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Abstract: In this paper, we apply the notion ofPp-open sets in topological spaces to present and study a new class of functions
called contraPp-continuous functions which lies between classes of contraθ -continuous functions and contra-precontinuous functions.
It is shown that contraPp-continuous is weaker than contraθ -continuous, but it is stronger than contra-precontinuousand weakly
Pp-continuous. Furthermore, we obtain basic properties and preservation theorems of contraPp-continuity.
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1 Introduction

In 1996, Dontchev [3] introduced and investigated a new notion of continuity called contra-continuity. Following this,

many authors introduced many types of new generalizations of contra-continuity called as contraθ -continuous [2],

perfectly continuous [14] and contra-precontinuous [6]. Long and Herrington [9] have introduced a new class of

functions called stronglyθ -continuous function. Noiri and Popa [15] have introduced and studied quasiθ -continuous

function. In this direction, we will introduce and investigate the concept of contraPp-continuous function via the notion

of Pp-open set and study some properties of contraPp-continuous.

2 Preliminaries

Throughout this paper,(X,τ) and(Y,σ) stand for topological spaces with no separation axioms assumed unless otherwise

stated. For a subsetA of X, the closure ofA and the interior ofA will be denoted byCl(A) andInt(A), respectively.

Definition 1. A subset A of a space X is said to be

(1) preopen[10] if A ⊂ Int(Cl(A)).

(2) α-open[13] if A ⊂ Int(Cl(Int(A))).

(3) regular open[19] if A =Int(Cl(A)).

The complement of a preopen (resp.,α-open and regular open) set is preclosed (resp.,α-closed and regular closed). The

family of all preopen ofX is denoted byPO(X). In 1968, Velicko [20] defined the concept ofθ -open set inX which is

denoted byθO(X). A subsetA of a spaceX is calledθ -open set if for eachx ∈ A, there exists an open setG such that

x∈ G⊂Cl(G)⊂ A. The complement ofθ -open set is said to beθ -closed set.

Definition 2. [8] A subset A of a space X is called Pp-open, if for each x∈ A∈ PO(X), there exists a preclosed set F such

that x∈ F ⊆ A. The complement of a Pp-open set is Pp-closed. The family of all Pp-open subsets of a topological space

(X,τ) is denoted by PpO(X,τ) or PpO(X). The intersection of all Pp-closed sets of X containing A is called the Pp-closure
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of A and is denoted by PpCl(A). The union of all Pp-open sets of X contained in A is called the Pp-interior of A and is

denoted by PpInt(A).

Definition 3. A function f : X →Y is called

(1) contra-continuous[3] if f −1(V) is closed in X for each open set V of Y .

(2) contraθ -continuous[2] if f −1(V) is θ -closed in X for each open set V of Y .

(3) contra-precontinuous[6] if f −1(V) is preclosed in X for each open set V of Y .

(4) perfectly continuous[14] if f −1(V) is clopen in X for each open set V of Y .

(5) stronglyθ -continuous[9] if f −1(V) is θ -open in X for each open set V of Y

(6) quasiθ -continuous[15] at a point x∈ X if for eachθ -open V of Y containing f(x), there exists aθ -open U of X

containing x such that f(U)⊂Cl(V).

(7) weakly Pp-continuous[11] at a point x∈ X if for each open set V of Y containing f(x), there exists a Pp-open U of X

containing x such that f(U)⊂Cl(V).

Theorem 1.[11] Let f : X →Y be a function. If the inverse image of each regular open set of Y is Pp-closed in X, then f

is weakly Pp-continuous.

Definition 4. [7] A subset A of a space X is called preclopen, if A is both preopenand peclosed.

Definition 5. [12] Let A⊆ X. The set∩{U ∈ τ : A⊂U} is called the kernel of A and is denoted by ker(A).

Lemma 1. [5] The following properties hold for subsets A and B of a space X:

(1) x∈ ker(A) if and only if A∩F 6= φ for any closed subset F of X containing x.

(2) A⊂ ker(A) and A= ker(A) if A is open in X.

(3) If A ⊂ B, then ker(A)⊂ ker(B).

Proposition 1. [8] For any subset A of a space(X,τ). The following statements are equivalent:

(1) A is clopen.

(2) A is Pp-open and closed .

(3) A is preopen and closed.

Definition 6. A space X is said to be:

(1) Locally indiscrete[4] if every open subset of X is closed.

(2) Pre-R0 [1] if U is a preopen and x∈U, then PCl({x})⊆U.

(3) Pre-T1 [7] if for each pair of distinct points x,y of X, there exist two preopen sets one containing x but not y and the

other containing y but not x.

(4) Pp-T1 [11] if for each pair of distinct points x,y of X, there exist two disjoint Pp-open sets U and V such that x∈U

but y /∈U and y∈V but x/∈V.

(5) Pp-T2 [11] if for each pair of distinct points x,y of X, there exist two disjoint Pp-open sets U and V containing x and

y respectively.

Definition 7. [16] A space X is said to be pre-regular if for each preclosed F and each point x/∈ F, there exist disjoint

preopen sets U and V such that x∈U and F⊆V.

Proposition 2.The following statements are true:

(1) If a space X is pre-T1, then PO(X) = PpO(X) [8].

(2) If a space X is X is pre-R0, then PO(X) = PpO(X) [11].

(3) If a space X is pre-regular, thenτ ⊆ PpO(X) [8].
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(4) If a space(X,τ) is locally indiscrete, thenτ ⊆ PpO(X) [8].

(5) If a space(X,τ) is locally indiscrete, then PO(X) = PpO(X) [8].

Corollary 1. [8] Let A and B be any subsets of a space X. If A∈ PpO(X) and B is bothα-open and preclosed subset of X,

then A∩B∈ PpO(B).

Proposition 3. [8] Let(Y,τY) be a subspace of a space(X,τ) and A⊂ Y. If A∈ PpO(Y,τY) and Y is preclopen, then

A∈ PpO(X,τ).

Definition 8. A topological space(X,τ) is said to be

(1) Ultra Hausdorrf[18] if for each pair of distinct points x,y of X, there exist two clopen sets U and V such that x∈U,

y∈V and U∩V = φ .

(2) Ultra normal [18] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

(3) Weakly Hausdorff[17] if each element of X is an intersection of regular closed sets.

Proposition 4. [8] Let X and Y be two topological spaces and X×Y be the product topology. If A∈ PpO(X) and B∈

PpO(Y), then A×B∈ PpO(X×Y).

Theorem 2.[8] For a function f : X →Y, the following statements are equivalent:

(1) f is Pp-continuous.

(2) f−1(V) is Pp-open set in X, for each open set V of Y.

(3) f−1(F) is Pp-closed set in X, for each closed set F of Y.

Corollary 2. [8] Every quasiθ -continuous function is a Pp-continuous function.

3 Contra Pp-continuous functions

Definition 9. A function f : X →Y is called contra Pp-continuous if f−1(V) is Pp-closed in X for each open set V of Y.

Lemma 2.Every contraθ -continuous function is contra Pp-continuous and every contra Pp-continuous function is contra-

precontinuous.

Proof.Follows directly from their definitions.

Theorem 3.If a function f : X →Y is contra Pp-continuous, then f is weakly Pp-continuous.

Proof. Let V be any regular open ofY, thenV is open. Sincef is contraPp-continuous, thenf−1(V) is Pp-closed ofX.

Therefore, by Theorem1, f is weaklyPp-continuous.

By Lemma 2 and Theorem3, the following diagram is obtained:

contraθ -continuous

��

// contra-continuous

��

contraPp-continuous

��

// contra-precontinuous

weaklyPp-continuous

Diagram 1

In the sequel, we shall show that none of the implications that concerning contraPp-continuity in Diagram 1 is reversible.
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Example 31Let X= {a,b,c,d} with the two topologiesτ = {φ ,{a},{b,c},

{a,b,c},X} andσ = {φ ,{b},{a,d},{a,b,d},X}. Let f : (X,τ) → (X,σ) be the identity function. Then f is contra Pp-

continuous but not contraθ -continuous, since{b} ∈ σ but f−1({b}) = {b} is notθ -closed in(X,τ).

Example 32Let X= {a,b,c,d} with the two topologiesτ = {φ ,{a},{a,b},

{c,d},{a, ,c,d},X} and σ = {φ ,{b},{b,c},{b,c,d},X}. Let f : (X,τ) → (X,σ) be the identity function. Then f is

contra-precontinuous but not contra Pp-continuous, since{b} ∈ σ but f−1({b}) = {b} is not Pp-closed in(X,τ).

Example 33Let X= {a,b,c,d} with the two topologiesτ = {φ ,{b},{a,d},

{a,b,d},X} andσ = {φ ,{a},{d},{a,d},{a,b,d},X}. Let f : (X,τ)→ (X,σ) be the identity function. Then f is weakly

Pp-continuous but not contra Pp-continuous, since{a,b,d} ∈ σ but f−1({a,b,d}) = {a,b,d} is not Pp-closed in(X,τ).

Theorem 4.For a function f : X →Y, the following statements are equivalent:

(1) f is contra Pp-continuous.

(2) for every closed subset F of Y, f−1(F) ∈ PpO(X).

(3) For each x∈ X and each closed set F of Y containing f(x), there exists a Pp-open U of X containing x such that

f (U)⊂ F.

(4) f (PpCl(A))⊂ ker( f (A)) for each A⊂ X.

(5) PpCl( f−1(B))⊂ f−1(ker(B)) for each B⊂Y.

Proof.The implications(1)⇔ (2) and(2)⇒ (3) are obvious.

(3)⇒ (2) Let F be any closed set ofY andx∈ f−1(F). Then f (x) ∈ F and by(3) there existsU ∈ PpO(X) containingx

such thatf (U)⊂ F . Therefore, we obtain thatf−1(F) = ∪
{

Ux : x∈ f−1(F)
}

∈ PpO(X).

(2)⇒ (4) Let A be any subset ofX. Suppose thaty /∈ ker( f (A)). Then by Lemma1(1), there exists a closed setF of Y

containingy such thatf (A)∩F = φ . Thus, we haveA∩ f−1(F) = φ andPpCl(A)∩PpInt( f−1(F)) = φ . Sincef−1(F) is

Pp-open inX. Hence,PpCl(A)∩ f−1(F) = φ which implies thatf (PpCl(A))∩F = φ and hencey /∈ f (PpCl(A)). Therefore,

we obtain thatf (PpCl(A))⊂ ker( f (A)).

(4) ⇒ (5) Let B be any subset ofY. By (4) and Lemma1, we havef (PpCl( f−1(B))) ⊂ ker( f ( f−1(B))) ⊂ ker(B) and

PpCl( f−1(B))⊂ f−1(ker(B)).

(5) ⇒ (1) Let V be any open set ofY. By (5) and Lemma1(2), we havePpCl( f−1(V)) ⊂ f−1(ker(V)) = f−1(V) and

PpCl( f−1(V)) = f−1(V). This shows thatf−1(V) is Pp-closed inX. Therefore,f is contraPp-continuous.

Theorem 5.A function f: X →Y is contra Pp-continuous if and only if f is contra-precontinuous and foreach x∈ X and

each closed set F of Y containing f(x), there exists a preclosed E in X containing x such that f(E)⊂ F.

Proof. Necessity. Let x ∈ X and F be any closed set ofY containing f (x). Since f is contraPp-continuous, then by

Theorem4, there exists aPp-open setU of X containingx such thatf (U) ⊂ F. SinceU is Pp-open set. Then for each

x∈U , there exists a preclosedE of X such thatx∈ E ⊂U . Therefore, we havef (E) ⊂ F . Hence, contraPp-continuous

always implies contra-precontinuous.

Sufficiency. Let F be any closed set ofY. We have to show thatf−1(F) is Pp-open set inX. Since f is

contra-precontinuous, thenf−1(F) is preopen inX. Let x ∈ f−1(F), then f (x) ∈ F . By hypothesis, there exists a

preclosedE of X containingx such thatf (E)⊂ F , which implies thatx∈ E ⊂ f−1(F). Therefore,f−1(F) is Pp-open set

in X. Hence, by Theorem4, f is contraPp-continuous.

Theorem 6.If a function f : X →Y is contra Pp-continuous and Y is regular, then f is Pp-continuous.

Proof.Let x be any arbitrary point ofX andV be an open set ofY containingf (x). SinceY is regular, there exists an open

set G in Y containingf (x) such thatCl(G)⊂V. Sincef is contraPp-continuous, so by Theorem4, there exists aPp-open

U of X containingx such thatf (U)⊂Cl(G). Then f (U)⊂Cl(G) ⊂V. Hence,f is Pp-continuous.
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Corollary 3. If a function f : X →Y is contra Pp-continuous and Y is regular, then f is quasiθ -continuous.

Proof.Follows from Corollary2.

Theorem 7.The following statements are equivalent for a function f: X →Y:

(1) f is perfectly continuous.

(2) f is contra Pp-continuous and continuous.

(3) f is contra-precontinuous and continuous.

Proof.This is an immediate consequence of Proposition1.

Corollary 4. Let f : X →Y be a function and X be a pre-T1 space. f is contra Pp-continuous if and only if f is contra-

precontinuous.

Proof.Follows from Proposition2(1).

Corollary 5. Let f : X →Y be a function and X be a pre-R0 space. f is contra Pp-continuous if and only if f is contra-

precontinuous.

Proof.Follows from Proposition2(2).

Corollary 6. Let f : X → Y be a function and X be a pre-regular space. If f is contra-continuous, then f is contra

Pp-continuous.

Proof.Follows from Proposition2(3).

Corollary 7. Let f : X →Y be a function and X be a locally indiscrete space. If f is contra-continuous, then f is contra

Pp-continuous.

Proof.Follows from Proposition2(4).

Corollary 8. Let f : X →Y be a function and X be a locally indiscrete space. f is contra-precontinuous if and only if f is

contra Pp-continuous.

Proof.Follows from Proposition2(5).

Corollary 9. If X is both pre-T1 and X locally indiscrete space, the following statements are equivalent for a function

f : X →Y:

(1) f is contra Pp-continuous.

(2) f is contra-precontinuous.

Proof.Follows from Corollary4 and Corollary8.

Definition 10.A space(X;τ) is said to be Pp-space (resp., locally Pp-indiscrete) if every Pp-open set is open (resp., closed)

in X.

Theorem 8.If a function f : X →Y is contra Pp-continuous and X is Pp-space, then f is contra-continuous.

Proof.Let F be a closed set in Y. Sincef is contraPp-continuous,f−1(F) is Pp-open inX. SinceX is Pp-space,f−1(F)

is open inX. Hencef is contra-continuous.

Theorem 9.Let X be locally Pp-indiscrete. If a function f: X →Y is contra Pp-continuous, then f is continuous.
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Proof.Let F be a closed set inY. Sincef is contraPp-continuous,f−1(F) is Pp-open inX. SinceX is locallyPp-indiscrete,

f−1(F) is closed inX. Hencef is continuous.

Theorem 10.Let f : X →Y be a contra Pp-continuous function. If A isα-open and preclosed subset of X, then f|A : A→Y

is contra Pp-continuous in the subspace A.

Proof.Let F be any closed set ofY. Sincef is contraPp-continuous, then by Theorem4, f−1(F) is Pp-open inX. SinceA

is α-open and preclosed subset ofX, then by Corollary1, ( f | A)−1 = f−1(F)∩A is aPp-open subspace ofA. Therefore,

by Theorem4, f | A : A→Y is contraPp-continuous.

Theorem 11.A function f : X →Y is contra Pp-continuous, if for each x∈ X, there exists a preclopen A of X containing

x such that f| A : A→Y is contra Pp-continuous in the subspace A.

Proof. Let x ∈ X, then by hypothesis, there exists a preclopenA containingx such thatf | A : A → Y is contraPp-

continuous. LetF be any closed subset ofY containingf (x). By Theorem4, there exists aPp-openU in A containingx

such that( f | A)(U)⊂ F . SinceA is preclopen, then by Proposition3, U is Pp-open inX and hencef (U)⊂V. Therefore,

by Theorem4, f is contraPp-continuous.

Theorem 12.If X = R∪S, where R and S are preclopen sets, and f: X →Y is a function such that both f| R and f | S

are contra Pp-continuous, then f is contra Pp-continuous.

Proof. Let F be any closed subset ofY. Then f−1(F) = ( f | R)−1(F)∪ ( f | S)−1(F). Since f | R and f | S are contra

Pp-continuous, then by Theorem4 ( f | R)−1 and( f | S)−1 arePp-open sets inR andS, respectively. SinceR andS are

precolpen sets inX, then by Proposition3 ( f | R)−1 and( f | S)−1 arePp-open sets inX. Since the union of twoPp-open

sets isPp-open, hencef−1(F) is Pp-open sets inX. Therefore, by Theorem4, f is contraPp-continuous.

Theorem 13.If X is a topological space and for each pair of distinct points x1 and x2 in X, there exists a function f of X

into Uryshon topological space Y such that f(x1) 6= f (x2) and f is contra Pp-continuous at x1 and x2, then X is a Pp-T2

space.

Proof. Let x1 andx2 be any distinct points inX. By hypothesis, there is a Uryshon spaceY and a functionf : X → Y

such thatf (x1) 6= f (x2) and f is contraPp-continuous atx1 andx2, Let yi = f (xi) for i = 1,2. Theny1 6= y2. SinceY is

Uryshon, there exist open setsUy1 andUy2 containingy1 andy2 respectively inY such thatCl(Uy1)∩Cl(Uy2) = φ . Since

f is contraPp-continuous atx1 andx2, there existPp-open setsVx1 andVx2 containingx1 andx2 respectively inX such that

f (Vxi )⊂Cl(Uyi ) for i = 1,2. Hence, we haveVx1 ∩Vx2 = φ . Therefore,X is aPp-T2 space.

Corollary 10. If f is contra Pp-continuous injection of a topological space X into a Uryshon space Y, then X is a Pp-T2

space.

Proof.Let x1 andx2 be any distinct points inX. Then by hypothesis,f is contraPp-continuous ofX into a Uryshon space

Y such thatf (x1) 6= f (x2) becausef is injective. Hence, by Theorem13, X is aPp-T2 space.

Proposition 5.Let f : X1 →Y and g: X2 →Y be two contra Pp-continuous functions. If Y is Uryshon, then the set

E = {(x1,x2) ∈ X1×X2 : f (x1) = g(x2)} is Pp-closed in the product space X1×X2.

Proof. In order to show thatE is Pp-closed, we show that(X1×X2)\E is Pp-open. Let(x1,x2) /∈ E. Then f (x1) 6= g(x2).

SinceY is Uryshon, there exist open setsU1 andU2 of Y containing f (x1) andg(x2) respectively, such thatCl(U1)∩

Cl(U2) = φ . Since f andg are contraPp-continuous,f−1(Cl(U1)) andg−1(Cl(U2)) arePp-open sets containingx1 and

x2 in Xi(i = 1,2). Hence, by Proposition4, f−1(Cl(U1))× g−1(Cl(U2)) is Pp-open. Further(x1,x2) ∈ f−1(Cl(U1))×

g−1(Cl(U2))⊂ (X1×X2)\E. It follows that(X1×X2)\E is Pp-open. Thus,E is Pp-closed in the product spaceX1×X2.
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Corollary 11. If f : X → Y is a contra Pp-continuous function and Y is a Urysohn space, then

E = {(x1,x2) | f (x1) = f (x2)} is Pp-closed in the product space X×X.

Corollary 12. Let f : X1 →Y and g: X2 →Y be two contra Pp-continuous functions. If Y is ultra Hausdorff, then the set

E = {(x1,x2) ∈ X1×X2 : f (x1) = g(x2)} is Pp-closed in the product space X1×X2.

Corollary 13. If f : X →Y is a contra Pp-continuous function andY is ultra Hausdorff, then E= {(x1,x2) | f (x1) = f (x2)}

is Pp-closed in X.

Theorem 14.Let f : X → Y be a contra Pp-continuous injection function. If Y is an ultra Hausdorff space, then X is a

Pp-T2 space.

Proof.Letx1 andx2 be any distinct points inX, thenf (x1) 6= f (x2) and there exist clopen setsU andV containingf (x1) and

f (x2) respectively, such thatU ∩V = φ . Since f is contraPp-continuous, thenf−1(U) ∈ PpO(X) and f−1(V) ∈ PpO(X)

such thatf−1(U)∩ f−1(V) = φ . Hence,X is aPp-T2 space.

Proposition 6. If f i : Xi →Yi is a contra Pp-continuous function for each i= 1,2. Let f : X1×Y2 → X1×Y2 be a function

defined as follows: f(X1,X2) = ( f1(x1), f2(x2)). Then f is contra Pp-continuous.

Proof.Let R1×R2 ⊂Y1×Y2, whereRi is open set inYi for eachi = 1,2. Thenf−1(R1×R2) = f−1
1 (Y1)× f−1

2 (R2). Since

fi is contraPp-continuous forfi = 1,2, then by Proposition4, f−1(R1×R2) is Pp-closed inX1×X2.

Definition 11. The graph G( f ) of a function f: X →Y is contra Pp-closed in X×Y if for each(x,y) ∈ (X×Y) \G( f ),

there exists U∈ Pp(X,x) and a closed V in Y containing y such that(U ×V)∩G( f ) = φ .

Lemma 3.The graph G( f ) of a function f: X →Y is contra Pp-closed in X×Y if and only if for each(x,y) ∈ (X×Y)\

G( f ), there exist U∈ PpO(X) containing x and V∈C(Y) containing y such that f(U)∩V = φ .

Theorem 15.If f : X →Y is a contra Pp-continuous function and Y is Urysohn, then G( f ) is contra Pp-closed in X×Y.

Proof. Let (x,y) ∈ (X ×Y) \G( f ). It follows that f (x) 6= y. SinceY is Urysohn, there exist open setsV andW such

that f (x) ∈ V, y ∈ W andCl(V)∩Cl(W) = φ . Since f is contraPp-continuous, there exists aU ∈ PpO(X,x) such that

f (U)⊂Cl(V) and f (U)∩Cl(W) = φ . Hence,G( f ) is contraPp-closed inX×Y.

Theorem 16.If f : X →Y is a Pp-continuous function and Y is T1, then G( f ) is contra Pp-closed in X×Y.

Proof.Let (x,y) ∈ (X×Y)\G( f ). Theny 6= f (x) and there exists an open setV of Y, such thatf (x) ∈V andy /∈V. Since

f is Pp-continuous, there existsU ∈ PpO(X,x) such thatf (U) ⊂ V. Therefore,f (U)∩ (Y \V) = φ andY \V ∈C(Y,y).

This shows thatG( f ) is contraPp-closed inX×Y.

Theorem 17.Let f : (X,τ)→ (Y,σ) be a function and g: X → X×Y be a graph function of f defined by g(x) = (x, f (x))

for every x∈ X. If g is contra Pp-continuous, then f is contra Pp-continuous.

Proof. Let V be an open set inY. ThenX ×V is an open set inX ×Y. Sinceg is contraPp-continuous,g−1(X ×V) is

Pp-closed inX. Also g−1(X×V) = f−1(V) which isPp-closed inX. Hence,f is contraPp-continuous.

Theorem 18.Let f : X →Y has a contra Pp-closed graph. If f is injective, then X is Pp-T1.

Proof.Let x1 andx2 be any two distinct points ofX. Then, we have(x1, f (x2)) ∈ (X×Y)\G( f ). Then, there existPp-open

U in X containingx1 andF ∈C(Y, f (x2)) such thatf (U)∩F = φ . Hence,U ∩ f−1(F) = φ . Therefore, we havex2 /∈U .

This implies thatX is Pp-T1.

Definition 12. A topological space X is said to be Pp-normal if each pair of disjoint closed sets can be separatedby

disjoint Pp-open sets.
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Theorem 19.If a function f : X →Y is contra Pp-continuous, closed injection and Y is ultra normal, then X is Pp-normal.

Proof. Let F1 andF2 be disjoint closed subsets ofX. Since f is closed injective,f (F1) and f (F2) are disjoint closed

subsets ofY. SinceY is ultra normal,f (F1) and f (F2) are separated by disjoint clopen setsV1 andV2, respectively. Hence,

Fi ⊂ f−1(Vi), f−1(Vi) ∈ Pp(X) for i = 1,2 and f−1(V1)∩ f−1(V2) = φ . ThusX is Pp-normal

Theorem 20.If a function f : X →Y is contra Pp-continuous injection and Y is weakly Hausdorff, then X is Pp-T1.

Proof. Suppose thatY weakly Hausdorff. For any distinct pointsx1 andx2 in X, there exist regular closed setsU andV

in Y such thatf (x1) ∈U , f (x2) /∈U , f (x1) /∈V and f (x2) ∈V. Since f is contraPp-continuous,f−1(U) and f−1(V) are

Pp-open subsets ofX such thatx1 ∈ f−1(U), x2 /∈ f−1(U), x1 /∈ f−1(V) andx2 ∈ f−1(V). This shows thatX is Pp-T1.

Theorem 21.Let f : X → Y be a contra Pp-continuous surjective function and A isα-open and preclosed subset of

X. If f is a closed function, then the function g: A → f (A), which is defined by g(x) = f (x) for each x∈ A, is contra

Pp-continuous.

Proof.PuttingH = f (A). Letx∈ A andF be any closed set inH containingg(x). SinceH is closed inY andF is closed in

H, thenF is closed inY. Since f is contraPp-continuous, then by Theorem4, there exists aPp-openU in X containingx

such thatf (U)⊂ F. TakingW =U ∩A, sinceA is α-open and preclosed subset ofX. Then by Corollary1, W is Pp-open

in A containingx andg(W)⊂ FY ∩H = FH . Theng(W)⊂ FH . Therefore, by Theorem4, g is contraPp-continuous.

We shall obtain some conditions for the composition of two functions to be contraPp-continuous.

Theorem 22.Let f : X → Y and g: Y → Z be functions. Then the composition function g◦ f : X → Z is contra Pp-

continuous if f and g satisfy one of the following conditions:

(1) f is contra Pp-continuous and g is continuous.

(2) f is Pp-continuous and g is contra-continuous.

(3) f is contra Pp-continuous and g is a stronglyθ -continuous.

(4) f is contra Pp-continuous and g is a quasiθ -continuous.

Proof.

(1) LetW be any open subset ofZ. Sinceg is continuousg−1(W) is an open subset ofY. Sincef is contraPp-continuous,

then(g◦ f )−1(W) = f−1(g−1(W)) is aPp-closed subset inX. Therefore,g◦ f is contraPp-continuous.

(2) Let W be any open subset ofZ. Sinceg is contra-continuous, theng−1(W) is a closed subset ofY. Since f is Pp-

continuous, then by Theorem2, (g◦ f )−1(W) = f−1(g−1(W)) is aPp-closed subset inX. Therefore,g◦ f is contra

Pp-continuous.

(3) Let W be any open subset ofZ. In view of stronglyθ -continuity of g, g−1(W) is a θ -open subset ofY. Again,

since f is contraPp-continuous,(g◦ f )−1(W) = f−1(g−1(W)) is aPp-closed subset inX. Therefore,g◦ f is contra

Pp-continuous.

(4) Obvious
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