots \\
& =\left(z_{1}-z_{2}\right)\left[1+\left(z_{1}+z_{2}\right)+\left(z_{1}^{2}+z_{1} z_{2}-z_{2}^{2}\right)+\ldots\right]
\end{aligned}
$$

for $z_{1} \neq z_{2}$ we take

$$
1+\left(z_{1}+z_{2}\right)+\left(z_{1}^{2}+z_{1} z_{2}-z_{2}^{2}\right)+\ldots \neq 0
$$

The function $f(z)$ is class A and because it is univalent, it provides properties of class S. Now, let's examine the convexity requirement. If $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0$. It would have a function that allows the processing function from the class K and convex.

$$
\operatorname{Re}\left\{1+\frac{z\left(2+6 z+12 z^{2}+\ldots\right)}{1+2 z+3 z^{2}+4 z^{3}+\ldots}\right\}=\frac{1+2 z+3 z^{2}+4 z^{3}+\ldots+2 z+6 z^{2}+12 z^{3}+\ldots}{1+2 z+3 z^{2}+4 z^{3}+\ldots}
$$

If we do a simple division operation

$$
1+\frac{2 z+2 z^{2}+2 z^{3}+\ldots}{1+2 z+3 z^{2}+4 z^{3}+\ldots}>0
$$

So we obtained $f(z) \in K$. Now we choose a different function $g(z)$ and $|z|<1$, let's examine the convexity of this function

$$
g(z)=\frac{z(-z-1)}{z-1}
$$

If we make a Taylor expansion for function

$$
g(z)=z+2 z^{2}+2 z^{3}+2 z^{4}+\ldots=z+\sum_{n=2}^{\infty} 2 z^{n}
$$

Here in $g(z)$ function $g^{\prime}(z)=\frac{(2 z+1)(1-z)-\left(z^{2}+z\right)(-1)}{(1-z)^{2}}=\frac{-z^{2}+2 z+1}{(1-z)^{2}},=1+4 z+6 z^{2}+8 z^{3}+\ldots, g^{\prime \prime}(z)=\frac{4}{(1-z)^{3}}=4+12 z+24 z^{2}+$ $40 z^{3} \ldots$. Then $g^{\prime}(0)=1$ and $g(0)=0$ so function $g(z)$ is in class A and it is analytic. Now we need to show $g(z)$ is univalent in unit disk D. For $z_{1} \neq z_{2}$, while, $g\left(z_{1}\right) \neq g\left(z_{2}\right)$ it is univalent. From here if

$$
z_{1} \neq z_{2}
$$

so $g\left(z_{1}\right)-g\left(z_{2}\right) \neq 0$ and $g(z)$ is univalent. Then

$$
\begin{aligned}
z_{1}+\sum_{n=2}^{\infty} 2 z_{1}^{n}-\left(z_{2}+\sum_{n=2}^{\infty} 2 z_{2}^{n}\right) & =z_{1}-z_{2}+\sum_{n=2}^{\infty} 2 z_{1}^{n}-\sum_{n=2}^{\infty} 2 z_{2}^{n} \\
& =z_{1}-z_{2}+2 z_{1}^{2}-2 z_{2}^{2}+2 z_{1}^{3}-2 z_{2}^{3}+2 z_{1}^{4}-2 z_{2}^{4}+\ldots \\
& =\left(z_{1}-z_{2}\right)\left[1+2\left(z_{1}+z_{2}\right)+2\left(z_{1}^{2}+z_{1} z_{2}-z_{2}^{2}\right)+\ldots\right]
\end{aligned}
$$

for $z_{1}-z_{2} \neq 0$. We obtained $1+2\left(z_{1}+z_{2}\right)+2\left(z_{1}^{2}+z_{1} z_{2}-z_{2}^{2}\right)+\ldots \neq 0$. The function $g(z)$ is class A and because it is univalent, it provides properties of class S. Now, let's examine the convexity requirement.

$$
\operatorname{Re}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\}>0
$$

would have a function that allows the processing function from the class K and convex.

$$
\operatorname{Re}\left\{1+\frac{z\left(4+12 z+24 z^{2}+40 z^{3} \ldots\right)}{1+4 z+6 z^{2}+8 z^{3}+\ldots}\right\}=\frac{1+4 z+6 z^{2}+8 z^{3}+\ldots+4 z+12 z^{2}+24 z^{3}+40 z^{4} \ldots}{1+4 z+6 z^{2}+8 z^{3}+\ldots}
$$

If we do a simple division operation

$$
1+\frac{4 z-4 z^{2}}{1+4 z+6 z^{2}+8 z^{3}+\ldots}>0
$$

We obtained that $g(z) \in K$.

Now we need to prove that $f(z) \in K$ and $g(z) \in K$ but $f(z)+g(z) \notin K$ is not in class K and it is not a convex function. It
is enough to show that the sum of the given functions is not in the class K and it is not convex function. So

$$
f(z)+g(z)=\frac{z}{1-z}+\frac{(-z-1) z}{z-1}=\frac{2 z+z^{2}}{1-z}
$$

If $f(z)+g(z)=\frac{2 z+z^{2}}{1-z}=h(z)$ from taylar expansion we take $h(z)=\frac{2 z+z^{2}}{1-z}=2 z+3 z^{2}+3 z^{3}+3 z^{4}+3 z^{5}+\ldots$. If we take the derivative

$$
h^{\prime}(z)=\frac{-z^{2}+2 z+2}{(1-z)^{2}}=2 z+3 z^{2}+3 z^{3}+3 z^{4}+3 z^{5}+\ldots
$$

$h(0)=0$ but $h^{\prime}(0)=2 \neq 1$. Therefore, it does not provide convexity conditions. We proved $h(z) \notin A$ and $h(z) \notin K$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] A. W. Goodman, Univalent Functions, Vol.1, 1983, pp.181-184.
[2] Ian Graham, Gabriela Kohr, Geometric function theory in one and higher dimensions.
[3] Peter L. Duren, Univalent Functions, 1983, pp 32-33.
[4] Peter L. Duren, Coefficients of Univalents Functions, Bulletin of the American Mathematical Society 83, 1977, pp. 891-911
[5] Shigeyoshi Owa, The order of close to convexity for Certain Univalent Functions, Journal of Mathematical Analysis and Applications, 1989, 138, 393-396.

[^0]: * Corresponding author e-mail: hasansahin13@gmail.com

