New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2019.364

# **Contra** *P*<sub>*p*</sub>**-continuous functions**

Shadya M. Mershkhan

Department of Mathematics, Faculty of Science, University of Zakho, Iraq

Received: 30 October 2018, Accepted: 29 May 2019 Published online: 30 June 2019.

**Abstract:** In this paper, we apply the notion of  $P_p$ -open sets in topological spaces to present and study a new class of functions called contra  $P_p$ -continuous functions which lies between classes of contra  $\theta$ -continuous functions and contra-precontinuous functions. It is shown that contra  $P_p$ -continuous is weaker than contra  $\theta$ -continuous, but it is stronger than contra-precontinuous and weakly  $P_p$ -continuous. Furthermore, we obtain basic properties and preservation theorems of contra  $P_p$ -continuity.

**Keywords:** *P*<sub>p</sub>-open, preopen, contra-continuous; contra *P*<sub>p</sub>-continuous, Contra-precontinuous.

# **1** Introduction

In 1996, Dontchev [3] introduced and investigated a new notion of continuity called contra-continuity. Following this, many authors introduced many types of new generalizations of contra-continuity called as contra  $\theta$ -continuous [2], perfectly continuous [14] and contra-precontinuous [6]. Long and Herrington [9] have introduced a new class of functions called strongly  $\theta$ -continuous function. Noiri and Popa [15] have introduced and studied quasi  $\theta$ -continuous function. In this direction, we will introduce and investigate the concept of contra  $P_p$ -continuous function via the notion of  $P_p$ -open set and study some properties of contra  $P_p$ -continuous.

# **2** Preliminaries

Throughout this paper,  $(X, \tau)$  and  $(Y, \sigma)$  stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset *A* of *X*, the closure of *A* and the interior of *A* will be denoted by Cl(A) and Int(A), respectively.

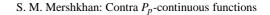
**Definition 1.** A subset A of a space X is said to be

(1) preopen [10] if  $A \subset Int(Cl(A))$ .

- (2)  $\alpha$ -open [13] if  $A \subset Int(Cl(Int(A)))$ .
- (3) regular open [19] if A = Int(Cl(A)).

The complement of a preopen (resp.,  $\alpha$ -open and regular open) set is preclosed (resp.,  $\alpha$ -closed and regular closed). The family of all preopen of *X* is denoted by PO(X). In 1968, Velicko [20] defined the concept of  $\theta$ -open set in *X* which is denoted by  $\theta O(X)$ . A subset *A* of a space *X* is called  $\theta$ -open set if for each  $x \in A$ , there exists an open set *G* such that  $x \in G \subset Cl(G) \subset A$ . The complement of  $\theta$ -open set is said to be  $\theta$ -closed set.

**Definition 2.** [8] A subset A of a space X is called  $P_p$ -open, if for each  $x \in A \in PO(X)$ , there exists a preclosed set F such that  $x \in F \subseteq A$ . The complement of a  $P_p$ -open set is  $P_p$ -closed. The family of all  $P_p$ -open subsets of a topological space  $(X, \tau)$  is denoted by  $P_pO(X, \tau)$  or  $P_pO(X)$ . The intersection of all  $P_p$ -closed sets of X containing A is called the  $P_p$ -closure



of A and is denoted by  $P_pCl(A)$ . The union of all  $P_p$ -open sets of X contained in A is called the  $P_p$ -interior of A and is denoted by  $P_pInt(A)$ .

**Definition 3.** A function  $f : X \to Y$  is called

251

- (1) contra-continuous [3] if  $f^{-1}(V)$  is closed in X for each open set V of Y.
- (2) contra  $\theta$ -continuous [2] if  $f^{-1}(V)$  is  $\theta$ -closed in X for each open set V of Y.
- (3) contra-precontinuous [6] if  $f^{-1}(V)$  is preclosed in X for each open set V of Y.
- (4) perfectly continuous [14] if  $f^{-1}(V)$  is clopen in X for each open set V of Y.
- (5) strongly  $\theta$ -continuous [9] if  $f^{-1}(V)$  is  $\theta$ -open in X for each open set V of Y
- (6) quasi  $\theta$ -continuous [15] at a point  $x \in X$  if for each  $\theta$ -open V of Y containing f(x), there exists a  $\theta$ -open U of X containing x such that  $f(U) \subset Cl(V)$ .
- (7) weakly  $P_p$ -continuous [11] at a point  $x \in X$  if for each open set V of Y containing f(x), there exists a  $P_p$ -open U of X containing x such that  $f(U) \subset Cl(V)$ .

**Theorem 1.** [11] Let  $f : X \to Y$  be a function. If the inverse image of each regular open set of Y is  $P_p$ -closed in X, then f is weakly  $P_p$ -continuous.

**Definition 4.** [7] A subset A of a space X is called preclopen, if A is both preopen and peclosed.

**Definition 5.** [12] Let  $A \subseteq X$ . The set  $\cap \{U \in \tau : A \subset U\}$  is called the kernel of A and is denoted by ker(A).

Lemma 1. [5] The following properties hold for subsets A and B of a space X:

(1)  $x \in ker(A)$  if and only if  $A \cap F \neq \phi$  for any closed subset F of X containing x.

- (2)  $A \subset ker(A)$  and A = ker(A) if A is open in X.
- (3) If  $A \subset B$ , then  $ker(A) \subset ker(B)$ .

**Proposition 1.** [8] For any subset A of a space  $(X, \tau)$ . The following statements are equivalent:

- (1) A is clopen.
- (2) A is  $P_p$ -open and closed.
- (3) A is preopen and closed.

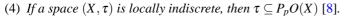
**Definition 6.** A space X is said to be:

- (1) Locally indiscrete [4] if every open subset of X is closed.
- (2) *Pre-R*<sub>0</sub> [1] *if* U *is a preopen and*  $x \in U$ *, then*  $PCl(\{x\}) \subseteq U$ *.*
- (3) *Pre-T*<sub>1</sub> [7] *if for each pair of distinct points x,y of X, there exist two preopen sets one containing x but not y and the other containing y but not x.*
- (4)  $P_p$ - $T_1$  [11] if for each pair of distinct points x, y of X, there exist two disjoint  $P_p$ -open sets U and V such that  $x \in U$  but  $y \notin U$  and  $y \in V$  but  $x \notin V$ .
- (5)  $P_p$ - $T_2$  [11] if for each pair of distinct points x, y of X, there exist two disjoint  $P_p$ -open sets U and V containing x and y respectively.

**Definition 7.** [16] A space X is said to be pre-regular if for each preclosed F and each point  $x \notin F$ , there exist disjoint preopen sets U and V such that  $x \in U$  and  $F \subseteq V$ .

**Proposition 2.** The following statements are true:

- (1) If a space X is pre-T<sub>1</sub>, then  $PO(X) = P_pO(X)$  [8].
- (2) If a space X is X is pre- $R_0$ , then  $PO(X) = P_pO(X)$  [11].
- (3) If a space X is pre-regular, then  $\tau \subseteq P_pO(X)$  [8].



(5) If a space  $(X, \tau)$  is locally indiscrete, then  $PO(X) = P_pO(X)$  [8].

**Corollary 1.** [8] Let A and B be any subsets of a space X. If  $A \in P_pO(X)$  and B is both  $\alpha$ -open and preclosed subset of X, then  $A \cap B \in P_pO(B)$ .

252

**Proposition 3.** [8]  $Let(Y, \tau_Y)$  be a subspace of a space  $(X, \tau)$  and  $A \subset Y$ . If  $A \in P_pO(Y, \tau_Y)$  and Y is preclopen, then  $A \in P_pO(X, \tau)$ .

**Definition 8.** A topological space  $(X, \tau)$  is said to be

- (1) Ultra Hausdorrf [18] if for each pair of distinct points x, y of X, there exist two clopen sets U and V such that  $x \in U$ ,  $y \in V$  and  $U \cap V = \phi$ .
- (2) Ultra normal [18] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.
- (3) Weakly Hausdorff [17] if each element of X is an intersection of regular closed sets.

**Proposition 4.** [8] Let X and Y be two topological spaces and  $X \times Y$  be the product topology. If  $A \in P_pO(X)$  and  $B \in P_pO(Y)$ , then  $A \times B \in P_pO(X \times Y)$ .

**Theorem 2.** [8] For a function  $f : X \to Y$ , the following statements are equivalent:

- (1) f is  $P_p$ -continuous.
- (2)  $f^{-1}(V)$  is  $P_p$ -open set in X, for each open set V of Y.
- (3)  $f^{-1}(F)$  is  $P_p$ -closed set in X, for each closed set F of Y.

**Corollary 2.** [8] *Every quasi*  $\theta$ *-continuous function is a*  $P_p$ *-continuous function.* 

#### **3** Contra *P<sub>p</sub>*-continuous functions

**Definition 9.** A function  $f: X \to Y$  is called contra  $P_p$ -continuous if  $f^{-1}(V)$  is  $P_p$ -closed in X for each open set V of Y.

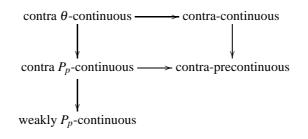
**Lemma 2.** Every contra  $\theta$ -continuous function is contra  $P_p$ -continuous and every contra  $P_p$ -continuous function is contraprecontinuous.

Proof. Follows directly from their definitions.

**Theorem 3.** If a function  $f: X \to Y$  is contra  $P_p$ -continuous, then f is weakly  $P_p$ -continuous.

*Proof.* Let V be any regular open of Y, then V is open. Since f is contra  $P_p$ -continuous, then  $f^{-1}(V)$  is  $P_p$ -closed of X. Therefore, by Theorem 1, f is weakly  $P_p$ -continuous.

By Lemma 2 and Theorem 3, the following diagram is obtained:



#### **Diagram** 1

In the sequel, we shall show that none of the implications that concerning contra  $P_p$ -continuity in Diagram 1 is reversible.



Example 31 Let  $X = \{a, b, c, d\}$  with the two topologies  $\tau = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$  and  $\sigma = \{\phi, \{b\}, \{a, d\}, \{a, b, d\}, X\}$ . Let  $f : (X, \tau) \to (X, \sigma)$  be the identity function. Then f is contra  $P_p$ -continuous but not contra  $\theta$ -continuous, since  $\{b\} \in \sigma$  but  $f^{-1}(\{b\}) = \{b\}$  is not  $\theta$ -closed in  $(X, \tau)$ .

Example 32 Let  $X = \{a, b, c, d\}$  with the two topologies  $\tau = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$  and  $\sigma = \{\phi, \{b\}, \{b, c\}, \{b, c, d\}, X\}$ . Let  $f : (X, \tau) \to (X, \sigma)$  be the identity function. Then f is contra-precontinuous but not contra  $P_p$ -continuous, since  $\{b\} \in \sigma$  but  $f^{-1}(\{b\}) = \{b\}$  is not  $P_p$ -closed in  $(X, \tau)$ .

Example 33 Let  $X = \{a, b, c, d\}$  with the two topologies  $\tau = \{\phi, \{b\}, \{a, d\}, \{a, b, d\}, X\}$  and  $\sigma = \{\phi, \{a\}, \{d\}, \{a, b, d\}, X\}$ . Let  $f : (X, \tau) \to (X, \sigma)$  be the identity function. Then f is weakly  $P_p$ -continuous but not contra  $P_p$ -continuous, since  $\{a, b, d\} \in \sigma$  but  $f^{-1}(\{a, b, d\}) = \{a, b, d\}$  is not  $P_p$ -closed in  $(X, \tau)$ .

**Theorem 4.** For a function  $f : X \to Y$ , the following statements are equivalent:

- (1) f is contra  $P_p$ -continuous.
- (2) for every closed subset F of Y,  $f^{-1}(F) \in P_pO(X)$ .
- (3) For each  $x \in X$  and each closed set F of Y containing f(x), there exists a  $P_p$ -open U of X containing x such that  $f(U) \subset F$ .
- (4)  $f(P_pCl(A)) \subset ker(f(A))$  for each  $A \subset X$ .
- (5)  $P_pCl(f^{-1}(B)) \subset f^{-1}(ker(B))$  for each  $B \subset Y$ .

*Proof.* The implications  $(1) \Leftrightarrow (2)$  and  $(2) \Rightarrow (3)$  are obvious.

 $(3) \Rightarrow (2)$  Let *F* be any closed set of *Y* and  $x \in f^{-1}(F)$ . Then  $f(x) \in F$  and by (3) there exists  $U \in P_pO(X)$  containing *x* such that  $f(U) \subset F$ . Therefore, we obtain that  $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\} \in P_pO(X)$ .

 $(2) \Rightarrow (4)$  Let *A* be any subset of *X*. Suppose that  $y \notin ker(f(A))$ . Then by Lemma 1(1), there exists a closed set *F* of *Y* containing *y* such that  $f(A) \cap F = \phi$ . Thus, we have  $A \cap f^{-1}(F) = \phi$  and  $P_pCl(A) \cap P_pInt(f^{-1}(F)) = \phi$ . Since  $f^{-1}(F)$  is  $P_p$ -open in *X*. Hence,  $P_pCl(A) \cap f^{-1}(F) = \phi$  which implies that  $f(P_pCl(A)) \cap F = \phi$  and hence  $y \notin f(P_pCl(A))$ . Therefore, we obtain that  $f(P_pCl(A)) \subset ker(f(A))$ .

 $(4) \Rightarrow (5)$  Let *B* be any subset of *Y*. By (4) and Lemma 1, we have  $f(P_pCl(f^{-1}(B))) \subset ker(f(f^{-1}(B))) \subset ker(B)$  and  $P_pCl(f^{-1}(B)) \subset f^{-1}(ker(B))$ .

 $(5) \Rightarrow (1)$  Let *V* be any open set of *Y*. By (5) and Lemma 1(2), we have  $P_pCl(f^{-1}(V)) \subset f^{-1}(ker(V)) = f^{-1}(V)$  and  $P_pCl(f^{-1}(V)) = f^{-1}(V)$ . This shows that  $f^{-1}(V)$  is  $P_p$ -closed in *X*. Therefore, *f* is contra  $P_p$ -continuous.

**Theorem 5.** A function  $f : X \to Y$  is contra  $P_p$ -continuous if and only if f is contra-precontinuous and for each  $x \in X$  and each closed set F of Y containing f(x), there exists a preclosed E in X containing x such that  $f(E) \subset F$ .

*Proof.* Necessity. Let  $x \in X$  and F be any closed set of Y containing f(x). Since f is contra  $P_p$ -continuous, then by Theorem 4, there exists a  $P_p$ -open set U of X containing x such that  $f(U) \subset F$ . Since U is  $P_p$ -open set. Then for each  $x \in U$ , there exists a preclosed E of X such that  $x \in E \subset U$ . Therefore, we have  $f(E) \subset F$ . Hence, contra  $P_p$ -continuous always implies contra-precontinuous.

**Sufficiency**. Let *F* be any closed set of *Y*. We have to show that  $f^{-1}(F)$  is  $P_p$ -open set in *X*. Since *f* is contra-precontinuous, then  $f^{-1}(F)$  is preopen in *X*. Let  $x \in f^{-1}(F)$ , then  $f(x) \in F$ . By hypothesis, there exists a preclosed *E* of *X* containing *x* such that  $f(E) \subset F$ , which implies that  $x \in E \subset f^{-1}(F)$ . Therefore,  $f^{-1}(F)$  is  $P_p$ -open set in *X*. Hence, by Theorem 4, *f* is contra  $P_p$ -continuous.

**Theorem 6.** If a function  $f: X \to Y$  is contra  $P_p$ -continuous and Y is regular, then f is  $P_p$ -continuous.

*Proof.* Let *x* be any arbitrary point of *X* and *V* be an open set of *Y* containing f(x). Since *Y* is regular, there exists an open set G in Y containing f(x) such that  $Cl(G) \subset V$ . Since *f* is contra  $P_p$ -continuous, so by Theorem 4, there exists a  $P_p$ -open *U* of *X* containing *x* such that  $f(U) \subset Cl(G)$ . Then  $f(U) \subset Cl(G) \subset V$ . Hence, *f* is  $P_p$ -continuous.

BISKA 254

**Corollary 3.** If a function  $f: X \to Y$  is contra  $P_p$ -continuous and Y is regular, then f is quasi  $\theta$ -continuous.

*Proof.* Follows from Corollary 2.

**Theorem 7.** *The following statements are equivalent for a function*  $f: X \to Y$ *:* 

- (1) f is perfectly continuous.
- (2) f is contra  $P_p$ -continuous and continuous.
- (3) f is contra-precontinuous and continuous.

*Proof.* This is an immediate consequence of Proposition 1.

**Corollary 4.** Let  $f : X \to Y$  be a function and X be a pre- $T_1$  space. f is contra  $P_p$ -continuous if and only if f is contraprecontinuous.

*Proof.* Follows from Proposition 2(1).

**Corollary 5.** Let  $f : X \to Y$  be a function and X be a pre- $R_0$  space. f is contra  $P_p$ -continuous if and only if f is contraprecontinuous.

*Proof.* Follows from Proposition 2(2).

**Corollary 6.** Let  $f: X \to Y$  be a function and X be a pre-regular space. If f is contra-continuous, then f is contra  $P_p$ -continuous.

*Proof.* Follows from Proposition 2(3).

**Corollary 7.** Let  $f: X \to Y$  be a function and X be a locally indiscrete space. If f is contra-continuous, then f is contra  $P_p$ -continuous.

*Proof.* Follows from Proposition 2(4).

**Corollary 8.** Let  $f : X \to Y$  be a function and X be a locally indiscrete space. f is contra-precontinuous if and only if f is contra  $P_p$ -continuous.

*Proof.* Follows from Proposition 2(5).

**Corollary 9.** If X is both pre- $T_1$  and X locally indiscrete space, the following statements are equivalent for a function  $f: X \to Y$ :

- (1) f is contra  $P_p$ -continuous.
- (2) f is contra-precontinuous.

*Proof.* Follows from Corollary 4 and Corollary 8.

**Definition 10.** A space  $(X; \tau)$  is said to be  $P_p$ -space (resp., locally  $P_p$ -indiscrete) if every  $P_p$ -open set is open (resp., closed) in X.

**Theorem 8.** If a function  $f: X \to Y$  is contra  $P_p$ -continuous and X is  $P_p$ -space, then f is contra-continuous.

*Proof.* Let *F* be a closed set in Y. Since *f* is contra  $P_p$ -continuous,  $f^{-1}(F)$  is  $P_p$ -open in *X*. Since *X* is  $P_p$ -space,  $f^{-1}(F)$  is open in *X*. Hence *f* is contra-continuous.

**Theorem 9.** Let X be locally  $P_p$ -indiscrete. If a function  $f: X \to Y$  is contra  $P_p$ -continuous, then f is continuous.

<sup>© 2019</sup> BISKA Bilisim Technology



*Proof.* Let *F* be a closed set in *Y*. Since *f* is contra  $P_p$ -continuous,  $f^{-1}(F)$  is  $P_p$ -open in *X*. Since *X* is locally  $P_p$ -indiscrete,  $f^{-1}(F)$  is closed in *X*. Hence *f* is continuous.

**Theorem 10.** Let  $f: X \to Y$  be a contra  $P_p$ -continuous function. If A is  $\alpha$ -open and preclosed subset of X, then  $f | A : A \to Y$  is contra  $P_p$ -continuous in the subspace A.

*Proof.* Let *F* be any closed set of *Y*. Since *f* is contra  $P_p$ -continuous, then by Theorem 4,  $f^{-1}(F)$  is  $P_p$ -open in *X*. Since *A* is  $\alpha$ -open and preclosed subset of *X*, then by Corollary 1,  $(f \mid A)^{-1} = f^{-1}(F) \cap A$  is a  $P_p$ -open subspace of *A*. Therefore, by Theorem 4,  $f \mid A : A \to Y$  is contra  $P_p$ -continuous.

**Theorem 11.** A function  $f : X \to Y$  is contra  $P_p$ -continuous, if for each  $x \in X$ , there exists a preclopen A of X containing x such that  $f \mid A : A \to Y$  is contra  $P_p$ -continuous in the subspace A.

*Proof.* Let  $x \in X$ , then by hypothesis, there exists a preclopen A containing x such that  $f | A : A \to Y$  is contra  $P_p$ -continuous. Let F be any closed subset of Y containing f(x). By Theorem 4, there exists a  $P_p$ -open U in A containing x such that  $(f | A)(U) \subset F$ . Since A is preclopen, then by Proposition 3, U is  $P_p$ -open in X and hence  $f(U) \subset V$ . Therefore, by Theorem 4, f is contra  $P_p$ -continuous.

**Theorem 12.** If  $X = R \cup S$ , where R and S are preclopen sets, and  $f : X \to Y$  is a function such that both f | R and f | S are contra  $P_p$ -continuous, then f is contra  $P_p$ -continuous.

*Proof.* Let *F* be any closed subset of *Y*. Then  $f^{-1}(F) = (f | R)^{-1}(F) \cup (f | S)^{-1}(F)$ . Since f | R and f | S are contra  $P_p$ -continuous, then by Theorem 4  $(f | R)^{-1}$  and  $(f | S)^{-1}$  are  $P_p$ -open sets in *R* and *S*, respectively. Since *R* and *S* are precolpen sets in *X*, then by Proposition 3  $(f | R)^{-1}$  and  $(f | S)^{-1}$  are  $P_p$ -open sets in *X*. Since the union of two  $P_p$ -open sets is  $P_p$ -open, hence  $f^{-1}(F)$  is  $P_p$ -open sets in *X*. Therefore, by Theorem 4, *f* is contra  $P_p$ -continuous.

**Theorem 13.** If X is a topological space and for each pair of distinct points  $x_1$  and  $x_2$  in X, there exists a function f of X into Uryshon topological space Y such that  $f(x_1) \neq f(x_2)$  and f is contra  $P_p$ -continuous at  $x_1$  and  $x_2$ , then X is a  $P_p$ - $T_2$  space.

*Proof.* Let  $x_1$  and  $x_2$  be any distinct points in X. By hypothesis, there is a Uryshon space Y and a function  $f: X \to Y$  such that  $f(x_1) \neq f(x_2)$  and f is contra  $P_p$ -continuous at  $x_1$  and  $x_2$ , Let  $y_i = f(x_i)$  for i = 1, 2. Then  $y_1 \neq y_2$ . Since Y is Uryshon, there exist open sets  $U_{y_1}$  and  $U_{y_2}$  containing  $y_1$  and  $y_2$  respectively in Y such that  $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \phi$ . Since f is contra  $P_p$ -continuous at  $x_1$  and  $x_2$ , there exist  $P_p$ -open sets  $V_{x_1}$  and  $V_{x_2}$  containing  $x_1$  and  $x_2$  respectively in X such that  $f(V_{x_i}) \subset Cl(U_{y_i})$  for i = 1, 2. Hence, we have  $V_{x_1} \cap V_{x_2} = \phi$ . Therefore, X is a  $P_p$ - $T_2$  space.

**Corollary 10.** If f is contra  $P_p$ -continuous injection of a topological space X into a Uryshon space Y, then X is a  $P_p$ - $T_2$  space.

*Proof.*Let  $x_1$  and  $x_2$  be any distinct points in X. Then by hypothesis, f is contra  $P_p$ -continuous of X into a Uryshon space Y such that  $f(x_1) \neq f(x_2)$  because f is injective. Hence, by Theorem 13, X is a  $P_p$ - $T_2$  space.

**Proposition 5.** Let  $f: X_1 \to Y$  and  $g: X_2 \to Y$  be two contra  $P_p$ -continuous functions. If Y is Uryshon, then the set  $E = \{(x_1, x_2) \in X_1 \times X_2 : f(x_1) = g(x_2)\}$  is  $P_p$ -closed in the product space  $X_1 \times X_2$ .

*Proof.* In order to show that *E* is  $P_p$ -closed, we show that  $(X_1 \times X_2) \setminus E$  is  $P_p$ -open. Let  $(x_1, x_2) \notin E$ . Then  $f(x_1) \neq g(x_2)$ . Since *Y* is Uryshon, there exist open sets  $U_1$  and  $U_2$  of *Y* containing  $f(x_1)$  and  $g(x_2)$  respectively, such that  $Cl(U_1) \cap Cl(U_2) = \phi$ . Since *f* and *g* are contra  $P_p$ -continuous,  $f^{-1}(Cl(U_1))$  and  $g^{-1}(Cl(U_2))$  are  $P_p$ -open sets containing  $x_1$  and  $x_2$  in  $X_i(i = 1, 2)$ . Hence, by Proposition 4,  $f^{-1}(Cl(U_1)) \times g^{-1}(Cl(U_2))$  is  $P_p$ -open. Further  $(x_1, x_2) \in f^{-1}(Cl(U_1)) \times g^{-1}(Cl(U_2)) \subset (X_1 \times X_2) \setminus E$ . It follows that  $(X_1 \times X_2) \setminus E$  is  $P_p$ -open. Thus, *E* is  $P_p$ -closed in the product space  $X_1 \times X_2$ .



**Corollary 11.** If  $f : X \to Y$  is a contra  $P_p$ -continuous function and Y is a Urysohn space, then  $E = \{(x_1, x_2) | f(x_1) = f(x_2)\}$  is  $P_p$ -closed in the product space  $X \times X$ .

**Corollary 12.** Let  $f : X_1 \to Y$  and  $g : X_2 \to Y$  be two contra  $P_p$ -continuous functions. If Y is ultra Hausdorff, then the set  $E = \{(x_1, x_2) \in X_1 \times X_2 : f(x_1) = g(x_2)\}$  is  $P_p$ -closed in the product space  $X_1 \times X_2$ .

**Corollary 13.** If  $f: X \to Y$  is a contra  $P_p$ -continuous function and Y is ultra Hausdorff, then  $E = \{(x_1, x_2) | f(x_1) = f(x_2)\}$  is  $P_p$ -closed in X.

**Theorem 14.** Let  $f : X \to Y$  be a contra  $P_p$ -continuous injection function. If Y is an ultra Hausdorff space, then X is a  $P_p$ - $T_2$  space.

*Proof.* Let  $x_1$  and  $x_2$  be any distinct points in X, then  $f(x_1) \neq f(x_2)$  and there exist clopen sets U and V containing  $f(x_1)$  and  $f(x_2)$  respectively, such that  $U \cap V = \phi$ . Since f is contra  $P_p$ -continuous, then  $f^{-1}(U) \in P_pO(X)$  and  $f^{-1}(V) \in P_pO(X)$  such that  $f^{-1}(U) \cap f^{-1}(V) = \phi$ . Hence, X is a  $P_p$ - $T_2$  space.

**Proposition 6.** If  $f_i : X_i \to Y_i$  is a contra  $P_p$ -continuous function for each i = 1, 2. Let  $f : X_1 \times Y_2 \to X_1 \times Y_2$  be a function defined as follows:  $f(X_1, X_2) = (f_1(x_1), f_2(x_2))$ . Then f is contra  $P_p$ -continuous.

*Proof.* Let  $R_1 \times R_2 \subset Y_1 \times Y_2$ , where  $R_i$  is open set in  $Y_i$  for each i = 1, 2. Then  $f^{-1}(R_1 \times R_2) = f_1^{-1}(Y_1) \times f_2^{-1}(R_2)$ . Since  $f_i$  is contra  $P_p$ -continuous for  $f_i = 1, 2$ , then by Proposition 4,  $f^{-1}(R_1 \times R_2)$  is  $P_p$ -closed in  $X_1 \times X_2$ .

**Definition 11.** The graph G(f) of a function  $f : X \to Y$  is contra  $P_p$ -closed in  $X \times Y$  if for each  $(x, y) \in (X \times Y) \setminus G(f)$ , there exists  $U \in P_p(X, x)$  and a closed V in Y containing y such that  $(U \times V) \cap G(f) = \phi$ .

**Lemma 3.** The graph G(f) of a function  $f : X \to Y$  is contra  $P_p$ -closed in  $X \times Y$  if and only if for each  $(x, y) \in (X \times Y) \setminus G(f)$ , there exist  $U \in P_pO(X)$  containing x and  $V \in C(Y)$  containing y such that  $f(U) \cap V = \phi$ .

**Theorem 15.** If  $f: X \to Y$  is a contra  $P_p$ -continuous function and Y is Urysohn, then G(f) is contra  $P_p$ -closed in  $X \times Y$ .

*Proof.* Let  $(x,y) \in (X \times Y) \setminus G(f)$ . It follows that  $f(x) \neq y$ . Since Y is Urysohn, there exist open sets V and W such that  $f(x) \in V$ ,  $y \in W$  and  $Cl(V) \cap Cl(W) = \phi$ . Since f is contra  $P_p$ -continuous, there exists a  $U \in P_pO(X,x)$  such that  $f(U) \subset Cl(V)$  and  $f(U) \cap Cl(W) = \phi$ . Hence, G(f) is contra  $P_p$ -closed in  $X \times Y$ .

**Theorem 16.** If  $f: X \to Y$  is a  $P_p$ -continuous function and Y is  $T_1$ , then G(f) is contra  $P_p$ -closed in  $X \times Y$ .

*Proof.* Let  $(x, y) \in (X \times Y) \setminus G(f)$ . Then  $y \neq f(x)$  and there exists an open set V of Y, such that  $f(x) \in V$  and  $y \notin V$ . Since f is  $P_p$ -continuous, there exists  $U \in P_pO(X,x)$  such that  $f(U) \subset V$ . Therefore,  $f(U) \cap (Y \setminus V) = \phi$  and  $Y \setminus V \in C(Y,y)$ . This shows that G(f) is contra  $P_p$ -closed in  $X \times Y$ .

**Theorem 17.** Let  $f : (X, \tau) \to (Y, \sigma)$  be a function and  $g : X \to X \times Y$  be a graph function of f defined by g(x) = (x, f(x)) for every  $x \in X$ . If g is contra  $P_p$ -continuous, then f is contra  $P_p$ -continuous.

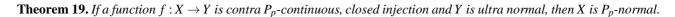
*Proof.* Let *V* be an open set in *Y*. Then  $X \times V$  is an open set in  $X \times Y$ . Since *g* is contra  $P_p$ -continuous,  $g^{-1}(X \times V)$  is  $P_p$ -closed in *X*. Also  $g^{-1}(X \times V) = f^{-1}(V)$  which is  $P_p$ -closed in *X*. Hence, *f* is contra  $P_p$ -continuous.

**Theorem 18.** Let  $f: X \to Y$  has a contra  $P_p$ -closed graph. If f is injective, then X is  $P_p$ - $T_1$ .

*Proof.* Let  $x_1$  and  $x_2$  be any two distinct points of X. Then, we have  $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$ . Then, there exist  $P_p$ -open U in X containing  $x_1$  and  $F \in C(Y, f(x_2))$  such that  $f(U) \cap F = \phi$ . Hence,  $U \cap f^{-1}(F) = \phi$ . Therefore, we have  $x_2 \notin U$ . This implies that X is  $P_p$ - $T_1$ .

**Definition 12.** A topological space X is said to be  $P_p$ -normal if each pair of disjoint closed sets can be separated by disjoint  $P_p$ -open sets.

<sup>© 2019</sup> BISKA Bilisim Technology



*Proof.* Let  $F_1$  and  $F_2$  be disjoint closed subsets of X. Since f is closed injective,  $f(F_1)$  and  $f(F_2)$  are disjoint closed subsets of Y. Since Y is ultra normal,  $f(F_1)$  and  $f(F_2)$  are separated by disjoint clopen sets  $V_1$  and  $V_2$ , respectively. Hence,  $F_i \subset f^{-1}(V_i), f^{-1}(V_i) \in P_p(X)$  for i = 1, 2 and  $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$ . Thus X is  $P_p$ -normal

**Theorem 20.** If a function  $f: X \to Y$  is contra  $P_p$ -continuous injection and Y is weakly Hausdorff, then X is  $P_p$ - $T_1$ .

*Proof.* Suppose that *Y* weakly Hausdorff. For any distinct points  $x_1$  and  $x_2$  in *X*, there exist regular closed sets *U* and *V* in *Y* such that  $f(x_1) \in U$ ,  $f(x_2) \notin U$ ,  $f(x_1) \notin V$  and  $f(x_2) \in V$ . Since *f* is contra  $P_p$ -continuous,  $f^{-1}(U)$  and  $f^{-1}(V)$  are  $P_p$ -open subsets of *X* such that  $x_1 \in f^{-1}(U)$ ,  $x_2 \notin f^{-1}(U)$ ,  $x_1 \notin f^{-1}(V)$  and  $x_2 \in f^{-1}(V)$ . This shows that *X* is  $P_p$ -*T*<sub>1</sub>.

**Theorem 21.** Let  $f : X \to Y$  be a contra  $P_p$ -continuous surjective function and A is  $\alpha$ -open and preclosed subset of X. If f is a closed function, then the function  $g : A \to f(A)$ , which is defined by g(x) = f(x) for each  $x \in A$ , is contra  $P_p$ -continuous.

*Proof.* Putting H = f(A). Let  $x \in A$  and F be any closed set in H containing g(x). Since H is closed in Y and F is closed in H, then F is closed in Y. Since f is contra  $P_p$ -continuous, then by Theorem 4, there exists a  $P_p$ -open U in X containing x such that  $f(U) \subset F$ . Taking  $W = U \cap A$ , since A is  $\alpha$ -open and preclosed subset of X. Then by Corollary 1, W is  $P_p$ -open in A containing x and  $g(W) \subset F_Y \cap H = F_H$ . Then  $g(W) \subset F_H$ . Therefore, by Theorem 4, g is contra  $P_p$ -continuous.

We shall obtain some conditions for the composition of two functions to be contra  $P_p$ -continuous.

**Theorem 22.** Let  $f : X \to Y$  and  $g : Y \to Z$  be functions. Then the composition function  $g \circ f : X \to Z$  is contra  $P_p$ -continuous if f and g satisfy one of the following conditions:

- (1) f is contra  $P_p$ -continuous and g is continuous.
- (2) f is  $P_p$ -continuous and g is contra-continuous.
- (3) f is contra  $P_p$ -continuous and g is a strongly  $\theta$ -continuous.
- (4) f is contra  $P_p$ -continuous and g is a quasi  $\theta$ -continuous.

# Proof.

257

- (1) Let W be any open subset of Z. Since g is continuous  $g^{-1}(W)$  is an open subset of Y. Since f is contra  $P_p$ -continuous, then  $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$  is a  $P_p$ -closed subset in X. Therefore,  $g \circ f$  is contra  $P_p$ -continuous.
- (2) Let W be any open subset of Z. Since g is contra-continuous, then  $g^{-1}(W)$  is a closed subset of Y. Since f is  $P_p$ continuous, then by Theorem 2,  $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$  is a  $P_p$ -closed subset in X. Therefore,  $g \circ f$  is contra  $P_p$ -continuous.
- (3) Let W be any open subset of Z. In view of strongly  $\theta$ -continuity of g,  $g^{-1}(W)$  is a  $\theta$ -open subset of Y. Again, since f is contra  $P_p$ -continuous,  $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$  is a  $P_p$ -closed subset in X. Therefore,  $g \circ f$  is contra  $P_p$ -continuous.
- (4) Obvious

## **Competing interests**

The authors declare that they have no competing interests.

## Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.



# References

- M. Caldas, S. Jafari and T. Noiri, Characterizations of Pre-R<sub>0</sub> and Pre-R<sub>1</sub> Topological Spaces, *Topology Proceedings*, Vol. 25, Summer (2000), 17-30.
- [2] M. Caldas, S. Jafari and T. Noiri, Contra θ-continuity in topological spaces, *Questions, Answers in General Topology*, 33 (2015), 117-125.
- [3] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. and Math. Sci., 19 (2) (1996), 303-310.
- [4] J. Dontchev, Survey on preopen sets, The Proceedings of the Yatsushiro Topological Conference, (1998), 1-18.
- [5] S. Jafari and T. Noiri, Contra-super continuous functions, Annales Univ Sci Budapest, 42 (1999), 27-34.
- [6] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25 (2002), 115-128.
- [7] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc., 82 (1990), 415-422.
- [8] A. B. Khalaf and Sh. M. Mershkhan, Pp-open sets and Pp-continuous Functions, Gen. Math. Notes, 20 (2014), 34-51.
- [9] P. E. Long and L. Herrington, Strongly θ-continuous functions, J. Korean Math. Soc., 18 (1) (1981), 21-28.
- [10] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and week precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53 (1982), 47-53.
- [11] Sh. M. Mershkhan, Application of P<sub>p</sub>-open set in Topological spaces, M. Sc. Thesis, Zakho University (2013).
- [12] M. Mrsevic, On pariwise R<sub>0</sub> and pairwise R<sub>1</sub> bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30 (1986), 141-148.
- [13] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (3)(1965), 961-970.
- [14] T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15 (3) (1984), 241-250.
- [15] T. Noiri and V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math. Roumanie, 34 (82) (1990), 263-270.
- [16] M. Pal and P. Bhattacharyya, Feeble and strong forms of pre-irresolute function, Bull. Malaysian Math. Soc. (Second Series), 19 (1996), 63-75.
- [17] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, *In: General topology and its relation to modern analysis and algebra. III, Proc. Conf. Kanpur, (1968), Academia, Prague (1971), p 3016.*
- [18] R. Staum, The algebra of bounded continuous functions into a non-archimedean field, Pacific J. Math. 50 (1974), 169-185.
- [19] M. H. Stone, Applications of the theory of Boolean rings to topology, Trans. Amer. Math. Soc., 41 (1937), 375-481.
- [20] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (2) (1968), 103-118.