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Abstract: In this study, we propose a class of total variation dimimigh(TVD) schemes for solving pseudo-monotone variational
inequality arises in elasto-hydrodynamic lubricationnmp@ontact problem. A limiter based stable hybrid line s$ipigs are introduced
on hierarchical multi-level grid. These hybrid splittingee designed by use of diffusive coefficient and mesh demersdgtching
parameter in the computing domain of interest. The speatrfitustrated splittings is derived with the help of welldwn local Fourier
analysis (LFA). Numerical tests validate the performantéhe scheme and its competitiveness to the previous egistilnemes.
Advantages of proposed splittings are observed in the shas# reduces computational complexity (up @((logn)) and solve high
order discretization directly (no defect-correction toexjuire) without perturbing the robustness of the solutimtedure (i.e. it works
well for a large range of load parameters).
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1 Introduction

In tribology, elasto-hydrodynamic lubrication (EHL) isderstood as a phenomenon of fluid film lubrication in which
the process of hydrodynamic fluid film creation is governeé d¢n deformation of contacting bodies due to high
pressure. EHL is used to minimize friction and wear in trdgital contacts e.g. rolling bearings, cam-tappet systems
gears, flexi- ble seals, and human synovial joints. Sigmificantributions have been noted by many researchers in the
development of more efficient and accurate methods for thedystof EHL in last few decades
(e.0-[1,[2,[3],[4].[5],[6].[ 71.[8].[9],[101,[11,[12],[ 13)). It is well known that many numerical solutions of EHL mdde
suffer lack of numerical stability and convergence duringiputation, if not tackled correctly. On the other hand, whe
we discretize Reynolds equation, film thickness equatioinfegral form) and load balance equation together usiyg an
standard approach like finite difference or finite elementhoeé direct solver such as Newton-Raphson technique takes a
lot of computational storage and time (up @n®)) to solve the dense matrix system. For dealing such nunierica
difficulty, people started approximating the dense matystesm in the form of sparse matrix system (or banded matrix
system) to reduce the complexity of discrete problem.

In 1992, Venner3] has introduced a low order discretization for EHL modek(ske1) using multi-grid and multi-level
multi-integration approach which is stable for larger rad load parameters. Recently, there are few other indeggnd
work also have been noticed by the authors e.g. differedgflection method by Cardiff groud ], Discontinuous
Galerkin method by Leeds groufq] and FEM-based Newton method by INSA de Lyon gro@f] [(However, in this
case, the deformation is modeled in PDE form ) etc. In all moeetd approach researchers have tried to approximate
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discretized dense matrix in the form of banded matrix systenmsparse matrix system). Recently, a review work is
presented by Lugt et allfl] provide a rigorous detail on the current EHL developmetivaes in the field.

The main numerical difficulty in EHL model problerh.1 occurs due to lack of stable smoother and poor approximation
of pressure profile near its steep gradient location by aagdstrd iterative procedure. Also, when applied load in
contacting bodies are sufficiently high then many peoplentes] wiggles in pressure and film thickness profile by using
central or any high order scheme in convection term of Reigietjuation. One possible way to overcome the difficulty,
people have used lower order discretization in convecgamtIn addition, for obtaining the high order stable, aater
solutions for such problems, researchers have appliedrlovwder scheme in a defect corrected way][through a
suitable higher order discretization. However, such defecrection [L5,[ 16] setting most the time is not able to solve
the difficulty in the sense that it does not reduce residualiately due to poor conditioning of matrix in outer iteceti
(e.g.L7). Furthermore, lower order schemes are more diffusive @talv to produce smoothing effect in the steep
gradient region of solution and less accurate in the smoathagb the solution.

This is the main motivation for present study to adopt totiation diminishing (TVD) approach for the EHL model
problem. The reason behind TVD schemes for EHL model hava texely applied so far in literature due to the fact
that implementation is not obvious and straight forwardhasdase of linear-convection diffusion due to strong caupli

of pressure and film thickness term in existing model. Tharefin this article an attempt has been made to solve the
problem generalizing TVD concept efficiently in the exigtiBHL model.

TVD schemes are understood as a generalized form of upwisethdiscretized schemes (more detailed definition will
define later). Mostly, such schemes have been extensivelgatkefor solving time dependent gas dynamics problems.
Later on people have started to apply such concept for stetady problem in many CFD applications. Initially, the
concept of TVD has been established by Harten and later bypoped],[19],[20] to avoid unphysical wiggles in a
numerical scheme. Harten also has given necessary andentffiondition for a scheme to be TVD. To understand the
concept, we first define the notation total variafiovi of a mesh function" as

TVUY) =3 Jul—ufl =3 [4j12U" (1)
having the following convention
Aj U =ul -] 2

for any mesh functiom is used. Harten’s theory is understood in the form of coredem laws
U+ f(u)x=0. 3)
The numerical approximation of Eg3)(is said to be TVD if
TV < TV (4)

Then Harten’s condition for any scheme to be TVD is explaibeldw.

Theorem 1.Let a general numerical scheme for conservation laws Bxjs(of the form

Ut = ul = e Ul = Ul ) + d (U, — uf) (5)
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over one time step, where the coefficietitaied d' are arbitrary value (In practice it may depend on valu@ésmsome
way i.e., the method may be nonlinear). Then@V?) < TV(u") provided the following conditions are satisfied

¢'>0 ,d">0 ,¢'+d'<1 Vi (6)

There has been a very well developed TVD theory availabl@gérature for time dependent problem. Additionally, this
concept is also extended for steady state convectionsififficase in the form d¥1- matrix [21] using appropriate flux
limiting schemes15],[16],[17],[22]. However, very little attention have been paid in devehgpl VD schemes for EHL
problems. In this article, our aim to investigate a clastiftsng for EHL model which is robust and high order accerat
(at least second order in smooth part of the solution ) fgdarange of load parameters.

1.1 Model Problem

The following two dimensional circular point contact mogebblem is taken for numerical study defined below in the
form of variational inequality written in non dimensionakin

53 ay(c5) <750 < @
u>0 € Q
s[5 oy (e 5) "5 =0 < 2 @)

whereu is non-dimensional pressure of liquid (lubricant) &ds sufficiently large bounded domain such that
u=0 on 0Q. (8)

Here terme is defined as
pA?

na
wherep is dimensionless density of lubricatian,is dimensionless viscosity of lubrication and speed patame

&=

)

A — BMousRe. @)

a3pH

The non-dimensionless viscosityis defined according to

ap upH \ 2
n(u):exp{ <TO) (—1+(1+E) )} (20)

Dimensionless density is given by

_ 059x 10°+ 1.34upy

plu) = 0.59x 10°+upy (1)
The term film thickness# of lubricant is written as follows
X2 y2 2 e e u(X,y)dxdy
Ay = oot 5+ 5+ 5 [ ’ , (12)
| A N S T
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where 7y is an integration constant.
The dimensionless force balance equation is defined asv®llo

/:, /j; u(X,y)dXdy = 37" (13)

All notations used in EHL model are defined . A schematic diagram of EHL point contact model is given ig.Hi

Rx

Ry

= > Uu2

h(x,y)

— s ul

Fig. 1: Schematic diagram of EHL point contact model.

Rest of the article is organized as followed. In Sectiyfiew preliminaries are discussed which require in numésicedly

of EHL model which help in subsequent numerical analysi®efhodel. In SectioB, a series of splitting are constructed
by imitating linear convection-diffusion model and lindaL. model. In Sectiort, a hybrid splitting are constructed for
solving our existing EHL model defined ith. 1 In Section5, local Fourier analysis is performed to calculate quatitiéa
estimate of splitting calculated in SectiBnln Section6, numerical experiments are conducted to check the perfurena
of present splitting and its improvement to EHL model. At &émal of Sectiory, overall conclusion is summarized.

2 Preiminaries

In this section, our main goal is to introduce few preredaigtieory which already used in our computation and cannot
be ignored or avoided in the present analysis. Above noalimariational inequalities is solved numerically by using
fixed point iteration theory4],[7],[23. The main challenge appears here in the form of producintpbles iterative
smoother for EHL inequalities when the applied load on cctitig bodies in EHL model become sufficiently large and
after few iterations solution start blowing up. In such casterative smoother for solving such model is stable ohly i
nonlocal effect produced by film thickness equation is adlgd by small change calculation in the iteration to make
the overall effect local in updated pressure value. Thisatfs reduced by introducing special iterative smoothewkn
asdistributive smoother [5],[24],[25],[26]. The advantage of adopting such relaxation diminisheseggdion in film
thickness computation and eventually leads to stable aétax Therefore, we need an extra care for computing film
thickness term during each iteration. Let us define defdomdntegral?s as
2 /oo u(x,y)
2

dxdy.
VX=X)?2+(y—y)? i 4

b —

:|
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We approximate the above integral EGd.taking pressure as piecewise constant function namei'Wj, on sub-domain

th:{(xy)eR2 ,—b<x<x/+2,y/f—<y<y/+ } (15)
and discrete deformation
Dt - = Dt (%,Y)) 2 @hh - ulh, (16)
1] J HZZOJZ i IJ’
where the coefficiemgihif‘j v is written as
X/Jrgyj/JF?
" 1 I
g, / / dxdy (17)
RIS — )2 — 2
o L V024 (=)
1 —2Yr =32

and evaluated analytically. Above integration Egjdyields nine different results for the cases that are defised a
Xi < X, Xi > X, X =Xy andy; <Yy Yi > YyYi =Yy

respectively. The nine results are combined into one egfmes

2 N
gigb,jyj,:—2{|x+|smh ( )+ |y4|sinh™ (y+ — |x_|sinh™ ( ) |y | sinh™ (y+)

1Y 1% Y X
~ s fsinh () - |y [sinh (05 + i [sinh™ () + [y |sini () } (18)

wi ere
Xi =X Xi/ + s X_ =X Xi/ s y _yJ yJ/—|— s y _y] yj/ .

Therefore film thickness in discretized form is written as

hh. hh h
%,j . % + + +ZZ ‘I 'HJ J‘UI’J-/—HQ%J, (19)

wherew.Z" is right hand of the film thickness. For computing above diefilm thickness Eqri9, small change using
relaxation is measured as

h rihj
g =— (20)
T ay

where&h = %i’}/‘ i and the residuaf; j for Jacobi relaxation is given by

h h ~h
i = 1P = Moo= 5 =% — ZZ% -1 (21)
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For Gauss-Seidel relaxation, residU@Qﬁj is given by

h
o <A~ Mo = leg‘"‘“”u” ZZ%"HJJ\'J
- G1-1100 — G u-,-, (22)
iZij/>:j li—i]1j—=J/1 s iZijZ i—if],[j— ' Y.

whered; j andu; j old and new updated values of pressure respectively.

2.0.1 Smooth kernel computation using MLMI

Suppose we want to solve integral of type E@jf. If kernel ¥4 (x,y) is sufficiently smooth with respect to the varialle

we approximate discrete kerrféljjh by high order interpolation operator as
G ~ (A5G, (23)

where the high order interpolation operator is denoted.jy and %" is injected from " i.e, 4" Ll
Superscripth and H denote the finer and the coarser grid respectively. Then tle §rid integral computatlon of
Eqn.19is approximated on coarser grid in following way

~h def 1 * *
W= N ERTS G =S (AR T:h"gsﬁﬂh (AUl = He g% u, (24)
J J

where
wrl €2 A T . (25)

Whenever kerne¥(x,y) is also smooth enough with respectteariable, the discrete sus" is evaluated on coarse
grid pointsi = 2| by use of high order interpolation operatg’f,‘ It is written as

wh o~ ghyH (26)
where

def .2 %
8 :E%T:Hdg%*}'*u? (27)

and wheres"" is injectedfrom ¥}, i.e., 4 el ghH " =g,

2.0.2 Singular-Smooth or mild singular Kernel computatisimg MLMI

In general, kerne? has a mild singularity near a point=y. We rewrite our coarse grid approximation by adding
correction term near singularity in the following way (s@d]]

Wih — hd z ghh *h hd Z gél't‘ljhu*lj'l + hd Z (%hh ghh) «h hd Z []}L‘I%?H]JU*T + hd Z(glhjh _ gZ;I:th)u*T
J J J J J
= +nd > AR (28)
J
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Since%?}h is an interpolation of7"" itself using coarse grid points, the operatgfy" — %Nit‘jh) is given by

0, j=2J
. (29)
O(h?P42P(&),  otherwise,

hh_ ghh
@A) = {
where 2 is the interpolation order ari@d?P(&) is a 20" derivative of# at some intermediate poiét Thus if the derivative
of 4 becomes small, the correction term become small and cangbeated. However, in case of singular smooth kernel
(i ~ j), we require the corrections in a neighborhood ef j(||j —i|| <m or i—m< j<i+m). Thus Eq. 28 is
simplified as follows

R W 0
J=1|I<m

Advantage of using multi-level procedure in film thickne$scomputation reduces integral complexity ugdmlogn).
A schematic diagram of multi level multi integration proceel is given in Fig2.

O

O

kernel and sol;

coarse grid
calculation

Refine and Correct

@)

integral sum calculation

Fig. 2: Schematic diagram of multi level multi integration

2.1 Multi-Grid Method for variational inequality arisinqiiEHL Problem

In this section, we discuss multi-grid meth@&¥[28] for variational inequality of EHL model. EHL problem is vied as
a linear complementarity problerd3, 22] of the form

Lu<f,, xeQ
u>f, xeQ
u=g, xe€dQ
(u—fa)(Lu—f1) =0, x€Q, (31)
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wherel is a linear differential operator. We want to solve the peobin discrete hierarchical sub-domains of the following
form

{Q|; Q_1CQ CcQ ¥ eZn[LM], whereM eR} (32)
Hence discrete form of complementarity problem on Iévslwritten as

Liu <fy, xeQ

u>fa, xeQ

u=g, Xe€oiQ
(u—f)Lu—"Ffy)=0 xeQ. (33)

Letu; andv, are an exact solution and approximated solution of above EQR33. Suppose that the errgr=u, —v; is
smooth after the iteration sweeping. Then complementardplem satisfied for error equatienon finer level is read as

Lieg <r, xeQ
g+v>"f, xeQ
(@+vi—f)(Lie—n)=0, xe€Q, (34)

where residual; = f1) — Ljvi. Such smooth errog is approximated on a coarse grid without loosing any essenti
information. The LCP coarse grid equation for the coarsd gpproximation of the errog_1 is therefore defined in
PFAS by

Li_16_1 < |||71f|
g 1+ "> foy g
(@141 h—f2_1)(Li—1@_1— 1] ') =0. (35)

Since the problem is nonlinear and we are solving ineqaalitive solve for full approximation_; =g _1+ Il"lv| but
interpolate only; 1 back to fine grid. The main difference between multi-grid moels for equations and inequalities
occur due to fact that, in case of fine grid converged solutjea vi' the coarse grid correction equation should be zero.
Consequently, we have the following relation

e 1= (Vi =1V =0=v_1=1"1v (36)

(assume that operatdgl keeps nonzero quantities nonzero).
Furthermore, for a converged solution of fine grid LCP probkbhe coarse grid correction provides us the following
condition on restriction operators,

||I7l(fly| — L|V|) >0
i1tk > oy 1
(i1 = f2) T H(fy —Liv) =0 (37)

Since fy; — Ljvi = 0 for any converge solution. Hence above inequali8&swill satisfy for any rational choice of
restriction operatore*.l'*1 and I]"l. For capturing free boundary and for achieving fast cormecg the bilinear
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interpolation operatdrffl is implemented only for unknowns on theactive points that means,

ViVl e if V> fy
Vi <V elsewhere (v = fy)). (38)

3 Linear study for convection-diffusion problem

Our specific interest in this Section is to develop an robpiitisg for our EHL model. Such splitting is constructed by
imitating series of linear model problem one by one. Firstomasider well known convection-diffusion problem of the
form

Example 1.

Lu= (a(x,y)u)x — eAu= f(xy), VYxyeQ
u(x,y) =g(xy), vxye€aQ, (39)

where 0< € << 1 (note that we do not have agyderivative in convection term). Then discretization of vective term
for (au)x is performed as

(au)x =

olo

(Ui,j — Uifl,j) =1L (40)

However, this scheme is onl@(h) accurate. Our interest here to increase accuracy at leasvtsnpart without
contaminating any wiggle in solution. Consider the Van [eer-schemes 29 for discretization term(au)x (for
a=const> 0) as

a K 1-K 1+k 1-k
(au)x = H[(Ui,j —U_1j) — E(Ui,j —U—1j)+ T(Ui,j —Ui—1j)+ T(ui+1,j —Uij)— T(Ui,j —Ui_2,j)]

=Li+La+Lg+Ly+Ls (41)

(similar scheme can be constructeddor. 0). The resulting discrete model Exampldoy k-scheme (take = 0 here) is
denoted by

0 -1 0
Leco =7 [1/4 ~5/43/41/40/+ 5 |-1 4 -1 (42)
n "lo —1 0

In general, above discrete equati@8.do not produce®-matrix and many iterative splitting dn, diverge. Therefore,
this problem is solved using TVD scheme with help of apprteriflux limiters to prevent a solution from unwanted
oscillation. Now considex = —1 then the second-order upwind scheme looks lie Q)

a 1 1 1
(@Ux = p[(Uij = ti-1j) + 5 (U j = Uiegj) + 5 (Ui —Uiogj) = 5(Ui-1j —Ui2j)] = Lit+La+Ly+Ls  (43)
We enforce Eqn43 to satisfy TVD condition by multiply limiter functions in thadditional term$.4,L, andLs. Then
following two type of discretization for convection termeggresented here as

1 1
[(uij —Ui—1j) + 5 @(ri12)(Uij — Ui-1j) — S0(riz/2)(Ui—1j—Ui—2j)] =Li+La+Ly (44)

(au)x = 3

= o)
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and
a 1 1 1
(@U)x = £ [(Uij = Ui-1,j) + 5 @(ria/2) (Uij = Uieg,j) + 5 P(ri-g/2) (Ui — Uievj) = 5 @(Ti-3/2) (Ui-1,j — Ui-2,)]
=Li+Lla+Llg++Ly, (45)
(Uiy1,j—Uij) (Uij—Ui1j)
wherer;_1/, = ————=~ andrj_z/, = ———"—,
VT =iy T (Ui —uig))

In Fig. 3 represents graph of limiter functidm, ¢(r)) on which the resulting convection discretization term dediin
Eqgn.43 and Egn44 enforce to be TVD and higher order accurate (sE@)[ The discrete representation of Examfile

Limiters used in the study

Van Albada
Van leer
SA

0.6 0.8 1

r

Fig. 3: Schematic diagram of class of limiter functigrwith respect ta used in our study (seéf]).

using Van-leek-scheme is defined as

Lu=Y S G, (46)

Ixe S lyes

Moreover, in stencil notation it is represented as

%02
%01
L = [ €50 €510 00 €10 €20 | - (47)
%51
%52

Then the discrete matrix equatibpu = f is solved efficiently by the use of multi-grid. The relatedittipg is constructed
by taking the matrix operator defined in E¢IY. In particular case, the splitting idirection is scanned as forward (or
backward direction depending on flow direction) lexicodriapl order and it is represented §s = $§f (or S®). For
matrix operatot «, the forward splittinﬁf is defined as

L = Lij2— (Lo — L) =1 Lg + LR +Ly,

(© 2019 BISKA Bilisim Technology
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where
0 0
0 0
L=l +19=|100 0 00|+ |0¢ 2 4s?¢? 0
%OKfl 0
(gOK72 0

and therefore overall splitting is
L ju™ = (L jp — Liu + f.
Now for a fixedx-line (m-grid points inx-direction)
(i, Jo) a<i<m)
, we have the following
Louf = £+ L%u"— (L +LOu"— Lfutl,

LY corresponds the operator to the unknowhsvhich are scanned simultaneousdly. corresponds the operator to the
old approximatioru”, andL;" operator having updated valueswft. Now by applying under-relaxation constantin
above equation we have

un+l

Uw+u"(1- w),
therefore splitting equation can be rewritten in corresfiog changeg"! = u™1 — u" form as

L20™t = f — (L +LO)u" - Liu™ ut = " o™l

Now we construct series of splitting for solving E@® as below.
Splitting : Ly This splitting is constructed by taking upwind operalar plus a “positive” part of the second-order
operators 4 andLg from Egn.45and part of diffusion operator from Eq#?.

Lg“:_{% 4h(5 3K>}“i*lvj+{g(2;2'<+leK)+%}“"j+{ hZ}“'“J
Leu={- 5 usa (48)
B VRS /L) PYRREICEE) PR S O

Splitting. Ls1 This splitting is constructed taking upwind operatemlus a “positive” part of the second-order operators
Lq from Eqn.44 and part of diffusion operator from Eg#7.

= {25 o () o { - e

Lju:{ hz}u.J 1 (49)

L= (R (55 uar (R boas+ R (555 S (R ) b+ { = s
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Splitting. Ls2 In this case splitting coefficient). correspond only to the first-order upwind operdtgiof a discretized
Eqn.44 plus diffusion operator.

Lu= {—%fé}ui,l,ﬁr{%vL%}ui,jJr{f%}uiﬂ,j
LIUZ { — %}Um;l (50)

o (B0 b+ (22 o (- B o A fosr - S

Splitting : Ls3 The third splitting named as- distributive line relaxation is constructed by assumirghast variables,
(with the same cardinality as) such tha = Z0,, where matrixZ? comes due to distributive change of the relaxation.i.e.
We construct line-wise distributive splitting as

(Oig1,j+0i-1j+ 0 j+1+Gij-1)
4

nt1

Uij

— )+ 0 - (51)

This splitting is understood in the following way: Firstsdretize Examplé by k-scheme and get the equation of the
form as

Ly ju™ = f', wheref’ = (L} , — L u"+ f.

Now in the above splitting equation put the valuaBf® from Eqn.51 and apply distributive splitting in the form of right
preconditioner defined below.

Lk ,0™ =R andLy 20" =R",
where the updated change in pressure and residual equegide@oted as
og™l— .@GlHl andR" = L)é/zun+17 f/

respectively. In other way, line distributive splittingrists of following two steps; In first step it calculates nglost
value approximation changg 1. Second step calculates new approximation charigé.
Now applying above splitting along thedirection in Examplé., the diffusive term is computed as

—s[{ui+1,j+0i+r(ai+fi+2)}f{uhﬁaﬁw}} /h2
75[{ui71.j+ﬂi71*%4+Ui)}*{ui:ﬁm*w}} /h2
oo} fove ]
*8[{Ui,j—r%}*{uivi*m*%ﬂm” /h2. (52)

and convection term is computed as

) (2 : i i—1/2,j(2 - !
[y el Sl Gstal]

Other part of convective term which comes from van-leer réiization do not contain any distributive term as above
explained and kept in right hand side during relaxation aretall splitting is written as follows

(© 2019 BISKA Bilisim Technology
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a_q 2'-(2+K) 7 a1 2'-(2+K) _q 2'-(2+K)
(4E2 /Sfj‘l )O’i,z (4h82 /ij‘l /Sfj‘l Oi-1
a1/ (2+k) aI 1/2. (2+k)
(42108 / J er1 o

841/ j(24K)
(% / J Un+1+ﬁ0i+2

=R;, J*{%(le‘j*Ui.j)’%Tk(uifl‘jiuifz‘j)}} 9

after solving above equation far alongx line direction updated solutiou™* is evaluated as

i (Git1,j+0i-1,j+ Oij+1+ Gij-1)
=u+0,— " .

Ui

However, above splittings3 Eqn.54is not robust and very rarely use in practice.

We are now interested in showing convergence of LCP throhghabove presented splitting. Let us consider domain
Q e R?with boundaryd Q, and consider known functiorfsandg. Then findu in a weak sense such that these inequalities
hold

Example 2.

—(a(x,y)h(u))x+eAu< f(x,y) WxyeQ

ux,y) >0 VYxye Q,
u(x,y)[(@x,y)h(u))x—edu—f(xy)]=0 vxyeQ,
uxy) =9(xy) VYxyeoaQ.

Therefore, discrete version of above problem (finite défere or finite volume) is written in the matrix form

Lu<f,
u>o,
ulLu—f] =0, (55)

whereL is aM-matrix of ordermx m, u and f arem x 1-column vector. It is well known that solving above diseret
problem is equivalent to solving quadratic minimizatioolglem of the form

G(u) = %UTLUf flu,
min G(u), (56)

ueRMx1

subjected to the constraints

Theorem 2.Let U' and f" are mx 1-column vectors achieved by splitting algorithm (*),

L™= — (L +Lu"—LjumY,

O.n+l — max{O, Gn+l},

n+1 n+1

Ut =u"+ 0" w
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then we have'u— u and ' — f such that u and f is a solution of LCP problem.
ProofFor the proof of this theorem we refer to see Cryaij[

The following error estimates are easily established foPlgZoblem for algorithm described above.

Lemma 1.Let u is the exact solution of LCP problem define in Esfi.also let (i is approximate solution obtained by
the splitting of the form

Loo™ = f — (L +LO)u" — Lfu™Y,
o™ =max{0,0"*1},

un+l _ u“+ O.n+lw
Then following conditions hold

lu—u™Hz < Cofu™ — 2
lu—u™ ¥y < Caflu™ — "y

u—u"e < CoolJu™ — U
ProofSince From LCP problem we get
re =LouM+ " — (L +L9u"—Lfu™t >0

and
r = (),

where
ey if u">0andu™?!>0,
7 min(0,r;) if u"=0andu™!> 0.
Now consider the following LCP
Lout < f— M
un+1 > 07
un+1(L2un+1 —_f + r;i.j) =0

Now multiply u™ in Eqn.55and combing with equality term we get
(un+l _ U)TLEU < (un+1 _ U)T f

similar way we also get
1yT| 0, n+1 LT
(U=u"H L™ < (u—u™ (- ).

Now by adding above two equations we get
(U _ un+1)T V*(U _ un+l) < (U _ unJrl)T (—Lg)(u _ unJrl)
< (u—u™HT(-r) )

This implies that the following conditions hold

1 -1
lu—u™ s < vl =il
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1 -1
HuiunJr H°° < Ve || - r‘J(ri'j ||°°a

1 -1
lu=u™lz < vyl =g ll2-

Now rest of the proof is followed from Lemma 2.2 mentioned26][

Now we illustrate splitting for incompressible EHL modeldtakep, n ande as constants here) in the form of inequalities
as

Example 3.

(a(x,y)(u))x— eAu> f(xy) ¥VxyeQ
uxy) >0 VYxye Q,
ux,y)[(ax,y)#Z (u))x— eAu— f(x,y)] =0 V¥x,ye Q,
u(xy) =g(xy) vxyeoQ,

u(x,y )dxdy
x=X)2+(y-y)?

2 00 o0
H(U) = HOO+#+%./«>./«> i (57)

For incompressible EHL problem-line distributive Jacobi splitting is written as considlee convection term of above
Example3 as

Jdh 1 K
% (A — A1) — E(f%ﬁj — 1))+
1+« 1-k

(A1~ A ) (A1~ H-2)] (58)

— -~

Now we will consider the followingsplitting : Ls4

*8Huiu‘ﬁawrw}*{Ui,jJrUi*i(Ui*lZUi“) H/hi
[forrt) e o)) fe
fur -8 -fura- 0} f
(Z’T“) (z;:jflagikjikazik:i—ZagiflkJ'jak)
*{HTK(MJA‘]*%J)*%(M—L]*«%7—2‘])}:|:fi,j (59)
Another possibility is to consider the following splittirag

14K 1-kK
-t (%‘j*%—l,j)*'g(<9ﬁ,j*<%f—1.j)+T(<%f+l,j —I6) — T(%fl,j -+ A — H_2)) (60)
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Hence overall equation is rewritten 8glitting : Ls5

78[{Ui+1,j+0i+1* (ai+27i+2) }*{Ui.jﬂLUi*W}} /h)z(
3 o (gpto) | (G1+0i41) 2
ElqU—1j+0i1——F3— Ui j+0i 7 hg
ot foen )
o

(61)

More general discussion on convergence of these splitirggiven in Sectiob.

4 TVD Implementation in point contact model problem

In this Section, we implement the splitting discussed inléisé Sectior8 and allow to extend it in EHL model. A hybrid
splitting presented here and it is determined by measuniagalue of

min (e(;:;y), e(;:,yy))_

This value is treated as switching parameter to perform tifferdnt splitting together while moving direction during
the iteration. If the value

hx ’ hy

then we apply line Gauss-Seidel splitting otherwise lireobadistributed splitting is incorporated in other words

0 (f(x,y) 8(X,y)) 06

La-splitting  If min (EXY E09) 5 06

S T et ey (62)
Lgg-splitting  If min “he Ry <0.6.
Leg-splitting  If min (EXY E0Y) 5 06

Lheo = - : E(T:y) E(sz) (63)
Lss-splitting  If mm( he Ry <0.6.

These constructions are well justified as the region wlaelends to zero, we end up having an ill-conditioned matrix
system in the form of dense kernel matrix appear in film thédsiterm. Therefore, distributive Jacobi line splitting
is implemented as a right pre-conditioner to reduce theafiditioning of the matrix. However, in other part where

is sufficiently large diffusion term dominates therefore wse Gauss line splitting. Considering the above setting in
computational domain is quite demanding in EHL model adated us in reducing computational cost and storage issue.
We replacex value in splitting constructed in Sectidhby incorporating appropriate limiter functiap there. In next
section, we define these two splitting in more general formirtgelimiter function involve in the splitting.

4.0.1 Limiter based line gauss-Seidel splitting

EHL point contact problem is solved in the form of LCP and #fere in this Section we seek an efficient splitting for
Reynolds equation iterate alomgine direction to obtain the pressure solution. Now by gsiimeoren? and Lemmal
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we prove the convergence of the EHL solution. This splitiligxplained in the following way: First calculate updated
pressure irx-line direction as; j = (i j + g keepingj fix at a time for all j in y-direction and then apply change
immediately to update the pressurelfie successive pressure chaogalong thex-direction can be calculated as below

Sﬁl/z‘j [(Uj41,j+054+2)—(ui j +Ui)]+5ix,1/2$j [(Uj—1,j+0i—1)—(uj j+0})]
hx

. si\‘(j+1/2[“i-1+1’<“i=1 “7i)]ﬂi\‘(j,l/z[“i.j—l*(“i,j +0;)]

—hy(PI) 15~ (PN _1)5)=0, (64)
where terms read as
X defn % defn
Ei1/0j = Nex12j,  Ejarajn = MEijray2s
defn defn
§x1/2 = (&) T&+1j)/2 & jr1/2 = (&) +& j+1)/2 (65)
where
— pli, )3, )
] = P .
n(i, j)A
(DI 172, = (A )i+ 3011 12/2) (DA )i —(B AN ) (66)
(PION 10 Z (DA )i+ 301/ ) (PN j— (P )i, )), (67)
where
(B)ig1j—(BA)i (B2 - (A 1
o P i j i B b/ N B i o N
2o - Y YT o e
In above equation for each
N =%ﬁj+g%,k,j,10k (68)

It is observed that the magnitude of the ker#gl j j in equation 68 diminishes rapidly as distan¢k—i| increase and
therefore, we avoid unnecessary computation expensedwiafj value ofk up to three terms. So updated value of film
thickness is rewritten as

— . i+1
Hj=Hj+ Yy GkjiGk (69)
k=1—-1
Hence, Egn.&4) is illustrated as
Gi12,00112+ 611 1,001+11 61,90 +6i 1,001 -1+ 2,90 —2=Ri j o, (70)

whereR, j o andéi_ are residual and coefficients of matrix arising due to lirr=at form involving the limiter function.
This setting leads to a band matrix formulation which is edlusing Gaussian elimination with minimum computational
work (O(n)).
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4.0.2 Limiter based line-distributed Jacobi splitting

The understanding philosophy of line distributed Jacolittsg is more physical than mathematical. When diffusive
coefficient tends to zero, pressure becomes large enoughamical effect of film thickness dominates in the region.
Therefore a small deflection in pressure change produchsehigr in updated film thickness eventually leads blow up the
solution after few iterations. This numerical instabilisyovercome by interacting with the neighborhood pointdrdur
iteration. During this process the computed change of presst one point of the line are shared to its neighbor cells.
In other words, a given point of a line new pressurgeis computed from the summation of the changes coming from
neighboring points plus the old approximated pressuje ~

(Oig1,j+0i-1j+ 0 j+1+ Gij-1)
4

Ui j = Gij+0ij - (71)

In this case, changes are incorporated only at the end of pleteriteration sweep. Therefore, overall splitting isii

as below

(9 +0i+2)) (Gi_1+0i+1) )
7 7

Ei)il/Z,j[<ui+1:j+Ui+17 *<“i.j+0i*

hx

& gyl jroi g Iy g A17E),

-+

hx
(6_1+911)
Yiz13%i+1)

o
5¥j+1/2[ui‘j+1*7('*(ui.j+‘7i* )]
hy

o; (0j_1+0i11)
& yolti -1 G (i jro - T

hy
~hy(0H); 12~ (P15 )=0. (72)

+

-+

The following notion used in Eqr7.2 defined as

X defn
§i12) = MyEiz1/2]

defn
ei\,(jil/z = hy& ji1y2 (73)

pli£1)).223(£1)) | pli+l,)). 22 3(+L]
Eiil/Z-J':O-5( n(?il‘j)()\ ) r](i)il,j))\ ))v

e o—o5( LMD I3+ | plijzD) 23 j+1)
1,j+1/2=% IGESY) GIESNESN)

(D) 1112 2PN +300142/2) (B 1)~ (BA) ) (74)

(DI, 15 BB Y 1+ 300 _1/2) (BA) j—(BA)i-1)), (75)

where

. (P~ (BB and (b j-(PA)i_1
127 B A) - (B, =2 By - (B2

In above equation, discretization of convection term defiseane as Line Gauss-Seidel relaxation case. However, due to
distributive change of the pressure, the updated valuemftfilckness is described as

| :f%%,j‘f'gagi,k,j,jak; (76)
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where
0%i1i =%iji— (Gi-1ii tGivnii +Gi-1+ % j+1)-

After few manipulation of Eqn72, we get system of band matrix which is solved using Gausdianmation approach.
The force balance equation is incorporated in our numecaallation by updating the constant vale®,. The updated
value of. % is performed according to

ng Ny
o ). )

%06%0—0(3 hxhyzzui,i
i=1]=1

wherec is a relaxation parameter having range betwe8t 6 0.1.

5 Fourier analysis

Performance and asymptotic estimate of above splittingeiasuared through the Fourier analysis by considering igfinit
grid

G'hi={x=(&h &) : & = (&1,&) € Zx L} (78)
and infinite grid function defined o '\, by the linear span of the Fourier components
Th:span{¢(9,x):ei<5191+5292):6:(91,92)6(7n,n]z,xerh}.

These basis functiore® c T" are orthogonal with respect to the inner product

(U W) = Jim 2 5 un(Exh, Exh)Un(Eah. &), (79
l¢f<!

whereun, v, € T". Furthermore, we will define orthogonal space to identityctionl € T" as
T = {Vh: (I,v) =0} (80)

Moreover, discrete solutiom, is described as Fourier transforna Tinear combinations of the basis functiafs e T"

Up = lim 1 S Gn(£)€%e. (81)

|- 2l =1
The Fourier spacg" is illustrated as four-dimensional subspaces
Th=spar{¢$ (6712 X)=gk091%2 :a1,00€{0,1}}, wherexeG fy,;

0%0¢(—11/2,11/2)2,09192 = (61— a1ign( 61 ) T, 62— 25igN( 62) ).

We say discretized PDE of the form

Lhup = fh (82)
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is solvable iff,, € T'l. Moreover, solution will be unique ifi, € ’JI‘H. Let relaxation method defined via operator splitting
as

L;u_h + Lﬁﬁh = fp, (83)

whereup, anduy, are old and updated approximation to the solutipgnNow we are interested in constructing a splitting
which reduce our computed error significantly. Such behasimvestigated by measuring error equation as

€n = Théh, (84)
whereg;, = un — h, €&, = Up — Uy and.#, := ,(meng_ Now apply Fourier transform in above equation Iqur(G) #0
we have following relation
Fh(8,X) = Fh(0)$(6,X) Vxe Gy, (85)
and smoothing factor notation as
() == sup{|-#h(8)| : 8 € Bnign}, (86)

where. () :== L (8)/L(6).

5.0.1 Fourier analysis of splitting

Let u j current updated to the solution for givgtine we are solving equations. For givea new updated "foralli of
that Ilne according to

{ e Bl }+{ SLTi.j—lfij*Gi,Hl}
B e
X

hg
{UIJ —Ui_1,j)—5 (Ui j— Ull])+T(Ulj Ui—1,j)
+ L (G- u.J>—1*TK<ai‘j—ﬁifz.j>}:fi‘j, (87)

for 2 <i < (ny—1) and for given valug such that 1< j < ny— 1 holds. During Gauss-Seidel line relaxation, we will use
previously computed new solution of lije- 1 in our next new updated solution of lijeHence error equation is written

as
5 {%}é.j—l*{h_gz}él.ﬁl
+{5L1¢1T1ﬁ}(a+1‘j*é.j) {a%%)}( —62)=0 (88)

andk-smoothing factor is denoted as

|74 (61,02)|=
’ 7692 10.256(14 k) (1 —1)-0.256(1-K)(1-e 1201 (89)
(—a1—B(1.25-0.75¢))e 101+ 40 +B(1.25-0.75k) —aq (6 OL +&7102) |
wherea; = £/h? andf = a/h. Smoothing factor plot is given in Fig. Two grid iteration matrix is written as
2h h —1p2h
CE" = In — Pj(Lan) 'RY"Ln (90)
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Smoothing Factor Plot

LFA

Fig. 4. Smoothing factor of example 1 ( see Eq88) using splittingLy for values = 1076, k = 1/3,h = 1/64.

and two grid error equation is defined as
ghew — yvzcﬁhyvleold _ .//ZhZhGOId. (91)

Here by multiplyingC2" to the spac&™}, wheref € 6% = 0% — {0 : L,(26%°) = 0} leaves the space invariant.

c2h:Th — Th. (92)

Fourier representation of two grid is performed in follogiway

Lp:Th — Th, Lon: TS — T (93)
Ry:THh — T2, R,:Td —Th with 6ed® (94)
7T — Th(6 € 6% (95)

Spectral radius is computed in the following way

p* = p(42) = sup p(.42(6)) = sup p(6), (96)
6c00 6cO00
where
//Z,,Zh(e):j‘fz(|h7ﬁgh(E2h)*1F”zf21hth)j‘f1,/Zﬁh(e):///h?h\jrg (8699, (97)
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The Fourier symbols of the multi-grid operators for eachiatic in’JI“g is calculated as follows:

v

u(6%)
2 _ (6t
> = H(e% | o9
u(et
Ln(6%)
- Ln(619)
Lh - Eh(901) 9 (99)
Cn(6)
Rn = (Ra(6%%), Rn(6%°), Ra(8°),Ra(6)), (100)
Ph = (Ph(6%), Pn(8™°), By (6°Y), Ph(8™)T, (101)
Lon = Lon(26%°) (102)
For the transfer operators
h(0°) = A % g8 Hy (103)
uxZeJuyzeJ
[n(200) = § 5 aln e e (104)
Hx€J Ly€d

Since we can always get a nonsingular maRtigame order a§2" such thatPG2"P~1 = Q2" holds, whereQ2" a block
matrix consisting of 4 4 diagonal blocléﬁh(e) looks for all 6 € Oy like

G| 1 (105)

then the smoothing factor is equivalent to

u= sup p(S(6)QA"(8)) = sup p(6) (106)
0By CISOWN

Computation ofu is important for observing two-grid convergence duringaxation. In next Section we illustrate a
criterion for two-grid convergence.

5.1 Convergence criterion of hybrid splitting

In this section, we give a general criteria for the conveogestudy of hybrid schemes used in our EHL model problem.
Let us reconsider linear system
LKU == f,

where[Lx]mxm a regular matrix (for definition se1]) and f andu are known values. For applying hybrid splitting in
above equation matril, is understood as
L= LeLie,
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Where[LfE] and[Lfé] are regular applied splittings in

Q= {(x,y)’ min (e(x,y) , e(x,y)) < 0.6}

and

M
~~
X
<
—
M
~~
X
<
—
N—
\
o
»
—

Qg:{(x’y)‘mi”( VY

sub-domains respectively.
Now assume tha{L%] has the following splitting

L9 M —NE-
whereM,?S is a regular easily invertible matrix arlmf‘E is a positive rest matrix. Then our splitting can be defined as
Uit = U, — (M) HLE - f)

Then above iteration will converge for any initial gueSsf following theorem holds
Theorem 3.Let Lfs = Mfe — Nfe be a regular splitting of matrix ﬁf and(Lf‘s)*1 > 0, then we have

eyt 2oy PULEE)TING)
P ) = (g

ProofFor the proof of this theorem we refer to see Vargg.

Now we will prove other part of matrix splittingfé. This part of matrix there is no straightforward splittirsgavailable
(see R1,26]). Let L% is regular, but dense and the designing suitable splittinthé sense of Varga is complicated.
Suppose if it is possible to construct nonsingular mdifixsuch that equation below

! ! !
LELl = M2 — NJ*
is easy to solve and we can rewrite splitting as
! ! !
Le? = (MZ® =N L
Then for above splitting our iteration is denoted as

W = U L (M) L - )

Therefore above iteration will converge for any initial ggef following theorem holds
Theorem 4.Let (M,?‘/s — Nfé)(L;)*l be a regular splitting of matrix fé and(Lfé)*1 > 0, then we have

Ly P TINE (L)Y
14 p((LE) N (L))

Qf\—10 1928
P(Li(Mc®) N (L) <1

The following theorem providing sufficient conditions ftietconvergence of the two-grid meth@g ( define in EQnl05
is due to Hackbusch.
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Theorem 5.Let us assume tha#] is a smoothing operator for |Kthat means there exist(v) and v/(h) so that the
following condition holds

KA llFeu<n(v) vV oovigvv/(h), 122

n(v)—=0 for v—w, V(h)=e or V/(h)—e for h—0 (207)

and also assume that operator Is approximated accurately (by prolongation and restoatioperator) in the following
sense suchthat Ca — 0, independent of h so that

Kt =P(K_1) 'Rlucr <Ca ¥V 1>2 (108)
then there exist h and € N:

[1Q21(v,0)[lucu <Can(v) <1 (109)

holds forv with v/(h;) > v > v(h) and h, < h and the two-grid method £ from Eqn.97 converges monotonically,
independently of h.

Prooflt follows straight way by taking,(v,0) = (Kfl —P(Ki_1)"IR)(KAY).

6 Numerical results

In Section3, we have illustrated TVD implementation for solving lineanvection-diffusion problem through a class of
splittings. Now we investigate the performance of mentibreplittings and compare the results with classical
defect-correction. For numerical tests we consider aizalysolution asi = x* 4+ y* from Oosterlee 17]. All numerical
computations is performed on author’'s personal laptopriga2GB RAM and Intel(R) Core(TM) i3-2328M CPU @
2.20GHz. Dirichlet boundary is imposed for all test caseslomainQ = {(x,y); -1<x<1,-1<y< 1}. For all

numerical experiments, we take diffusion coefficient 10~ andk = —1.0,0.0,1/3. Numerical tests are performed for
the problem given as Example using LsO splitting, Lsl splitting and classical defect-correction techniquengsi
hierarchical multi-level grid. Computational results @lative error and corresponding orderlih, L, L2-norms are
presented on Table 6 on the finest grid level (7 level using ¥ (2,1) cycle).

L2 norm error is evaluated in the following way

L2(kk—1) = \/Hdz(akl—wu‘K)z, (110)

whereH is the mesh size on grid— 1, 0¥ is the converged solution on gricandd denotes the dimension of the problem.
The order of convergence is derived as

 logL?(k—1,k—2) —logL2(k k—1)

092 (111)

p2 )
whereps, is the order of discretization ib?> norm. We also calculate™ andL!-error and corresponding order in similar
fashion. From numerical experiments we observe that sittsO andLsl always show fast residual decay compare to
classical defect-correction. Figand Fig.6 present the residual decay resultslfed splitting ,Ls1 splitting and classical
defect-correction technique fer= 0.0,1/3. Moreover, residual decay of splittingl is more better than splittings0.

On the other hand, we observe that splitting) has larger range of robustness1(0 < k < 0.9) than splittingLsl
(-1.0<k <0.8).
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Fig. 5: Comparison of residual decay of splittihg0 and splitting_s1 for k = 1/3 on 7" levelV(2,1) cycle.
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Fig. 6: Comparison of residual decay of splittihg0, splittingLsl and classical Defect-correction fior= 0.0 on " level

V(2,1) cycle.

Table 1: Comparison of.*-, L1-, andL2-error obtained for splittingisl in case of the linear convection-diffusion equation
(Examplel £ = 1078,k = 1/3) over the domaim® = [-1,1] x [—-1,1].

N L®-error [ Lt-error p1 L%-error P2
16x16 1.19566e-02 2.25624e-03 - 1.83208e-02 -
32x32  2.62647e-03 2.1866 3.57540e-04 2.6577 2.92872e-03 52.64
64x64  5.70763e-04 2.2022 4.33084e-05 3.0454 3.64904e-04 4B.00

128x128 1.06927e-04 2.4163 5.45271e-06 2.9896 4.73857e-0%45@.9
256x256 1.92096e-05 2.4767 6.79793e-07 3.0038 6.09179e-06592.9
512x512 3.40453e-06 2.4963 8.44721e-08 3.0085 7.74616e-07752.9
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Table2: Comparison of.°-, L1-, andL2-error obtained for splittingsl in case of the linear convection-diffusion equation
(Examplel € = 1078,k = 0.0) over the domai®2 = [-1,1] x [-1,1].

N Leo-error Poo Li-error p1 L%-error P2
16x16  1.27672e-02 - 1.49677e-03 — 1.36680e-02 —
32x32 2.73792e-03 2.2213 1.80364e-04 3.0529 1.82037e-03 82.90
64x 64  6.22587e-04 2.1367 7.33006e-05 1.2990 6.63061e-04 7@.45

128x 128 2.07084e-04 1.5881 2.37525e-05 1.6257 2.13343e-0436Q.6
256x 256 5.98623e-05 1.7905 6.73718e-06 1.8179 5.99206e-05321.8
512x 512 1.58405e-05 1.9180 1.79203e-06 1.9106 1.58361e-05194.9

Table 3: Comparison of.-, L1-, andL2-error obtained for splittingsl in case of the linear convection-diffusion equation
(Examplel € = 107 k = —1.0) over the domaif2 = [1,1] x [-1,1].

N Le.-error Peo L -error p1 L%-error P2
16x 16 2.32470e-03 - 1.56030e-02 - 2.05497e-02 -
32x 32 1.01308e-03 1.1983 1.00995e-02 0.62754 9.31777e-03411.1
64 x 64 3.78032e-04 1.4222 4.35094e-03 1.2149 3.42296e-03 41.44
128x 128 1.07979e-04 1.8078 1.44691e-03 1.5884 9.67504e-04229.8
256x 256 2.86739e-05 1.9129 4.47319e-04 1.6936 2.54980e-04239.9
512x 512 7.39007e-06 1.9561 1.28974e-04 1.7942 6.53620e-05639.9

Table 4: Comparison of.°-, L1-, andL2-error obtained for splittingsO in case of the linear convection-diffusion equation
(Examplel € = 1076 k = —1.0) over the domai®2 = [-1,1] x [-1,1].

N L.-error Poo L -error p1 L?-error P2
16x 16 1.62417e-02 - 2.30732e-03 - 2.04151e-02 —
32x 32 1.01696e-02 0.67544 1.03223e-03 1.1605 9.53668e-03981.0
64 x 64 3.89903e-03 1.3831 3.65800e-04 1.4966 3.32527e-03 0a.52
128x 128 1.20459e-03 1.6946 1.05973e-04 1.7874 9.49264e-04084.8
256x 256 3.42856e-04 1.8129 2.84576e-05 1.8968 2.52429e-04109.9
512x 512 9.05700e-05 1.9205 7.36748e-06 1.9496 6.49791e-05574.9

Table5: Comparison of.-, L1-, andL2-error obtained for splittingsO in case of the linear convection-diffusion equation
(Examplel € = 1078,k = 1/3) over the domaim® = [—1,1] x [-1,1].

N Leo-error Poo LI -error p1 L%-error P2
16x16  1.17579e-02 - 2.25826e-03 - 1.83078e-02 -
32x32 1.76038e-03 2.7397 3.32640e-04 2.7632 2.72048e-03 02.75
64 x 64 2.57573e-04 2.7728 4.20422e-05 2.9841 3.43166e-04 62.98

128x 128 3.47087e-05 2.8916 5.37451e-06 2.9676 4.37263e-05722.9
256x 256 4.54820e-06 2.9319 6.78313e-07 2.9861 5.51381e-063742.9
512x 512 6.02630e-07 2.9160 8.51091e-08 2.9946 6.91644e-07942.9

Table 6: Comparison of.-, L1-, andL2-error obtained for splittingsO in case of the linear convection-diffusion equation
(Examplel € = 1078, k = 0.0) over the domai®2 = [—1,1] x [-1,1].

N Lo-error Poo L -error p1 L%-error P2
16x 16 1.24738e-02 - 1.50246e-03 - 1.36309e-02 -
32x 32 2.00172e-03 2.6396 1.73122e-04 3.1175 1.68694e-03 448.01
64x 64  5.88728e-04 1.7656 6.97083e-05 1.3124 6.33640e-04 27.41
128x 128 1.84579e-04 1.6734 2.31011e-05 1.5934 2.08905e-04004.6
256x 256 5.06126e-05 1.8667 6.64633e-06 1.7973 5.93352e-05159.8
512x 512 1.28329e-05 1.9796 1.78059e-06 1.9002 1.57608e-05123.9

6.1 Test case for numerical experiment of EHL problem
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cases, we fix the paramet@r= 1.7 x 10~8 over domainQ = [-2.5,2.5] x [-2.5,2.5]. In all cases , we refine grid up to
(1024+ 1) x (1024+ 1) points on finest level and coarse grid ug82+ 1) x (32+ 1) points on the coarsest level (except
extremely high load case we choose coarse grid{@fx (64+ 1)). A class of limiter are applied to solve the problem
discussed in Section 3 and 4. However, for checking perfooaaf splittings, we use value= 0.0,1/3,—1.0 in our
numerical analysis. In Fi@, we represent film thickness profil# in inverted form. Four load cases k&)= 20,L = 10,
(b)M =50,L =10, (c)M =100,L =10 and (cM = 1000 L = 10 are solved using the TVD schemes. The fully converged
pressure as well as film thickness profiles and their plotiteswe represented in Fig-Fig.12. Comparisons of relative
error in L2, andL* norms betweer splittings and defect correction schemes are performedtwhie presented
in Table.7- 17. Experimental results show that order of convergence afs@tal defect-correction is almost similar to
splittingsLhg andLyo. However, splittingd ng andLpo have slightly better residual decay in comparison withsitzd
defect-correction which can be seen in Hg.

Table 7: Minimum film thickness result\] = 20,L = 10) for defect-correctior = 0.0

Level Hm Hm(Moes) He H:(Moes) H(Moes)(x = 0)
1 1.99302e-01 1.92424  2.98940e-01 2.88624 2.77154
2 2.59716e-01 2.50753 3.70695e-01  3.57903 3.57760
3 2.70939%e-01 2.61589  3.89566e-01 3.76122 3.75880
4 2.74629e-01  2.65151  3.94288e-01 3.80681 3.80443
5 2.75320e-01 2.65819  3.95428e-01 3.81782 3.81582
6 2.75525e-01 2.66016  3.95886e-01 3.82224 3.82034
7 2.75586e-01 2.66075 3.95962e-01 3.82297 3.82117

Table 8: Comparison ofL®, L' andL? relative errors obtained witk = 0.0 by Defect-Correction over the domain
Q =[-25,25]x[-2.5,2.5].

N Le.-error Poo LI-error p1 L?-error P2
16x 16 1.57629e-01 - 4.56501e-03 - 9.85013e-02 -
32x 32 1.75975e-01 -0.15884 2.01928e-03 1.1768 5.98804e-021806
64 x 64 1.69726e-01 0.052163 9.26960e-04 1.1233 3.78143e-026316

128x 128 1.18555e-01 0.51765 3.56082e-04 1.3803 1.79500e-0P749.
256x 256 7.20097e-02 0.71929 1.26752e-04 1.4902 7.87096e-03894.
512x 512 3.16527e-02 1.1859 4.43601e-05 1.5147 2.76403e-03094.5

Table 9: Comparison ofL®, L' andL? relative errors obtained witk = 1/3 by Defect-Correction over the domain
Q =[-25,25] x[-25,2.5].

N Le.-error Poo LI-error p1 L?-error P2
16x 16 1.57629e-01 - 4.56501e-03 — 9.85013e-02 —
32x 32 1.75975e-01 -0.15884 2.01928e-03 1.1768 5.98804e-021806
64 x 64 1.69726e-01 0.052163 9.26960e-04 1.1233 3.78143e-026316

128x 128 1.18555e-01 0.51765 3.56082e-04 1.3803 1.79500e-0D749.
256x 256 7.20097e-02 0.71929 1.26752e-04 1.4902 7.87096e-03894.
512x 512 3.16527e-02 1.1859 4.43601e-05 1.5147 2.76403e-03098.5

(© 2019 BISKA Bilisim Technology


 ntmsci.com/cmma 

(_/
5 BISKA P. Singh and P. Sinha: Robust Numerical Solution for Solakgtohydrodynamic Lubrication...

Table 10: Comparison ofL®, L andL? errors obtained wittk = —1.0 by Defect-Correction over the domaid =
[-2.5,2.5] x [-2.5,2.5].

N Leo-error Poo L -error Py L?-error P2
16x 16 1.57629e-01 - 4.56501e-03 — 9.85013e-02 -
32x 32 1.75975e-01 -0.15884 2.01928e-03 1.1768 5.98804e-021806
64x64 1.69726e-01 0.052163 9.26960e-04 1.1233 3.78143e-026315

128x 128 1.18555e-01 0.51765 3.56082e-04 1.3803 1.79500e-0D7449.
256x 256 7.20097e-02 0.71929 1.26752e-04 1.4902 7.87096e-03894.
512x 512 3.16527e-02  1.1859 4.43601e-05 1.5147 2.76403e-03098.5

Table 11: Comparison of.®, L andL? errors obtained (M=20,L=10 case) with= 0.0 by splittingLng over the domain
Q =[-25,25x[-25,25]|.

N Le,-error Peo L -error Py LZ-error P2
32x 32 7.99935e-02 — 3.25500e-03 - 4.31253e-02 -
64x 64 6.76884e-02 0.240974 4.20806e-04 2.951430 1.35161e10273856

128x 128  3.53135e-02 0.938689 1.14226e-04 1.881264 5.18955e10B80998
256x 256  1.01542e-02 1.798143 3.02821e-05 1.915354 1.35755e1(034604
512x 512 1.98897e-03 2.351983 8.51309e-06 1.830711 3.06884€20145475
1024x 1024 4.02685e-04 2.304298 3.13898e-06 1.439387 8.16286€1.910312

Table 12: Comparison oL®, L* andL? errors obtained for (M=20,L=10 case) wikh= 1/3 by splittingLng over the
domainQ = [-2.5,2.5] x [-2.5,2.5].

N Le.-error Peo Li-error p1 L?-error P2
32x 32 1.28495e-01 - 3.46499e-03 — 4.97302e-02 -
64 x 64 6.61681e-02 0.957504 4.17570e-04 3.052761 1.40651e10222002

128x 128  3.34724e-02 0.983164 1.07470e-04 1.958084 5.05481e10476619
256x 256  8.88278e-03 1.913889 2.70266e-05 1.991482 1.2343%2e20033478
512x 512 1.64936e-03 2.429105 7.15546e-06 1.917264 2.47784e208317086
1024x 1024 2.79280e-04 2.562122 2.77208e-06 1.368076 6.00334e2.044930

Table 13: Comparison ofL®, L1 andL? errors obtained (M=20,L=10 case) with= —1.0 by splittingLnq over the
domainQ = [-25,2.5] x [-2.5,2.5].

N Le,-error Peo L -error Py LZ-error P2
32x32 7.50604e-02 — 2.97122e-03 - 4.14394e-02 -
64x 64 7.55099e-02 -0.008614 5.91844e-04 2.327767 1.696B7e10288297

128x 128  4.53322e-02 0.736130 1.91253e-04 1.629735 7.61954e10154930
256x 256  1.61611e-02 1.488011 5.75179e-05 1.733400 2.50635e10604059
512x 512 4.50872e-03 1.841736 1.67111e-05 1.783204 6.94586e10851420
1024x 1024 1.10782e-03 2.024994 5.21125e-06 1.681105 1.89843e1.872867

Table 14: Comparison of ®, L andL? errors obtained for (M=20, L=10) witk = 0.0 by splittingL,e over the domain
Q =[-25,25x[-25,25]|.

N Le,-error Peo L -error Py LZ-error P2
32x 32 7.91753e-02 — 3.24093e-03 - 4.29201e-02 -
64 x 64 6.76405e-02 0.227163 4.21527e-04 2.942711 1.35422e10264191

128x 128  3.53098e-02 0.937819 1.14185e-04 1.884252 5.18823e1(384148
256x 256  1.01543e-02 1.797978 3.02794e-05 1.914965 1.35750e1(©34290
512x 512 1.99380e-03 2.348498 8.51277e-06 1.830636 3.07183e20143735
1024x 1024 4.04313e-04 2.301976 3.13219e-06 1.442457 8.15021e1.914059
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Table 15: Comparison of.®, L* andL? errors obtained for (M=20, L=10) witk = 1/3 by splittingL,e over the domain
Q =[-25,25]x[-25,2.5].

N

Le-error Poo Li-error p1 L?-error P2
32x32 1.27894e-01 - 3.45271e-03 — 4.95561e-02 —
64x 64 6.61606e-02 0.950904 4.17669e-04 3.047297 1.40784e10215579

128x 128  3.34692e-02 0.983138 1.07437e-04 1.958869 5.053B4e10478260
256x 256  8.88371e-03 1.913600 2.70267e-05 1.991034 1.23487e20033026
512x 512 1.65390e-03 2.425290 7.15902e-06 1.916551 2.48247e20314452
1024x 1024 2.80907e-04 2.557708 2.76808e-06 1.370876 5.99858e2.048909

Table 16: Comparison of.®, L* andL? errors obtained for (M=20, L=10) witk = —1.0 by splittingL,,¢ over the domain
Q =[-25,25 x [-2.5,2.5].

N Lo-error Peo L -error p1 L2-error P2
32x 32 7.47880e-02 — 2.95607e-03 - 4.12735e-02 -
64 x 64 7.54384e-02 -0.012492 5.94019e-04 2.315099 1.70337e10276824

128x 128 4.53370e-02 0.734610 1.91320e-04 1.634521 7.62081e10160376
256x 256 1.61613e-02 1.488146 5.75274e-05 1.733667 2.50687e10604172
512x 512 4.51054e-03 1.841171 1.67195e-05 1.782718 6.94549e10851624
1024x 1024 1.10616e-03 2.027740 5.21053e-06 1.682030 1.89846e1.873757

Table 17: Comparison of-*, L1 andL? errors obtained for EHL M=50 and L=10 with= 0.0 by splittingLne over the

domainQ = [-2.5,2.5] x [-2.5,2.5].

N Le.-error Poo Li-error P1 L?-error P2
16x 16 1.58602e-01 - 1.03810e-02 - 1.33934e-01 -
32x 32 1.37546e-01 0.205497 2.42128e-03 2.100104 6.26015e10297253
64x 64  9.91830e-02 0.471749 1.00043e-03 1.275150 3.00041e10261038

128x 128 1.28502e-01 -0.373626 5.50322e-04 0.862272 2.15620€0.477338
256x 256 8.01042e-02 0.681841 3.32311e-04 0.727742 1.01733e10082183
512x 512 4.33380e-02 0.886245 9.52456e-05 1.802810 3.69633e1161473

Residual

Fig. 7. Comparison of residual decay of EHL by splittihgs, splitting Lhe and classical Defect-correction it= 0.0

on 7" levelV(2,1) cycle.

7 Conclusion

A limiter based hybrid line splittings have been outlineddolving EHL point contact problem (in the form of LCP) on

Residual Decay Plot Lhs1, Lhs2 and Classical Defect Correction
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0.001 L
1

5 6
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mierarchvicalsmultinbevel grid. The key idea of using suchitsipg to facilitate artificial diffusion only the region afteep
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Fig. 9: P Plot for Moes parameteid = 20,L = 10,0 = 1.7 x 108 at " level W-cycle.

gradient of pressure profile and to improve the accuracy enother part (smooth region of pressure profile) of the
domain. These illustrated splittings have been devisedrimgimg left hand side matrix itvl-matrix form using second
order discretization of Reynolds equation and rest termhenight hand side. Additionally, the hybrid line splittihgs
been designed with help a switcher which depends upon matgiof €/h. When £/h < 0.6, we have applied
distributive Jacobi line splitting else, we have impleneehGauss-Seidel line splitting during updating new sotutithe
derived switcher is important as it noticeably allows usdducing the ill-conditioning of the discretized matrix whe

is almost equal to zero. The robustness of the splittinge baen analyzed performing series of numerical experiments

(© 2019 BISKA Bilisim Technology
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Fig. 10: P Plot for Moes parametetd = 50,L = 10,a = 1.7 x 10-8 at 7" level V-cycle.

12

12

0.6

Fig. 12: Pressure Plot Moes parametdts= 1000L = 10,0 = 1.7 x 108 at 7" level V-cycle.
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Moreover, robustness range of splittings has been inastigand compared with other splittings. For linear
discretization, we have performed Fourier analysis in otdealidate the multi-grid convergence behavior theacedly.
Numerical experiments conform that the performance ofehsrid line splittings are robust not only for linear case
but also for EHL model too. A remarkable achievement of thggkitings are that it helps us in developing of
higher-order discretization without losing stability ielaxation and without the use of double discretization sehéke
defect-correction technique in multi-grid solver. Nuneatiexperiments confirm that residual decay of direct spdig

are comparably better than classical defect-correctiorthis study, we have analyzed the performance of splittings
through known limiters available in literature which wodatisfactory in all study cases. Another remarkable adwepnt

of the adopted splittings can be noted as it does not demaypddna tuning parameter and produces reasonable
numerical solution for large range of load variation. Th@wabtreatment can be easily extendable in time dependent
EHL as well as Thermo-elastic Lubrication model.
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A Some Notation used in EHL model

py — Maximum Hertzian pressure.
No — Ambient pressure viscosity.
Hoo — Central offset film thickness.
a — Radius of point contact circle.
o — Pressure viscosity coefficient.
Us = U1 + Up, Whereu; upper surface velocity ang lower surface velocity respectively.
po — Constant pp = 1.98 x 10°), zis pressure viscosity index £ 0.68).
R— Reduced radius of curvature definedas = R;* + R, 2,
whereR; andR; are curvature of upper contact surface and lower contafacirespectively.
L andM are Moes parameters and they are related as below.
L=G(2U)3,M =W(2U)~2, where
(Mous) F (3F)
V="er ' V=Er™~ 2w
o™ =u"1_u" denote as difference between latest approximation solufio! and its predecessaf.
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