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Abstract: Functions selected from convex functions complex number ofanalytical and univalent conditions and unitD disk |z| < 1
was used. Whether the new function obtained by addition process is convex function is examined. Althoughf (z) ∈ K andg(z) ∈ K are
convex function which is shown to bef (z)+g(z) /∈ K , it is proved that the sums of two functions are not convex functions.
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1 Introduction

It is known thatf (z) andg(z) doesn’t have value with single inf (z) andg(z) if provides a one-to-one match in domainD.

In geometrical, the image shown in the complex plane can be visualized as a viable means a set of points. Functionf (z)

andg(z) is in D domain if the conditionsf (z1) = f (z2) andg(z1) = g(z2), z1 ∈ D andz2 ∈ D so thatz1 = z2 it is said to

be univalent. Very simple and complex variable function theory would require some simple assumptions.

Definition 1. D = {z∈C : |z|< 1}in the unit disk , if analytic function f(z) provides conditions f(0) = 0, f
′
(0) = 1, then

f (z) = z+
∞

∑
n=2

anzn

has a Taylor expansion. Such class of functions is indicatedby class S. In the Class S,

k(z) =
z

(1− z2)2= z+2z2+3z3+...=
∞

∑
n=1

nzn

the function shown in the form is called the Koebe function. This function converts disk D one-to-oneC− (−∞,− 1
4] on

the region.[4]

Definition 2. Let B be an area in the complex plane. The one-to-one functionf in B is called an univalent function and is

selected z1 , z2 must provide the condition f(z1) 6= f (z2).

Definition 3. f , complex variable and complex valued function is defined in a neighborhood of point z0 ∈ C. If

lim
z→z0

f (z)− f (z0)

z− z0
.
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This function can be distinguished from the so-called pointz0. If f (z) is differentiated in the neighborhood of point z0, its

called analytic functions and it is show with A be differentiated in the point z0. If f (z) is differentiated in the point z0 with

the neighborhood, its called analytic functions and it is show with A [3].

Theorem 1. f : D → C be an analytic function. If f(z) necessary and sufficient condition for being convex function

f ′(0) = 1 and

Re

{

1+
z f

′′
(z)

f ′(z)

}

> 0. [3] .

Theorem 2.If f (z) is the analytic of a suitable neighborhood of the point z0, then

f (z) = f (z0)+
f
′
(z0)

1!
(z− z0)+

f
′′
(z0)

2!
(z− z0)

2+...

it is shown.

Main Theorem. f (z) ∈ K andg(z) ∈ K are convex function which is shown to bef (z)+g(z) /∈ K , it is proved that the

sums of two functions are not convex functions.

Proof. First of all we choose a function and|z| < 1, let’s examine the convexity of this function. If we make a Taylor

expansion for functionf (z) = z
1−z.

f (z) = z+ z2+ z3+ z4+ ...= z+
∞

∑
n=2

zn.

f
′
(z) =

1.(1− z)− z.(−1)
(1− z)2 =

1

(1− z)2
= 1+2z+3z2+4z3+ ....

f
′′
(z) =

−1.(−1).2.(1− z)

[(1− z)2]
2 =

2

(1− z)3
= 2+6z+12z2+ ....

Then f
′
(0) = 1 and f (0) = 0 so functionf (z) is in classA and analytic. Now let’s examine the univalent of this function.

Forz1 6= z2, while, f (z1) 6= f (z2) it is univalent. From here

z1+
∞

∑
n=2

zn
1−






z2+

∞

∑
n=2

zn
2






= z1−z2+

∞

∑
n=2

zn
1−

∞

∑
n=2

zn
2

= z1−z2+z2
1−z2

2+z3
1−z3

2+z4
1−z4

2+...

=(z1− z2)+(z1− z2)(z1+ z2)+(z1− z2)
(

z2
1+ z1z2− z2

2

)

+...

=(z1− z2)

[

1+(z1+ z2)+
(

z2
1+ z1z2− z2

2

)

+ ...

]

for z1 6= z2 we take

1+(z1+ z2)+
(

z2
1+ z1z2− z2

2

)

+... 6= 0.

The functionf (z) is classA and because it is univalent, it provides properties of classS. Now, let’s examine the convexity

requirement. If Re
{

1+ z f′′(z)
f ′(z)

}

> 0. It would have a function that allows the processing functionfrom the classK and

convex.

Re

{

1+
z
(

2+6z+12z2+ ...
)

1+2z+3z2+4z3+ ...

}

=
1+2z+3z2+4z3+ ...+2z+6z2+12z3+ ...

1+2z+3z2+4z3+ ...
.
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If we do a simple division operation

1+
2z+2z2+2z3+ ...

1+2z+3z2+4z3+ ...
> 0.

So we obtainedf (z) ∈K. Now we choose a different functiong(z) and|z|< 1, let’s examine the convexity of this function

g(z) =
z(−z−1)

z−1
.

If we make a Taylor expansion for function

g(z) = z+2z2+2z3+2z4+...=z+
∞

∑
n=2

2zn.

Here ing(z) functiong
′
(z) =

(2z+1)(1−z)−(z2+z)(−1)

(1−z)2
=−z2+2z+1

(1−z)2
,= 1+4z+6z2+8z3+..., g

′′
(z) = 4

(1−z)3
= 4+12z+24z2+

40z3.... Theng
′
(0) = 1 andg(0) = 0 so functiong(z) is in classA and it is analytic. Now we need to showg(z) is univalent

in unit diskD. Forz1 6= z2, while,g(z1) 6= g(z2) it is univalent. From here if

z1 6= z2,

sog(z1)−g(z2) 6= 0 andg(z) is univalent. Then

z1+
∞

∑
n=2

2zn
1−






z2+

∞

∑
n=2

2zn
2






= z1− z2+

∞

∑
n=2

2zn
1−

∞

∑
n=2

2zn
2

= z1−z2+2z2
1−2z2

2+2z3
1−2z3

2+2z4
1−2z4

2+...

= (z1− z2)

[

1+2(z1+ z2)+2
(

z2
1+ z1z2− z2

2

)

+ ...

]

for z1 − z2 6= 0. We obtained 1+ 2(z1+ z2)+ 2
(

z2
1+ z1z2− z2

2

)

+ ... 6= 0. The functiong(z) is classA and because it is

univalent, it provides properties of classS. Now, let’s examine the convexity requirement.

Re

{

1+
zg

′′
(z)

g′
(z)

}

> 0

would have a function that allows the processing function from the class K and convex.

Re

{

1+
z
(

4+12z+24z2+40z3...
)

1+4z+6z2+8z3+ ...

}

=
1+4z+6z2+8z3+ ...+4z+12z2+24z3+40z4...

1+4z+6z2+8z3+ ...
.

If we do a simple division operation

1+
4z−4z2

1+4z+6z2+8z3+ ...
> 0.

We obtained thatg(z) ∈ K.

Now we need to prove thatf (z) ∈ K andg(z) ∈ K but f (z)+g(z) /∈ K is not in classK and it is not a convex function. It
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is enough to show that the sum of the given functions is not in the classK and it is not convex function. So

f (z)+g(z) =
z

1− z
+
(−z−1)z

z−1
=

2z+ z2

1− z
.

If f (z)+g(z) = 2z+z2

1−z = h(z) from taylar expansion we takeh(z) = 2z+z2

1−z = 2z+3z2+3z3+3z4+3z5+ .... If we take the

derivative

h
′
(z) =

−z2+2z+2

(1− z)2
= 2z+3z2+3z3+3z4+3z5+....

h(0) = 0 buth
′
(0) = 2 6= 1. Therefore, it does not provide convexity conditions.We provedh(z) /∈ A andh(z) /∈ K.
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